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such as increased hurricane activity due to the onset of 
anthropogenically-induced climate change (4). It is theorized 
that these stressors lead to the damage of photosystem 
II, a protein complex that aids in photosynthesis, in the 
chloroplasts of the photosynthetic symbiotes. Photosystem 
II is involved in the electron transport chain on the thylakoid 
membrane. The damage to this photosystem leads to the 
production of dangerous reactive oxygen species (ROS). 
These ROS damage both the dinoflagellate and the coral, 
inducing the coral to expel the dinoflagellate (5). Since over 
90% of a coral’s energy needs are supplied by its symbiotes, 
a coral depends heavily on its symbiotes (6). Bleached corals 
no longer have their primary energy source, and if symbiotes 
do not return to the corals, the corals will starve to death. 
In the Indian Ocean, coral cover has declined by up to 90% 
since 2016, and 14% of corals have been lost worldwide in 
just the last decade (3).
 Coral reefs function as an effective storm surge barrier 
and protect coastal populations from devastating waves (7). 
Studying thriving reefs is also beneficial to humans since they 
harbor many compounds that can be used medicinally (8, 9). 
Corals are also vital to a stable ocean ecosystem, as corals 
provide shelter and food to a variety of ocean organisms 
such as clownfish and parrotfish. Furthermore, marine 
organisms that live in coral reefs are also a food source for 
human populations. In summary, coral reefs are vital to not 
only humans but also the multitude of creatures living in the 
oceans.
 Marine scientists currently implement a variety of methods 
to prevent coral bleaching. Methods include repopulating 
bleached regions, selectively breeding bleaching tolerant 
corals, or creating artificial reefs (9). These restorative 
methods are only implemented to recover previously bleached 
reefs. However, it is crucial to identify a potential bleaching 
site before damage occurs. This can be a daunting task since 
coral reefs are massive, spanning over 360,000 square miles. 
Thus, due to the vast size of reefs, it can be challenging to 
quickly identify at-risk regions and implement the appropriate 
preventative methods before bleaching occurs. This work 
aims to solve the problem of locating high bleaching risk 
areas in the expansive oceans.
 Developing an algorithm that can predict locations at 
risk for coral bleaching will allow scientists, researchers, 
and conservationists to implement targeted prevention 
or restoration methods, ensuring regions most at risk of 
bleaching are protected. Existing coral bleaching prediction 
methods are limited as they only pertain to specific regions of 
the planet. For example, the predictor developed by Kumagai 
et al. specifically focuses on the region around Japan, the 
predictor developed by Williams et al. focuses on the Palmyra 
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SUMMARY
Coral bleaching is a fatal process that reduces 
coral diversity, leads to habitat loss for marine 
organisms, and is a symptom of climate change. 
This process occurs when corals expel their 
symbiotic dinoflagellates, algae that photosynthesize 
within coral tissue providing corals with glucose. 
Restoration efforts have attempted to repair damaged 
reefs; however, there are over 360,000 square miles 
of coral reefs worldwide, making it challenging to 
target conservation efforts. Thus, predicting the 
likelihood of bleaching in a certain region would 
make it easier to allocate resources for conservation 
efforts. We developed a machine learning model to 
predict global locations at risk for coral bleaching. 
Data obtained from the Biological and Chemical 
Oceanography Data Management Office consisted of 
various coral bleaching events and the parameters 
under which the bleaching occurred. Sea surface 
temperature, sea surface temperature anomalies, 
longitude, latitude, and coral depth below the surface 
were the features found to be most correlated to coral 
bleaching. Thirty-nine machine learning models were 
tested to determine which one most accurately used 
the parameters of interest to predict the percentage 
of corals that would be bleached. A random forest 
regressor model with an R-squared value of 0.25 and a 
root mean squared error value of 7.91 was determined 
to be the best model for predicting coral bleaching. 
In the end, the random model had a 96% accuracy 
in predicting the percentage of corals that would be 
bleached. This prediction system can make it easier 
for researchers and conservationists to identify coral 
bleaching hotspots and properly allocate resources 
to prevent or mitigate bleaching events.

INTRODUCTION
 Coral bleaching is a deadly problem that affects corals 
worldwide (1). Corals form symbiotic relationships with 
photosynthetic dinoflagellates in the genus Symbiodinium. 
The corals provide their symbiotic dinoflagellates with 
protection from predators and provide trace elements to the 
dinoflagellates. In return, the symbiote provides the coral 
with photosynthetically produced glucose (2). However, 
stressors in the ocean such as rising ocean temperatures 
and increasing irradiance often lead to corals expelling 
their vibrantly colored dinoflagellates in a process called 
coral bleaching (3). Other stressors include weather events 
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Atoll, and the coral bleaching predictor developed by Done 
and Wooldridge specifically focuses on the Great Barrier 
Reef (11-13). Although local models are highly accurate in 
predicting bleaching in these specific regions, corals grow 
across the world, and thus, a global model is crucial to provide 
better coverage. Thus, in this work, a global coral bleaching 
predictor was developed. This system considers various 
ocean parameters to determine the likelihood of bleaching 
occurring at any given specific global location. When water 
parameters are entered into this prediction system, the 
predictor calculates both the percentage of coral colonies at 
risk for bleaching at that location and whether the corals are 
at high risk or low risk of bleaching. 
 This project explores different machine learning models to 
predict future bleaching patterns and determine specifically 
which model is most accurate. We hypothesized that sea 
surface temperatures, larger sea surface temperature 
anomalies, and geographic location would be the most 
significant factors correlated to coral bleaching. These 
parameters are similarly explored in other bleaching predictors 
(11-13). In addition, we believe that either a probabilistic linear 
regression Bayesian model or random forest regressor model 
would be most accurate in predicting the likelihood of a coral 
bleaching event, as these models have been successfully 
implemented in prior works (11, 13-14). Through this work, a 
random forest model was determined to be the most accurate 
machine learning model and sea surface temperature, sea 
surface temperature anomalies, longitude, latitude, and depth 
were the parameters found to be most correlated to coral 
bleaching.

RESULTS
Modeling and Bleaching Correlation 
 The dataset included coral bleaching events recorded 
across the world (Figure 1). To determine the most accurate 

predictors of coral bleaching, we performed a linear correlation 
analysis to model the relationship between all the parameters 
provided in the global dataset (Figure 2). We found certain 
variables such as wind speed to have a high correlation (r = 
0.2) to coral bleaching. However, multicollinear parameters 
needed to be removed by calculating Pearson’s correlation 
coefficient to prevent the overfitting of the model to the 
dataset. This would limit inaccurate biases in the model. When 
parameters such as wind speed or thermal stress anomaly 
were found multicollinear (r>0.8) to each other, we removed 
both. We found that sea surface temperature (ClimSST), sea 
surface temperature anomalies (SSTA), depth (Depth_m), 
longitude, and latitude were the most significant parameters 
correlated to bleaching (Figure 3). According to the results 
of the linear analysis, SSTA, sea surface temperature and 
depth exhibited the highest positive degree of correlation 
with bleaching, 0.06, 0.05, and 0.03 respectively, while 
longitude and latitude showed the highest negative degree 
of correlation with bleaching, -0.06 and -0.01 respectively. 
Through a follow-up principal component analysis (PCA) 
on all parameters found in the original dataset, it was once 
again found that the same parameters were most correlated 
to bleaching. Four components were needed for the PCA 
(Figure 4). This redundancy better validates the selection of 
our parameters of interest. 
 We selected the random forest model to model these 
parameters of interest because it resulted in the R-squared 
value of 0.25, which was the highest R-squared value for all 
the models tested (Table 1) with the lazypredict library (15). 
R-squared refers to the goodness-of-fit of the model to the 
data. In addition, the random forest model had the lowest root 
mean squared error (RMSE) value, 7.91, indicating a closer 
relationship between the model and the data. The random 
forest did take significantly longer to make its prediction, 
however, at a run-time of 2.08 seconds, compared with 

Figure 1: Global Map of Coral Reef Bleaching and non-Bleaching Events Included in Dataset. Red dots label the location of the 
bleaching events included in the dataset. Geopandas package (34) in python was used for plotting. 
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a median run-time of 0.05 seconds for all models tested. 
GridSearchCV, a function in the scikit-learn python package, 
was used to determine the optimal hyperparameters for the 
random forest model. Tuning the hyperparameters, which 
help optimize the learning process, improved the model’s 
accuracy. GridSearchCV found that 300 estimators, a depth 
of 16, a square root number of maximum features, and a mean 
squared error criterion were the optimal hyperparameters. 
The number of estimators is another way to quantify the 
number of trees in the random forest model, and the depth 
is the number of levels found in each decision tree. This 
model used the correlation coefficients and the results of the 
PCA, which determined that the longitude, latitude, depth, 
ClimSST, and SSTA were the least multicollinear parameters. 
Furthermore, k-means clustering with 2 clusters predicted the 
percent bleaching of a coral under the above conditions and 

whether there was a high or low likelihood of this bleaching 
occurring (Figure 5). Overall, 80% of the original dataset was 
used to train the model and the remaining 20% was used 
to test the random forest model. The random forest model 
was 96% accurate in predicting the bleaching percentage, 
which meant that, on average, it was 4% off in measuring 
the percentage of coral colonies expected to bleach under 
certain water parameters. 

DISCUSSION
 Random forest models take advantage of decision trees 
to form their predictions. However, not all datasets will work 
best with a random forest model as a large number of trees 
can slow prediction time. In the future, more data points will 
be collected from other sources that were not covered in this 
dataset in order to improve the model’s global applicability. 

Figure 2: Linear Correlations Between all Parameters. Numerical parameters were taken from data produced by van Woesik et al. (24). 
The dataset may be accessed through the Biological and Chemical Oceanography Data Management Office. These linear correlations were 
used to identify multilinear parameters. TSA = thermal stress anomaly, SSTA_DHWMean = sea surface temperature anomaly degree heating 
weeks mean, SSTA_DHWMax = sea surface temperature anomaly degree heating weeks max.
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The model outputted the predicted percentage of coral that 
would be expected to be bleached in that region of interest. 
The major benefit of this random forest model was its 
accuracy. 
 We identified the parameters of interest most closely 
correlated to coral bleaching, while removing multicollinear 
ones, and we developed a random forest model that predicts 
the percentage of corals bleached under these conditions. 
Longitude, latitude, depth, sea surface temperature anomalies, 
and temperature were the parameters of interest used to train 
the random forest model. In other words, the physical location 
of the coral in 3-dimensional space and the surrounding 
temperature are the most critical factors in determining the 
extent of coral bleaching. Other parameters could have been 
used in training the model, but they were removed to prevent 
overfitting the random forest model. For example, although 
thermal stress anomaly degree heating week (TSA_DHW), 
which is the sum of the previous twelve weeks when the TSA 
is found to be above one, was highly correlated to bleaching, 
it needed to be removed as it was highly multicollinear to 
other parameters. Interestingly, wind speed seemed to 
be highly linearly correlated with coral bleaching but was 
highly collinear with other parameters. An increase in wind 
speed is often correlated with hurricane activity, which could 
increase the likelihood of coral bleaching. Previous literature 
has suggested that hurricanes tend to track warmer waters 
(17). This might indicate that corals in warmer waters are not 

only more at risk from bleaching from the water temperature 
itself but also from the higher risk of damaging hurricanes. 
It has been established that hurricanes negatively affect 
coral reefs in various ways (18). One study has indicated a 
reduction in the coral recruitment of non-branching corals 

Figure 4: Number of Components Versus the Percent Cumulative 
Variance from PCA. The red line depicts the threshold at which 95% 
of the variance in the data is explained by the principal component 
analysis (PCA). The blue line depicts the variance explained versus 
the number of components used in the PCA. 

Figure 3: Parameters Most Closely Linearly Correlated to Bleaching.  The figure depicts the parameters determined to be least 
multicollinear. The axes list the parameters of interest. The bottom row specifically focuses on the linear correlation of average bleaching to 
the other parameters of interest. Depth_m, ClimSST and SSTA have a positive linear relationship with coral bleaching while longitude and 
latitude have a negative correlation. SSTA = sea surface temperature anomalies, ClimSST = surface temperature. 
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was linked to storm damage, in which increased storm or 
hurricane activity negatively correlated with coral recruitment 
(19). Another study found a coupling of both bleaching and 
hurricane intensity to be the most negative influence on coral 
recruitment and health (19). 
 There was a positive correlation between sea surface 
temperature anomalies and bleaching percentage. This 
indicates that when temperatures are higher than expected, 
an increased percentage of corals are expected to bleach. 
In agreement with previous research (1, 20, 21), ClimSST 
also had a positive correlation with bleaching, indicating 
that as temperatures increased, the likelihood of coral 
bleaching also increased. However, it seems that SSTA had 
a stronger influence on bleaching than ClimSST, indicating 
that deviations from the expected water temperature may be 
a larger factor for bleaching than the temperature itself. There 
also seems to be a slightly positive relationship between 
depth and bleaching risk. The deeper the coral, the higher 
risk of bleaching is. This might be because deeper corals 

are more sensitive to temperature fluctuations or stress in 
general. However, this does not necessarily imply that corals 
further below sea level are always more likely to get bleached 
since the Biological and Chemical Oceanography Data 
Management Office (BCO-DMO) dataset used in this work 
only includes bleaching events that have occurred between 0 
and 12 meters underwater.
 For k-means clustering of the data, clustering was 
employed in order to avoid any biases from manually 
classifying the data. K-means grouped the data points into two 
distinct clusters and determined that a bleaching percentage 
of 30% or above was enough to classify a data point in the 
high-risk group over the lower-risk group. 
 To develop a faster, more efficient, and more 
geographically extensive method of determining the likelihood 
of coral bleaching, a random forest model for determining the 
percentage of coral bleaching occurring under sea surface 
temperature, sea surface temperature anomalies, longitude, 
latitude, and depth was developed. This model used these 
parameters and outputted the predicted percentage of coral 
that would be bleached under this condition in addition to 
whether this percentage would be classified as low or high 
risk for bleaching. Highly multicollinear parameters such as 
wind speed or thermal stress were removed, and through a 
principal component analysis and linear correlation matrix, 
the parameters from the dataset most highly correlated 
to the percent of corals bleached were determined. Sea 
surface temperature, sea surface temperature anomalies, 
coral depth, longitude, and latitude were the parameters 
most highly correlated to bleaching. This work supports 
the initial hypothesis in which we claimed a random forest 
model, or a Bayesian model would be the most accurate. The 
lazypredict library was used to determine the best model for 
the predictions. After the random forest model was trained on 
the parameters correlated to bleaching, the model was then 
integrated into an application to make it accessible and easy 
to use. The major application of this project is that it allows for 
easy, global determination of at-risk coral bleaching locations 
from readily accessible data. NOAA regularly tracks both 
global sea surface temperature and sea surface temperature 
anomalies. This live data can be integrated into the model in 
a future version to provide real time updates on worldwide 
bleaching risk allowing for better monitoring and tracking of 
coral health worldwide (23, 24).
 A future direction would be to apply this prediction model to 
a global map to pinpoint current locations at risk of bleaching. 
This heat map could color code the ocean with the relative 
percentage of bleaching expected at that location due to 
current ocean temperature parameters, depth, and location. 
A real-time map, as aforementioned, that imports data from 
multiple live sources could give real-time information as to what 
regions are at the highest risk could also be developed. Coral 
bleaching is a serious problem that damages ecosystems, 
hurts wildlife and humans. Better prediction tools like this 
model will help address coral bleaching by better identifying 
at risk areas. 

MATERIALS AND METHODS
Dataset
 Coral bleaching data was collected from the dataset 
assembled by van Woesek et al. (25) from BCO-DMO. The 
dataset included 9,666 instances of coral bleaching events 

Figure 5: Optimal Number of Clusters. SSD, also known as SSE, 
is the sum squared error for each number of clusters. The curve 
shows the relationship between the error and the number of clusters 
tested. The arrow points to the optimal number of clusters which was 
two. 

Table 1. The Performance of Various Models on Coral Bleaching 
Prediction. The top five models are shaded gray while the bottom 
five models are shown unshaded. Models were ranked by their 
R-squared and RMSE values. A prediction time is provided for each 
model.
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and non-bleaching events (locations without measured 
bleaching) and the associated water parameters for both 
events. For each coral bleaching event, the dataset provided 
the percent of the coral colonies observed that were bleached 
by taking the average of four transected (cut) segments or 
slices of the coral. A bleaching value of 10 in the dataset 
would indicate that on average 10% of the coral colonies 
analyzed at that specific location were bleached. The dataset, 
which includes data from 1998 to 2017, provides parameters 
such as ClimSST, depth from the surface, windspeed, SSTA, 
longitude, latitude, and the name of the ocean in which the 
coral bleaching event occurred. 

Data Cleaning
 First, bleaching events with negative SSTA values were 
removed from the dataset. SSTA values were the difference 
between the weekly average sea surface temperature and 
the weekly climatological average sea surface temperature 
for that specific bleaching event. In short, an anomaly 
occurs when the sea surface temperature departs from 
the temperature expected for that region. To put this in 
context, a sea surface anomaly of 1.5-3.5 degrees Celsius 
is characteristic of the El Niño climate pattern (26). Because 
corals can tolerate lower temperatures, all data points with 
negative SSTA were removed to prevent bias in the analysis 
(27). Furthermore, locational data was cleaned up. Blanks in 
the numerical data set were labeled with N/A and counted 
in each column. 5,511 bleaching events were missing data 
in the city_3 column, 3142 bleaching events were missing 
data in the City_Town_2 column, and 289 bleaching events 
were missing data in the City_Town parameter. All three of 
these columns were meant to provide additional identifying 
information about where the bleaching event occurred, but 
due to the large number of missing data points, these three 
columns were removed. In addition, all non-numerical data 
such as the “Ocean,” “Ecoregion,” and “Realm,” which all 
further provide more locational data, were also removed. 
These parameters were unnecessary because the datasets 
provided numerical longitudes and latitudes for each 
bleaching event. Finally, the spread of the data over time was 
also accounted for. This dataset provided data from 1998 to 
2017. On average, 500-700 bleaching events were recorded 
each year. However, data was lacking between 1998 and 
2002 when only 5 to 63 bleaching events were recorded in a 
year. Bleaching events from these years were also removed to 
allow an even distribution of data points over time. After data 
cleaning was completed, 6,112 bleaching events remained for 
further analysis.

Model Development
 The aim of this work was to provide a numerical percentage 
value of the corals at risk of bleaching under certain conditions 
and to provide a non-numerical low- or high-risk classification 
to this prediction. To achieve the first objective, regression 
modeling was performed on the dataset to determine the 
parameters of interest most closely correlated to bleaching. 
Then these parameters were used in conjunctions with a 
random forest model to calculate the predicted bleaching 
percentage. For the second objective, these parameters of 
interest were clustered and then classified into two categories: 
high-risk and low-risk. When parameters are provided to the 
prediction system, the model determines whether it would 

be classified in a low- or high-risk cluster and thus whether 
there is a low or high risk of bleaching. A user interface 
was then built to use the developed model as an interactive 
system. This work was coded in the Python programming 
language (version 3.9.7) in a Jupyter notebook with open-
source libraries such as scikit-learn (sklearn) (28) to perform 
regression modeling, seaborn for data visualization, and the 
tkinter library for app development (28-29).

Identifying Features of Interest
 To identify features of interest, we tested the collinearity 
between the parameters (except for bleaching) provided in the 
dataset. Highly correlated pairs are parameters highly linearly 
or non-linearly correlated to each other. Average bleaching 
remained as the dependent variable throughout the course of 
this work. Highly correlated or multicollinear parameters need 
to be removed as they can cause overfitting of the machine 
learning model and increase computation time. The second 
figure shows a heat map representing the linear correlation 
between all the numerical parameters in the dataset. This 
map was generated with the seaborn package in Python. The 
Pearson correlation coefficient, rxy, for each parameter was 
calculated according to the method of Pearson (30):

 (1) 

where n is the sample size, xi is the independent sample 
point, and yi is the dependent sample point, such that 
parameters with a Pearson correlation coefficient greater 
than 0.8 between each other were excluded from the model to 
prevent multicollinearity. 
 The original parameters were then simplified to only 
include parameters that were not highly correlated to each 
other. A heat map with just the remaining noncollinear 
parameters was generated. From this, it was determined that 
SSTA, ClimSST, Depth, Longitude, and Latitude were the 
parameters of interest most closely correlated to bleaching, 
and they were not highly correlated to each other. This 
identification of features of interest was further validated with 
principal component analysis (PCA). The Python package 
sklearn (31) was used to determine the number of principal 
components. Four components crossed the 95% threshold 
recommended for PCA. It can be seen that 4 components 
were the optimal number because it is the lowest number of 
components that either meets or exceeds the 95% threshold 
of explained variance. Once the PCA was run on the dataset 
(32), the same parameters as identified by the Pearson’s 
correlation coefficient—SSTA, ClimSST, Depth, Longitude, 
and Latitude—were identified to be least multicollinear 
with the other parameters in the dataset and most closely 
correlated to bleaching.

Regression Modeling
 To understand which models would work best to predict 
the percent bleaching, the lazypredict Python library (15) was 
used. This regression library used the parameters of interest, 
determined before, to predict the most accurate model. The 
library was used to run thirty-nine models automatically. All 
of the models in the library were regression models, such 
as the Tweedie regressor, Bagging regressor, and Huber 
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regressor. For each model tested, the appropriate R-squared 
and root mean squared error (RMSE) values were calculated. 
R-squared is the square of the correlation coefficient, while 
RMSE is an indicator of the dispersion of the data and how 
far it deviates from the line of best fit or expectation. A higher 
R-squared and lower RMSE value is ideal. The R-squared 
was the highest for the random forest regressor, and the 
RMSE was simultaneously the lowest for this model out of all 
the models tested. The parameters of the random forest were 
hypertuned with GridSearchCV. 

Clustering Features
 After determining parameters of interest, the data was 
grouped to determine clusters of high bleaching percentages 
and low bleaching percentages. K-means clustering was 
employed. The elbow method helped determine the optimal 
number of clusters necessary to model the data. The number 
of clusters is chosen at the point where diminishing marginal 
returns in error reduction occurs when adding a new cluster. 
It can be seen that an elbow occurs at two clusters where the 
graph is no longer linear. At this point, additional clusters do 
not necessarily help to group the data better. From this, it can 
be concluded that two clusters best fit the data: one for high 
bleaching levels and one for low bleaching levels. A silhouette 
analysis (33), which determines the best degree of separation 
between a certain number of clusters, further validated the 
results of the elbow method. A silhouette coefficient was 
then determined for the each number of clusters. A larger 
coefficient which indicates better separation between the 
clusters is ideal. When tested on a range of one to fifteen 
clusters, two clusters had the largest silhouette coefficient 
of 0.7485. This metric indicates how well the clustering 
was performed. A higher coefficient correlates to a better 
clustering performance Eight iterations of k-means were then 
performed to find the centroids of these two clusters. Once 
the two clusters of data based on the parameters of interest 
were mapped, each bleaching event from the data set was 
assigned to a cluster.
 Clustering for high- and low-risk areas was done 
with the k-means library (16). When the parameters 
were provided to the regression model, the program 
determined which cluster a bleaching event fell into. 

App Development
 A Python app was developed for the random forest 
regressor model with the tkinter Python package (22). Users 
can input the relevant parameters, and the app provides the 
percent of coral that would be expected to bleach at that 
location. The code for the app can be accessed here: www.
github.com/IndeeverM/Global-Coral-Bleaching-Predictor/
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