
3 MARCH 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

experts or laboratory testing methods, such as polymerase
chain reaction, immunofluorescence, fluorescence in
situ hybridization, and enzyme-linked immunosorbent
assay. However, these laboratory methods require expert
technicians and can take a lot of time to complete, making
fast identification difficult (4). In addition, diagnoses can be
inconsistent between different experts (5).

A potential alternative for effective disease diagnosis is
a mobile device-based computer vision solution to identify
diseases from photos of tomato plants. This method would
diagnose diseases in tomato plants by recognizing visible
symptoms on leaves, which are often considered reliable
indicators of disease (6). A mobile device-based solution
would be less expensive, easier to use than laboratory testing,
and more precise and consistent than a human expert. Most
importantly, its portability in the field enables convenient and
fast diagnoses, allowing for timely treatment.

The advancement of computer vision has led to research
in using various machine learning convolutional neural
networks (CNNs) to identify tomato diseases from photos
of tomato leaves. CNNs are a type of machine learning
model that take an input image, assign weights and biases
to different pixels in the image, and use this to differentiate
between different classes, or in this case, diseases (7). CNNs
use many different layers, or algorithms, that each uniquely
process the image. For example, a convolutional layer uses
filters to stride through the image and applies a formula to
pixel values within the image (8). These “convolutional filters”
can be configured to be larger in size or stacked for more
processing, at the cost of higher computational expense. A
max pooling layer is one that uses filters to stride through an
image and obtain the maximum values of different sections
of the image (9). In addition, the architecture of the neural
network is modifiable; layers can be swapped, changed, or
added as necessary.

There have been several attempts to use CNNs for tomato
disease identification in previous studies. Ramakrishna
trained a VGG19 CNN (19 hidden layers) model to classify an
image of a tomato leaf as healthy or as one of four different
diseases. This model achieved 96.0% accuracy (10). Mkonyi,
et al. trained a VGG16 CNN (16 hidden layers) to identify the
Tuta absoluta pest in tomato plants from images of tomato
leaves, attaining 91.9% accuracy (11). Multiple different
popular CNN models were compared by Zhang et al. to
classify an image of a tomato leaf as healthy or as one of
eight diseases. ResNet50 (50 hidden layers) was the most
accurate (97.3%), followed by AlexNet (8 hidden layers,
95.8% accuracy) (12).

While this research demonstrates the viability of using
CNNs to identify tomato diseases, it would be difficult to
use the same VGG16, VGG19, AlexNet, ResNet models
mentioned above on mobile devices, as these models are

Tomato disease identification with shallow
convolutional neural networks

SUMMARY
Plant diseases can cause up to 50% crop yield loss
for the popular tomato plant. Successful disease
management requires precise and timely disease
identification methods, but slow and inconsistent
diagnoses from human experts or laboratory testing
prevents farmers from applying appropriate treatments
before the disease takes its toll. As an alternative
diagnostic method, a mobile device-based method
to identify diseases from photos of symptomatic
leaves via computer vision can be more effective
due to its convenience and accessibility. Previous
research has achieved high accuracy in diagnoses
using “deep” convolutional neural networks (CNNs)
that have a large number of processing layers and
thus a large computational requirement difficult to
satisfy on most mobile devices. To enable a practical
mobile solution, a “shallow” CNN with few layers, and
thus low computational requirement but with high
accuracy similar to the deep CNNs is needed. In this
work, we explored if such a model was possible. We
hypothesized that shallow CNNs would be capable
of achieving even higher accuracy than deep CNNs
because of shallow CNNs’ relatively low inherent
dimensionality reduction, allowing it to preserve more
distinguishing features between photos of leaves with
different diseases. We compared the performance
of a shallow CNN we built against conventional
deep CNNs. The shallow CNN outperformed several
deep CNNs, confirming our hypothesis. This finding
enabled us to develop PlantDoctor, a mobile app
that can accurately identify plant diseases via leaf
images captured by the phone camera in real-time
and suggest appropriate treatments.

INTRODUCTION
Diseases brought about by insects, pathogens, or lack of

nutrition can cause significant crop yield loss for tomatoes,
which comprise nearly 20% of all vegetable consumption
in the United States (1). For example, the Septoria leaf spot
disease, caused by a fungus, can result in 50% reduction of a
single tomato crop yield (2). Plant losses from such diseases
can cost the global economy 220 billion USD annually
(3). Precise and fast identification of diseases afflicting a
tomato crop is crucial so the appropriate treatment can be
administered as soon as possible to prevent the crop from
rotting.

Currently, identification of diseases is done by human

Minh Trinh1, Edward Jung1, Linh Trinh1

1University High School, Irvine, California

Article

3 MARCH 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

too demanding in terms of computational power and memory
space. This is because the CNNs used in the previous
research are “deep CNNs”; they have been created with many
hidden layers that “inherently apply a form of dimensionality
reduction” at great scales, thus requiring computational
power difficult for mobile devices to achieve internally
(13–15). This limitation of mobile devices can potentially be
overcome by using a CNN with a significantly smaller number
of layers (a “shallow” network), requiring many times fewer
computations without sacrificing accuracy. This inspired our
research exploring the effectiveness of “shallow” networks for
plant disease identification. As there exists no consensus on
the exact boundary between what is considered a “shallow”
and “deep” network, for the purposes of this paper, we will
consider shallow networks to be anything with four or fewer
hidden layers (16). To quantitatively compare resource
demand between shallow and deep CNNs, we used floating
point operations per second (FLOPS), memory size, duration
of training time, duration of CNN loading time, and duration of
CNN execution time, all metrics commonly used to quantify
resource consumption (15, 17). FLOPS is a measure of
computational cost indicated by the number of floating point
operations executed per second; a higher number indicates a
more resource-intensive computation.

We hypothesized that an optimized shallow CNN would
be capable of achieving a higher accuracy than conventional
deep CNNs in identification of tomato disease because a
shallow network’s lower degree of dimensionality reduction
may preserve more distinguishing features between plant
leaves afflicted by different diseases. To test this hypothesis,
we first performed hyperparameter tuning on the shallow
network by testing different shallow network architectures
to maximize its accuracy before comparison with deep
CNNs. These hyperparameters included the number of
convolutional layers, number of max pooling layers, number
of convolutional filters, and convolutional filter size. Changing
these has an impact on computational cost (i.e., required
FLOPs, memory size, etc.) with more layers, larger filter
sizes, or more filters generally associated with higher costs.
After optimizing our shallow CNN, we compared both its
accuracy and computational cost with that of conventional
deep networks such as VGG16, VGG19, AlexNet, and
ResNet. Our experiments produced supporting evidence for
our hypothesis; they demonstrated the higher accuracy of our
proposed optimized shallow CNN, at 97.1%, outperforming
several deep CNNs. This establishes that shallow CNNs are
also an accurate method for tomato disease identification
using tomato leaf photos. Not only that, but our comparisons
also showed that our shallow CNN was considerably lighter
in computational cost, requiring at least three times fewer
FLOPS, memory, loading time, and execution time than the
deep models. This indicates our proposed shallow CNN is
substantially more suitable for resource-restricted mobile
devices, without loss of accuracy. We then incorporated our
CNN into a mobile app, PlantDoctor, to identify plant diseases
via leaf images captured by the phone camera and suggest
appropriate treatments, with the shallow nature of the CNN
allowing for fast, real-time diagnosis without an Internet
connection in the field.

RESULTS
We performed three experiments and one app-building

stage. To conduct training and testing of models, we used
the PlantVillage dataset, which contains images of tomato
leaves labeled as either healthy or infected by one of nine
diseases (18). These nine diseases include bacterial spot,
early blight, late blight, leaf mold, Septoria leaf spot, two-
spotted spider mites, target spot, yellow leaf curl virus, and
mosaic virus (Figure 1). We split the dataset into a training
set (14,623 photos), validation set (2,905 photos), and test set
(3,632 photos). Each experiment involved a CNN initialization,
training epoch, and testing procedure using the sub-datasets

Figure 1: Tomato dataset disease classes and example photos.
One example photo from each of nine tomato disease classes and
one healthy class is shown from the dataset. a) Healthy leaf. b)
Bacterial spot. c) Mosaic virus. d) Early blight. e) Late blight. f) Yellow
leaf curl virus. g) Leaf mold. h) Septoria leaf spot. i) Spider mites. j)
Target spot.

Figure 2: Training and test procedure for CNNs. Flowchart
showing role of different datasets and the steps to train and test
one CNN: initialization, training epochs, and testing. The “Repeated
Training Epoch” was repeated a different number of times between
experiments depending on the amount of training needed for the
CNN.

3 MARCH 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

with various CNN architectures (Figure 2). The general
structure of our CNN consisted of a series of convolutional
and max pooling layers, then one hidden 4096-node “fully-
connected” layer for additional computation, a common layer
for neural networks (7)

Stage 1 hyperparameter tuning demonstrates
outperformance of shallow CNN with three convolutional
layers and three max pooling layers

First, we determined the optimal number of max pooling
and convolutional layers in our shallow network. We created
nine candidate models, each with M max pooling layers
and N convolutional layers where M, N = {1, 2, 3}. Only the
convolutional layers and the single fully-connected layer are
considered hidden layers, so we only created models with no
more than three convolutional layers to keep the total hidden
layer count to no more than four (19).

For each of the nine candidate models, we trained them
for 65 epochs. In each epoch, we trained the model on the
training set, producing a training accuracy, then attempted to
identify each image in a separate validation set to test the
model’s performance on unseen data, producing a validation
accuracy. After 65 epochs, we used the model to identify all
leaf photos in the test set, recording test accuracy and test
loss. Accuracy is the proportion of leaf images in a dataset
where the model identified the correct disease, and loss is
a measure of the model’s error when comparing the model’s
prediction to the ground-truth label. We used the categorical
cross-entropy loss function, which compares the model’s
predicted probabilities for each class label (10 total: nine
diseases and one class for no disease) with the ground-truth
class label. The larger the loss, the more incorrect the model
was, ranging from predicting the correct class but with low
certainty to predicting the incorrect class. Higher accuracy
and lower loss indicate better model performance.

We observed that shallow CNNs’ accuracies would almost
always plateau in training around epochs 55–65 before

declining due to “overfitting,” or aligning itself too closely
with training data and thus performing inaccurately on the
validation or test sets. This was the reason why we trained all
shallow CNNs in hyperparameter tuning experiments (Stages
1 and 2) for 65 epochs.

The optimal candidate model from Stage 1 hyperparameter
tuning consisted of three convolutional layers and three max
pooling layers, with 0.156 test loss and 94.9% test accuracy
(Figure 3). We kept this model architecture constant in our
next stage of hyperparameter tuning.

Stage 2 hyperparameter tuning demonstrates
outperformance of shallow CNN with 64 3x3 convolutional
filters

We next determined the optimal number and size of
convolutional layer filters. We created nine candidate models,
with one model having N convolutional filters each of M size
where N = {32, 64, 96} and M = {3x3, 5x5, 7x7}. We repeated
the training and test procedure (Figure 2). The optimal model
from Stage 2 hyperparameter tuning had 64 3x3 convolutional
filters, with 0.130 test loss and 95.8% test accuracy (Figure
4). With hyperparameter tuning complete, we had determined
our optimal shallow CNN architecture (Figure 5).

Figure 3: Stage 1 hyperparameter tuning. Bar charts comparing
the test accuracy and loss of nine candidate CNNs tested in Stage
1 hyperparameter tuning. Trained and tested CNNs with varying
convolution and max pooling layers. The red outline highlights
the outperformance of a CNN with 3 max pooling layers and 3
convolution layers. Test accuracies for models with 1, 2, or 3 max
pooling layers and a) 1, b) 2, and c) 3 convolution layers are shown.
Test losses for models with 1, 2, or 3 max pooling layers and d) 1, e)
2, and f) 3 convolution layers are shown.

Figure 4: Stage 2 hyperparameter tuning. Bar charts comparing
the test accuracy and loss of nine candidate CNNs tested in Stage
2 hyperparameter tuning. Trained and tested CNNs with varying
convolution filter sizes and quantities. The red outline highlights the
outperformance of a CNN with 64 3x3 filters. Test accuracies for
models with 32, 64, and 96 filters sized a) 3x3, b) 5x5, and c) 7x7 are
shown. Test losses for models with 32, 64, or 96 filters sized d) 3x3,
e) 5x5, and f) 7x7 are shown.

Figure 5: Optimized shallow CNN architecture. CNN diagram
showing the setup of each layer in our optimized shallow CNN
and visualizing the processing done on an example image. This
architecture was determined through the hyperparameter tuning
procedure.

3 MARCH 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

Comparison of optimized shallow CNN and deep CNNs
demonstrates outperformance of shallow CNN for all
deep models except ResNet

We investigated if our optimal shallow CNN was more
accurate than conventional deep CNNs. We recreated the
four deep CNN models VGG16, VGG19, AlexNet, and ResNet
following their documented architectures. We repeated the
training and testing procedure on our final optimized shallow
CNN and all four deep CNNs. However, this time we graphed
training accuracy over 100 training epochs instead of 65, as
the deep CNNs can require more training than shallow CNNs
(Figure 6A). However, increasing the number of epochs
made the modes prone to overfitting. Thus, we implemented
a procedure to restore the best version of each model (when
it achieved highest validation accuracy) from the training
period. The best versions were run on the test dataset to
produce a test accuracy and loss. We also timed how long it
took to train each CNN for 100 epochs. Our optimized CNN
produced the second-highest accuracy and second-lowest
loss at 97.1% and 0.074 loss, underperforming ResNet (98.1%
accuracy, 0.065 loss), but outperforming three deep models,
AlexNet, VGG16, and VGG19 (Figure 6C-D). In addition, our
CNN trained to its best version at 65 epochs, before AlexNet
at 71 epochs, ResNet at 89 epochs, VGG16 at 79 epochs,
and VGG19 at 91 epochs (Figure 6B).

After we finished training our shallow CNN and deep
CNNs, we collected data on various factors related to the
CNNs’ training and execution. This data helped us compare
the performances of the shallow and deep CNNs and
illustrate the advantage of using shallow CNNs. We looked at

the CNNs’ properties to determine the parameter counts and
obtained training time as mentioned above. We measured the
time for each model to load and run inference on a single
image (load and execution time) and estimated the number
of FLOPS required for each. Our shallow CNN is the most
resource-efficient based on these factors: 47 minutes to
train, using 25 megabytes (MB), requiring 0.63 gigaflops of
operation, using 2.3 seconds to load, and taking 0.7 seconds
to run inference. AlexNet (2.01 gigaflops and 223 MB) and
ResNet (7.75 gigaflops and 98 MB) were less efficient. VGG16
and VGG19 showed markedly higher resource consumption,
both 30+ gigaflops and 500+ MB (Table 1).

Construction of the mobile application and extension of
functionality to other plants

After construction and optimization of the shallow CNN,
we created a mobile app named PlantDoctor to perform
inference on uploaded images or in real-time using the CNN’s
weights that we downloaded onto a smartphone (Figure 7).
We also expanded the app’s functionality to eight other plants
– corn, grape, potato, apple, cherry, peach, bell pepper,
strawberry – by creating new CNNs with our optimized shallow
architecture and retraining each to diagnose diseases for a
different plant, using the other plants’ disease-labeled photos
from the PlantVillage dataset for training. These models all
achieved greater than 95% test accuracy (Figure 7). The total
storage size of all nine models on the app totaled around 225
MB, still smaller than a single AlexNet, VGG16, or VGG19
made to diagnose diseases for one plant.

DISCUSSION
We confirmed our original hypothesis that a shallow CNN

achieves higher accuracy than conventional deep CNN
methods in identifying tomato diseases while being more
computationally efficient. Our optimized shallow CNN to
identify tomato diseases resulted in a higher test accuracy
and lower test loss than three of four deep CNNs tested. Our
optimized shallow CNN achieved a high accuracy of 97.1%
and low loss of 0.074, underperforming only one of four deep
models: ResNet at 98.1% accuracy, 0.065 loss (Figure 6C-
D).

However, the speed and lightness of our CNN make it much
more practical for mobile apps than the ResNet, outweighing
the marginal difference in accuracy. In terms of required
operations to run inference, our CNN, at 0.63 Gigaflops, is
over 10 times more efficient than ResNet at 7.75 Gigaflops
(Table 1). In addition, our CNN has a loading time more than
three times less and execution time more than ten times less

Table 1: Computational cost comparison of shallow and deep
learning CNNs. Statistics for our shallow CNN and conventional
deep CNNs illustrating the shallow CNN’s lightness in memory and
computational usage, and speed in loading and execution compared
to the deep CNNs. The CNN number of trainable parameters is also
included.

Figure 6: Comparison of accuracy and loss performance
between optimized shallow CNN and conventional deep CNNs.
All CNNs were trained for 100 epochs, restored to the epoch it
achieved highest validation accuracy (“Best Version”), then tested on
the test set to produce test accuracy and loss. A) Training accuracies
on training dataset over 100 epochs for all CNNs. B) Validation
accuracies on the validation dataset over 100 epochs for all five
CNNs, and colored points showing the epoch of the Best Version
(our CNN: 65 epochs, AlexNet: 71 epochs, ResNet: 89 epochs,
VGG16: 79 epochs, VGG19: 91 epochs). C) Bar chart comparing test
accuracies among all five CNNs. D) Bar chart comparing test losses
among all five CNNs, with our shallow CNN trailing only ResNet.
Lower test loss indicates better test accuracy.

3 MARCH 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

than ResNet, allowing for a much better user experience and
even real-time usage (Table 1). Finally, with the shallow CNN
having nearly four times lower memory usage than ResNet,
the shallow CNN makes for a much lighter mobile app (Table
1).

The training time of models is not as crucial to consider
with regard to mobile development; models’ weights can
just be extracted and used for inference on a mobile device
after they are trained on other machines. However, it is still
interesting to note that our shallow CNN took less time than
other models to train. ResNet took around four hours to train
to achieve its marginally better accuracy, while the shallow
CNN took around one hour (Table 1). This is because more
layers in a deep CNN like ResNet means there are more
parameters that need to be optimized through the training
process. ResNet had over 20 million parameters, while our
shallow CNN had around 6 million, resulting in substantially
faster convergence and lower training time (Table 1). This
can be visualized in the training graphs; the shallow CNN’s
training and validation accuracy curve (red) during training is
much steeper than that of any deep model, and it achieves its
highest validation accuracy earliest (Figure 6A-B).

Despite mostly converging in the 90–100% validation
accuracy range after 100 epochs, all the models had
widely different starting accuracies, with ResNet, VGG16,

and VGG19 starting near 30% while AlexNet and our CNN
started higher (Figure 6B). We believe this is also a function
of parameter counts; CNN parameters are initialized in a
pseudorandom manner, so at first, a larger model like VGG16
at 138.4 million parameters may effectively be making more
random and inaccurate classifications on the validation set
than AlexNet at 62.3 million parameters (Table 1).

The above analysis shows that our shallow CNN is
substantially more suitable for mobile development due to its
low resource consumption and greater accuracy than some
deep learning models. This allowed us to develop PlantDoctor,
a mobile application for farmers and growers that utilizes
CNNs to identify plant diseases via leaf images captured
by the phone camera and suggest appropriate treatments
(Figure 7). The app functions as a mobile expert system and
is an effective alternative to diagnosing diseases with human
experts and other laboratory methods. The low execution
time of the shallow CNN allows interpretation of leaf images
in real time; users only need to point their phone camera at
a plant leaf to receive a near-instant diagnosis. Furthermore,
due to the model’s small size, we have been able to expand
the number of plants that the app can diagnose to eight other
plants by storing a CNN for each plant all simultaneously
within the app. The CNNs trained to diagnose diseases for
other plants achieved similar high accuracies to our original
tomato disease CNN. If instead deep CNN architectures were
trained to diagnose diseases of all nine plants and stored on
the app, the app would have been significantly larger in size
and require more time to load each model. As the CNNs are
easily stored completely within the device, the app does not
require an Internet connection to run and can be taken out
into remote fields. In the future, we will be able to expand to
many more plants while keeping the app small.

We were subject to some time and resource constraints;
thus, we had to limit hyperparameter tuning to optimizing
the most influential hyperparameters. In the end, this limited
optimization seemed be sufficient, as our optimized shallow
CNN could outperform deep CNNs.

In the future, we can explore the application of our shallow
CNN to predict diseases by training with datasets of leaves
with smaller or fewer symptoms, allowing growers to take
preventive measures against diseases in their early stages
before the infection becomes a larger problem. We can
also explore the identification of diseases through photos of
symptoms on other plant parts like the fruit or stem, which is
useful when symptoms are absent on leaves. When expanding
the functionality of our CNNs, we can use transfer learning in
our training process. Transfer learning is an approach where
models that have already been trained are reused as the
starting point for training on a different data set. The relatively
fast training time of our shallow CNN will help this process be
efficient.

Our research demonstrates that shallow CNNs are a
feasible and accurate approach to identifying plant diseases,
without needing the large amounts of computational
resources, execution time, and memory space required by
conventional deep CNNs. By utilizing our app, farmers can
obtain fast, reliable plant diagnosis of diseases, allowing
them to take earlier action, reducing the financial loss of
unsalvageable plants. With our CNN’s successful integration
into a mobile application, we believe we have created a tool
helpful for farmers and growers to get precise and immediate

Figure 7: PlantDoctor mobile app and performance of CNNs
made to diagnose other plants. A) Screenshots showing the app’s
usage. Users can select a type of plant to diagnose, point the phone
camera to a diseased leaf of the plant, and obtain a diagnosis with
information on the disease and appropriate treatments. B) Test
accuracies and C) test loss values of CNNs trained to diagnose other
plants are shown.

3 MARCH 2023 | VOL 6 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

identification of plant diseases allowing for timely and
appropriate treatments.

MATERIALS AND METHODS
 We used Google Colaboratory, an online Python notebook
with Cloud GPU, as the platform to do all our experiments.
We used TensorFlow, a Python library for machine learning
model development, to create, train, and test CNNs. All CNNs
we created in our experiments were trained with categorical
cross-entropy loss, Rectified Linear Unit (ReLU) activation
for hidden layers, and the stochastic gradient descent
optimization function.

Data preparation
We obtained 18,160 disease-labeled tomato leaf images

from the PlantVillage Dataset. We shuffled the dataset and
split it into 64% for the training set, 16% for the validation set,
and 20% for the test set. Images were resized to 224 x 224
pixels to fit the default image size for the deep CNNs trained
later on.

To augment the training dataset, in other words to provide
CNNs with more data to learn the patterns of each disease
during training, we applied color changes, rotations, and flips
to 25% randomly-chosen images from the training dataset.
We further augmented the training data by adding 3,000
images of labeled tomato plant leaves whose backgrounds
were replaced with a solid color, unlike the original 18,160.
This increased the number of images in the training dataset
from 11,623 (64% of the original 18,160) to 14,623.

The Python libraries NumPy, pandas, and TensorFlow
were used for data preparation procedures.

Hyperparameter tuning Stage 1
Nine CNNs were created with N convolutional layers, M

max pooling layers, one 4,096-node fully-connected layer,
and an output layer with softmax activation, where N and M
ϵ {1, 2, 3}. These were trained for 65 epochs each. The CNN
with highest test accuracy and lowest test loss determined
the optimal number of convolutional and max pooling layers
in our shallow network.

Hyperparameter tuning Stage 2
We created nine CNNs with three convolutional layers

with N convolutional filters each of M size, three max pooling
layers, one fully-connected layer, and one output layer, where
N ϵ {32, 64, 96} and M ϵ {3x3, 5x5, 7x7}. These were trained
for 65 epochs each. The CNN with highest test accuracy and
lowest test loss determined the optimal number and size of
convolutional filters for the shallow network. We constructed
a CNN with optimal hyperparameters determined from Stage
1 and Stage 2 hyperparameters, called the “optimized shallow
CNN.”

Comparison of shallow and deep networks
We recreated the four deep CNN models VGG16,

VGG19, AlexNet, and ResNet following their documented
architectures (20–22). Each of the four deep CNNs and
our optimized shallow CNN was trained for a maximum of
100 epochs and then tested. We accounted for potential
overfitting by restoring the best version of the model that
achieved the highest validation accuracy during training. This
was done by implementing a callback to re-save the model’s

weights during training every time it achieved a new high in
validation accuracy. The final trained model was tested on the
test dataset to produce a test accuracy and test loss. The test
accuracy and test loss of the shallow CNN was compared to
those of the other deep CNNs’ to determine if it was capable
of outperforming other deep CNNs.

To compare the computational costs between our
shallow model and the deep models, we collected parameter
counts, using the TensorFlow summary function; gigaflops of
operation using the analytical library keras-flops; and training
time, using a timer to record the duration of the 100 epochs
of training. We then transferred the models’ weights to a
mobile app and timed how long it took to load and execute
the models.

Building the mobile app
We built the user interface of the mobile app with React

Native (23). We downloaded the shallow CNN’s weights and
transferred them to the mobile app’s storage. The Tensorflow.
js (24) library was used to load the CNNs and run inference
on photos taken in real-time frames or from the camera roll.

To expand the app’s functionality to more plants, we
downloaded data from the PlantVillage dataset for eight
other plants: corn, grape, potato, apple, cherry, peach, bell
pepper, strawberry. We made new copies of the shallow CNN
architecture with randomized initial weights. We trained one
copy on 80% of each of the plants’ datasets and tested them
on the remaining 20% to find the test accuracy and loss.
When finished, we downloaded the other plant CNN models’
weights to the mobile app and set up TensorFlow.js to run the
CNN requested by the user.

ACKNOWLEDGEMENTS
Our thanks go out to Dr. Ash Pahwa, a professor at

California Institute of Technology from whom we acquired
substantial machine learning knowledge, Elvin Kang who
helped us with proofreading and gave us pointers for using
TensorFlow for Machine Learning, and Jasmine Delgado,
who gave us helpful guidance in creation of the mobile app. In
addition, we would like to thank Mr. Nathan Gipple (Director
of Farm and Food Labs) and the network of Orange County
master gardeners for providing us with information about
tomato plants and diseases as well as advice regarding our
mobile application and project.

Received: July 19, 2022
Accepted: September 21, 2022
Published: March 3, 2023

REFERENCES
1. Reimers, Kristin J., and Debra R. Keast. “Tomato

Consumption in the United States and Its Relationship to
the US Department of Agriculture Food Pattern.” Nutrition
Today, vol. 51, no. 4, 2016, pp. 198–205., doi:10.1097/
nt.0000000000000152.

2. Panno, Stefano, et al. “A Review of the Most Common and
Economically Important Diseases That Undermine the
Cultivation of Tomato Crop in the Mediterranean Basin.”
Agronomy, vol. 11, no. 11, 2021, p. 2188., doi:10.3390/
agronomy11112188.

3. He, Sylvia, and Kate M. Creasey Krainer. “Pandemics of
People and Plants: Which Is the Greater Threat to Food

3 MARCH 2023 | VOL 6 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

Security?” Molecular Plant, vol. 13, no. 7, 17 June 2020,
pp. 933–934., doi:10.1016/j.molp.2020.06.007.

4. Fang, Yi, and Ramaraja P. Ramasamy. “Current and
Prospective Methods for Plant Disease Detection.”
Biosensors, MDPI, 6 Aug. 2015, www.ncbi.nlm.nih.gov/
pmc/articles/PMC4600171/.

5. Mahlein, Anne-Katrin. “Plant Disease Detection by
Imaging Sensors – Parallels and Specific Demands
for Precision Agriculture and Plant Phenotyping.” Plant
Disease, vol. 100, no. 2, 2016, pp. 241–251., doi:10.1094/
pdis-03-15-0340-fe.

6. UCANR. “How to Manage Pests.” UC IPM Online, 2020,
ipm.ucanr.edu/home-and-landscape/tomato/index.html.

7. Saha, Sumit. “A Comprehensive Guide to Convolutional
Neural Networks - the eli5 Way.” Medium, Towards Data
Science, 17 Dec. 2018, towardsdatascience.com/a-
comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53.

8. IBM Cloud Education. “What Are Convolutional Neural
Networks?” IBM, 20 Oct. 2020, www.ibm.com/cloud/
learn/convolutional-neural-networks.

9. Alzubaidi, Laith, et al. “Review of Deep Learning:
Concepts, CNN Architectures, Challenges, Applications,
Future Directions.” Journal of Big Data, vol. 8, no. 1, 2021,
doi:10.1186/s40537-021-00444-8.

10. Ramakrishna, Rajath. “Machine Learning Based Approach
in Detection and Classification of Tomato Plant Leaf
Diseases.” NORMA EResearch, 11 June 2020, norma.
ncirl.ie/4275/1/rajathramakrishna.pdf.

11. Mkonyi, Lilian, et al. “Early Identification of Tuta Absoluta
in Tomato Plants Using Deep Learning.” Scientific African,
vol. 10, Nov. 2020, doi:10.1016/j.sciaf.2020.e00590.

12. Zhang, Keke, et al. “Can Deep Learning Identify Tomato
Leaf Disease?” Advances in Multimedia, vol. 2018, 2018,
pp. 1–10., doi:10.1155/2018/6710865.

13. Kim, Daniel E. “Comparison of Shallow and Deep Neural
Networks in Network Intrustion Detection.” California
State University, 28 Nov. 2017, scholarworks.calstate.edu/
downloads/fj236307r.

14. P, Karthika. Re: “Do You Think That Convolutional Neural
Network Is Good for Mobile Application?” ResearchGate,
25 July 2019, www.researchgate.net/post/Do_you_think_
that_Convolutional_Neural_Network_is_good_for_
mobile_application.

15. Ogden, Samuel, and Tian Guo. “Characterizing the
Deep Neural Networks Inference Performance of
Mobile Applications” ArXiv, 10 Sept. 2019, arxiv.org/
pdf/1909.04783.pdf.

16. Lei, Fangyuan, et al. “Shallow Convolutional Neural
Network for Image Classification.” SN Applied Sciences,
vol. 2, no. 1, 2019, doi:10.1007/s42452-019-1903-4.

17. Lu, Zongqing, et al. “Modeling the Resource Requirements
of Convolutional Neural Networks on Mobile Devices.”
Proceedings of the 25th ACM International Conference on
Multimedia, 2017, doi:10.1145/3123266.3123389.

18. Mohanty, Sharada. “SpMohanty/PlantVillage-Dataset:
Dataset of Diseased Plant Leaf Images and Corresponding
Labels.” GitHub, GitHub, 23 Sept. 2018, github.com/
spMohanty/PlantVillage-Dataset.

19. Dhami, Dharti. “Convolutional Neural Networks: Layers.”
Medium, Medium, 21 Dec. 2018, medium.com/@
dhartidhami/convolutional-neural-networks-layers-

3bc2c9121678.
20. Simonyan, Karen, and Andrew Zisserman. "Very deep

convolutional networks for large-scale image recognition."
arXiv preprint arXiv:1409.1556 (2014).

21. Krizhevsky, Alex, et al. “ImageNet Classification with
Deep Convolutional Neural Networks.” Communications
of the ACM, vol. 60, no. 6, 2017, pp. 84–90., https://doi.
org/10.1145/3065386.

22. He, Kaiming, et al. “Deep Residual Learning for Image
Recognition.” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, https://doi.
org/10.1109/cvpr.2016.90.

23. “React Native · Learn Once, Write Anywhere.” React Native
RSS, Meta Platforms, Inc., 2023, https://reactnative.dev/.

24. “TensorFlow.js: Machine Learning for JavaScript
Developers.” TensorFlow, 2023, https://www.tensorflow.
org/js.

Copyright: © 2023 Trinh, Jung, and Trinh. All JEI articles
are distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/). This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

