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experts or laboratory testing methods, such as polymerase 
chain reaction, immunofluorescence, fluorescence in 
situ hybridization, and enzyme-linked immunosorbent 
assay. However, these laboratory methods require expert 
technicians and can take a lot of time to complete, making 
fast identification difficult (4). In addition, diagnoses can be 
inconsistent between different experts (5).

A potential alternative for effective disease diagnosis is 
a mobile device-based computer vision solution to identify 
diseases from photos of tomato plants. This method would 
diagnose diseases in tomato plants by recognizing visible 
symptoms on leaves, which are often considered reliable 
indicators of disease (6). A mobile device-based solution 
would be less expensive, easier to use than laboratory testing, 
and more precise and consistent than a human expert. Most 
importantly, its portability in the field enables convenient and 
fast diagnoses, allowing for timely treatment.

The advancement of computer vision has led to research 
in using various machine learning convolutional neural 
networks (CNNs) to identify tomato diseases from photos 
of tomato leaves. CNNs are a type of machine learning 
model that take an input image, assign weights and biases 
to different pixels in the image, and use this to differentiate 
between different classes, or in this case, diseases (7). CNNs 
use many different layers, or algorithms, that each uniquely 
process the image. For example, a convolutional layer uses 
filters to stride through the image and applies a formula to 
pixel values within the image (8). These “convolutional filters” 
can be configured to be larger in size or stacked for more 
processing, at the cost of higher computational expense. A 
max pooling layer is one that uses filters to stride through an 
image and obtain the maximum values of different sections 
of the image (9). In addition, the architecture of the neural 
network is modifiable; layers can be swapped, changed, or 
added as necessary. 

There have been several attempts to use CNNs for tomato 
disease identification in previous studies. Ramakrishna 
trained a VGG19 CNN (19 hidden layers) model to classify an 
image of a tomato leaf as healthy or as one of four different 
diseases. This model achieved 96.0% accuracy (10). Mkonyi, 
et al. trained a VGG16 CNN (16 hidden layers) to identify the 
Tuta absoluta pest in tomato plants from images of tomato 
leaves, attaining 91.9% accuracy (11). Multiple different 
popular CNN models were compared by Zhang et al. to 
classify an image of a tomato leaf as healthy or as one of 
eight diseases. ResNet50 (50 hidden layers) was the most 
accurate (97.3%), followed by AlexNet (8 hidden layers, 
95.8% accuracy) (12). 

While this research demonstrates the viability of using 
CNNs to identify tomato diseases, it would be difficult to 
use the same VGG16, VGG19, AlexNet, ResNet models 
mentioned above on mobile devices, as these models are 
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SUMMARY
Plant diseases can cause up to 50% crop yield loss 
for the popular tomato plant. Successful disease 
management requires precise and timely disease 
identification methods, but slow and inconsistent 
diagnoses from human experts or laboratory testing 
prevents farmers from applying appropriate treatments 
before the disease takes its toll. As an alternative 
diagnostic method, a mobile device-based method 
to identify diseases from photos of symptomatic 
leaves via computer vision can be more effective 
due to its convenience and accessibility. Previous 
research has achieved high accuracy in diagnoses 
using “deep” convolutional neural networks (CNNs) 
that have a large number of processing layers and 
thus a large computational requirement difficult to 
satisfy on most mobile devices. To enable a practical 
mobile solution, a “shallow” CNN with few layers, and 
thus low computational requirement but with high 
accuracy similar to the deep CNNs is needed. In this 
work, we explored if such a model was possible. We 
hypothesized that shallow CNNs would be capable 
of achieving even higher accuracy than deep CNNs 
because of shallow CNNs’ relatively low inherent 
dimensionality reduction, allowing it to preserve more 
distinguishing features between photos of leaves with 
different diseases. We compared the performance 
of a shallow CNN we built against conventional 
deep CNNs. The shallow CNN outperformed several 
deep CNNs, confirming our hypothesis. This finding 
enabled us to develop PlantDoctor, a mobile app 
that can accurately identify plant diseases via leaf 
images captured by the phone camera in real-time 
and suggest appropriate treatments.

INTRODUCTION 
Diseases brought about by insects, pathogens, or lack of 

nutrition can cause significant crop yield loss for tomatoes, 
which comprise nearly 20% of all vegetable consumption 
in the United States (1). For example, the Septoria leaf spot 
disease, caused by a fungus, can result in 50% reduction of a 
single tomato crop yield (2). Plant losses from such diseases 
can cost the global economy 220 billion USD annually 
(3). Precise and fast identification of diseases afflicting a 
tomato crop is crucial so the appropriate treatment can be 
administered as soon as possible to prevent the crop from 
rotting. 

Currently, identification of diseases is done by human 
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too demanding in terms of computational power and memory 
space. This is because the CNNs used in the previous 
research are “deep CNNs”; they have been created with many 
hidden layers that “inherently apply a form of dimensionality 
reduction” at great scales, thus requiring computational 
power difficult for mobile devices to achieve internally 
(13–15). This limitation of mobile devices can potentially be 
overcome by using a CNN with a significantly smaller number 
of layers (a “shallow” network), requiring many times fewer 
computations without sacrificing accuracy. This inspired our 
research exploring the effectiveness of “shallow” networks for 
plant disease identification. As there exists no consensus on 
the exact boundary between what is considered a “shallow” 
and “deep” network, for the purposes of this paper, we will 
consider shallow networks to be anything with four or fewer 
hidden layers (16). To quantitatively compare resource 
demand between shallow and deep CNNs, we used floating 
point operations per second (FLOPS), memory size, duration 
of training time, duration of CNN loading time, and duration of 
CNN execution time, all metrics commonly used to quantify 
resource consumption (15, 17). FLOPS is a measure of 
computational cost indicated by the number of floating point 
operations executed per second; a higher number indicates a 
more resource-intensive computation.   

We hypothesized that an optimized shallow CNN would 
be capable of achieving a higher accuracy than conventional 
deep CNNs in identification of tomato disease because a 
shallow network’s lower degree of dimensionality reduction 
may preserve more distinguishing features between plant 
leaves afflicted by different diseases. To test this hypothesis, 
we first performed hyperparameter tuning on the shallow 
network by testing different shallow network architectures 
to maximize its accuracy before comparison with deep 
CNNs. These hyperparameters included the number of 
convolutional layers, number of max pooling layers, number 
of convolutional filters, and convolutional filter size. Changing 
these has an impact on computational cost (i.e., required 
FLOPs, memory size, etc.) with more layers, larger filter 
sizes, or more filters generally associated with higher costs. 
After optimizing our shallow CNN, we compared both its 
accuracy and computational cost with that of conventional 
deep networks such as VGG16, VGG19, AlexNet, and 
ResNet. Our experiments produced supporting evidence for 
our hypothesis; they demonstrated the higher accuracy of our 
proposed optimized shallow CNN, at 97.1%, outperforming 
several deep CNNs. This establishes that shallow CNNs are 
also an accurate method for tomato disease identification 
using tomato leaf photos. Not only that, but our comparisons 
also showed that our shallow CNN was considerably lighter 
in computational cost, requiring at least three times fewer 
FLOPS, memory, loading time, and execution time than the 
deep models. This indicates our proposed shallow CNN is 
substantially more suitable for resource-restricted mobile 
devices, without loss of accuracy. We then incorporated our 
CNN into a mobile app, PlantDoctor, to identify plant diseases 
via leaf images captured by the phone camera and suggest 
appropriate treatments, with the shallow nature of the CNN 
allowing for fast, real-time diagnosis without an Internet 
connection in the field.

RESULTS
We performed three experiments and one app-building 

stage. To conduct training and testing of models, we used 
the PlantVillage dataset, which contains images of tomato 
leaves labeled as either healthy or infected by one of nine 
diseases (18). These nine diseases include bacterial spot, 
early blight, late blight, leaf mold, Septoria leaf spot, two-
spotted spider mites, target spot, yellow leaf curl virus, and 
mosaic virus (Figure 1). We split the dataset into a training 
set (14,623 photos), validation set (2,905 photos), and test set 
(3,632 photos). Each experiment involved a CNN initialization, 
training epoch, and testing procedure using the sub-datasets 

Figure 1:  Tomato dataset disease classes and example photos. 
One example photo from each of nine tomato disease classes and 
one healthy class is shown from the dataset. a) Healthy leaf. b) 
Bacterial spot. c) Mosaic virus. d) Early blight. e) Late blight. f) Yellow 
leaf curl virus. g) Leaf mold. h) Septoria leaf spot. i) Spider mites. j) 
Target spot.

Figure 2:  Training and test procedure for CNNs. Flowchart 
showing role of different datasets and the steps to train and test 
one CNN: initialization, training epochs, and testing. The “Repeated 
Training Epoch” was repeated a different number of times between 
experiments depending on the amount of training needed for the 
CNN.
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with various CNN architectures (Figure 2). The general 
structure of our CNN consisted of a series of convolutional 
and max pooling layers, then one hidden 4096-node “fully-
connected” layer for additional computation, a common layer 
for neural networks (7) 

Stage 1 hyperparameter tuning demonstrates 
outperformance of shallow CNN with three convolutional 
layers and three max pooling layers

First, we determined the optimal number of max pooling 
and convolutional layers in our shallow network. We created 
nine candidate models, each with M max pooling layers 
and N convolutional layers where M, N = {1, 2, 3}. Only the 
convolutional layers and the single fully-connected layer are 
considered hidden layers, so we only created models with no 
more than three convolutional layers to keep the total hidden 
layer count to no more than four (19). 

For each of the nine candidate models, we trained them 
for 65 epochs. In each epoch, we trained the model on the 
training set, producing a training accuracy, then attempted to 
identify each image in a separate validation set to test the 
model’s performance on unseen data, producing a validation 
accuracy. After 65 epochs, we used the model to identify all 
leaf photos in the test set, recording test accuracy and test 
loss. Accuracy is the proportion of leaf images in a dataset 
where the model identified the correct disease, and loss is 
a measure of the model’s error when comparing the model’s 
prediction to the ground-truth label. We used the categorical 
cross-entropy loss function, which compares the model’s 
predicted probabilities for each class label (10 total: nine 
diseases and one class for no disease) with the ground-truth 
class label. The larger the loss, the more incorrect the model 
was, ranging from predicting the correct class but with low 
certainty to predicting the incorrect class. Higher accuracy 
and lower loss indicate better model performance. 

We observed that shallow CNNs’ accuracies would almost 
always plateau in training around epochs 55–65 before 

declining due to “overfitting,” or aligning itself too closely 
with training data and thus performing inaccurately on the 
validation or test sets. This was the reason why we trained all 
shallow CNNs in hyperparameter tuning experiments (Stages 
1 and 2) for 65 epochs.

The optimal candidate model from Stage 1 hyperparameter 
tuning consisted of three convolutional layers and three max 
pooling layers, with 0.156 test loss and 94.9% test accuracy 
(Figure 3). We kept this model architecture constant in our 
next stage of hyperparameter tuning.

Stage 2 hyperparameter tuning demonstrates 
outperformance of shallow CNN with 64 3x3 convolutional 
filters

We next determined the optimal number and size of 
convolutional layer filters. We created nine candidate models, 
with one model having N convolutional filters each of M size 
where N = {32, 64, 96} and M = {3x3, 5x5, 7x7}. We repeated 
the training and test procedure (Figure 2). The optimal model 
from Stage 2 hyperparameter tuning had 64 3x3 convolutional 
filters, with 0.130 test loss and 95.8% test accuracy (Figure 
4). With hyperparameter tuning complete, we had determined 
our optimal shallow CNN architecture (Figure 5).

Figure 3: Stage 1 hyperparameter tuning. Bar charts comparing 
the test accuracy and loss of nine candidate CNNs tested in Stage 
1 hyperparameter tuning. Trained and tested CNNs with varying 
convolution and max pooling layers. The red outline highlights 
the outperformance of a CNN with 3 max pooling layers and 3 
convolution layers. Test accuracies for models with 1, 2, or 3 max 
pooling layers and a) 1, b) 2, and c) 3 convolution layers are shown. 
Test losses for models with 1, 2, or 3 max pooling layers and d) 1, e) 
2, and f) 3 convolution layers are shown. 

Figure 4: Stage 2 hyperparameter tuning. Bar charts comparing 
the test accuracy and loss of nine candidate CNNs tested in Stage 
2 hyperparameter tuning. Trained and tested CNNs with varying 
convolution filter sizes and quantities. The red outline highlights the 
outperformance of a CNN with 64 3x3 filters. Test accuracies for 
models with 32, 64, and 96 filters sized a) 3x3, b) 5x5, and c) 7x7 are 
shown. Test losses for models with 32, 64, or 96 filters sized d) 3x3, 
e) 5x5, and f) 7x7 are shown.

Figure 5: Optimized shallow CNN architecture. CNN diagram 
showing the setup of each layer in our optimized shallow CNN 
and visualizing the processing done on an example image. This 
architecture was determined through the hyperparameter tuning 
procedure.



3 MARCH 2023  |  VOL 6  |  4Journal of Emerging Investigators  •  www.emerginginvestigators.org

Comparison of optimized shallow CNN and deep CNNs 
demonstrates outperformance of shallow CNN for all 
deep models except ResNet

We investigated if our optimal shallow CNN was more 
accurate than conventional deep CNNs. We recreated the 
four deep CNN models VGG16, VGG19, AlexNet, and ResNet 
following their documented architectures. We repeated the 
training and testing procedure on our final optimized shallow 
CNN and all four deep CNNs. However, this time we graphed 
training accuracy over 100 training epochs instead of 65, as 
the deep CNNs can require more training than shallow CNNs 
(Figure 6A). However, increasing the number of epochs 
made the modes prone to overfitting. Thus, we implemented 
a procedure to restore the best version of each model (when 
it achieved highest validation accuracy) from the training 
period. The best versions were run on the test dataset to 
produce a test accuracy and loss. We also timed how long it 
took to train each CNN for 100 epochs. Our optimized CNN 
produced the second-highest accuracy and second-lowest 
loss at 97.1% and 0.074 loss, underperforming ResNet (98.1% 
accuracy, 0.065 loss), but outperforming three deep models, 
AlexNet, VGG16, and VGG19 (Figure 6C-D). In addition, our 
CNN trained to its best version at 65 epochs, before AlexNet 
at 71 epochs, ResNet at 89 epochs, VGG16 at 79 epochs, 
and VGG19 at 91 epochs (Figure 6B).

After we finished training our shallow CNN and deep 
CNNs, we collected data on various factors related to the 
CNNs’ training and execution. This data helped us compare 
the performances of the shallow and deep CNNs and 
illustrate the advantage of using shallow CNNs. We looked at 

the CNNs’ properties to determine the parameter counts and 
obtained training time as mentioned above. We measured the 
time for each model to load and run inference on a single 
image (load and execution time) and estimated the number 
of FLOPS required for each. Our shallow CNN is the most 
resource-efficient based on these factors: 47 minutes to 
train, using 25 megabytes (MB), requiring 0.63 gigaflops of 
operation, using 2.3 seconds to load, and taking 0.7 seconds 
to run inference. AlexNet (2.01 gigaflops and 223 MB) and 
ResNet (7.75 gigaflops and 98 MB) were less efficient. VGG16 
and VGG19 showed markedly higher resource consumption, 
both 30+ gigaflops and 500+ MB (Table 1).

Construction of the mobile application and extension of 
functionality to other plants

After construction and optimization of the shallow CNN, 
we created a mobile app named PlantDoctor to perform 
inference on uploaded images or in real-time using the CNN’s 
weights that we downloaded onto a smartphone (Figure 7). 
We also expanded the app’s functionality to eight other plants 
– corn, grape, potato, apple, cherry, peach, bell pepper, 
strawberry – by creating new CNNs with our optimized shallow 
architecture and retraining each to diagnose diseases for a 
different plant, using the other plants’ disease-labeled photos 
from the PlantVillage dataset for training. These models all 
achieved greater than 95% test accuracy (Figure 7). The total 
storage size of all nine models on the app totaled around 225 
MB, still smaller than a single AlexNet, VGG16, or VGG19 
made to diagnose diseases for one plant.

DISCUSSION
We confirmed our original hypothesis that a shallow CNN 

achieves higher accuracy than conventional deep CNN 
methods in identifying tomato diseases while being more 
computationally efficient. Our optimized shallow CNN to 
identify tomato diseases resulted in a higher test accuracy 
and lower test loss than three of four deep CNNs tested. Our 
optimized shallow CNN achieved a high accuracy of 97.1% 
and low loss of 0.074, underperforming only one of four deep 
models: ResNet at 98.1% accuracy, 0.065 loss (Figure 6C-
D). 

However, the speed and lightness of our CNN make it much 
more practical for mobile apps than the ResNet, outweighing 
the marginal difference in accuracy. In terms of required 
operations to run inference, our CNN, at 0.63 Gigaflops, is 
over 10 times more efficient than ResNet at 7.75 Gigaflops 
(Table 1). In addition, our CNN has a loading time more than 
three times less and execution time more than ten times less 

Table 1: Computational cost comparison of shallow and deep 
learning CNNs. Statistics for our shallow CNN and conventional 
deep CNNs illustrating the shallow CNN’s lightness in memory and 
computational usage, and speed in loading and execution compared 
to the deep CNNs. The CNN number of trainable parameters is also 
included.

Figure 6: Comparison of accuracy and loss performance 
between optimized shallow CNN and conventional deep CNNs. 
All CNNs were trained for 100 epochs, restored to the epoch it 
achieved highest validation accuracy (“Best Version”), then tested on 
the test set to produce test accuracy and loss. A) Training accuracies 
on training dataset over 100 epochs for all CNNs. B) Validation 
accuracies on the validation dataset over 100 epochs for all five 
CNNs, and colored points showing the epoch of the Best Version 
(our CNN: 65 epochs, AlexNet: 71 epochs, ResNet: 89 epochs, 
VGG16: 79 epochs, VGG19: 91 epochs). C) Bar chart comparing test 
accuracies among all five CNNs. D) Bar chart comparing test losses 
among all five CNNs, with our shallow CNN trailing only ResNet. 
Lower test loss indicates better test accuracy.
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than ResNet, allowing for a much better user experience and 
even real-time usage (Table 1). Finally, with the shallow CNN 
having nearly four times lower memory usage than ResNet, 
the shallow CNN makes for a much lighter mobile app (Table 
1). 

The training time of models is not as crucial to consider 
with regard to mobile development; models’ weights can 
just be extracted and used for inference on a mobile device 
after they are trained on other machines. However, it is still 
interesting to note that our shallow CNN took less time than 
other models to train. ResNet took around four hours to train 
to achieve its marginally better accuracy, while the shallow 
CNN took around one hour (Table 1). This is because more 
layers in a deep CNN like ResNet means there are more 
parameters that need to be optimized through the training 
process. ResNet had over 20 million parameters, while our 
shallow CNN had around 6 million, resulting in substantially 
faster convergence and lower training time (Table 1). This 
can be visualized in the training graphs; the shallow CNN’s 
training and validation accuracy curve (red) during training is 
much steeper than that of any deep model, and it achieves its 
highest validation accuracy earliest (Figure 6A-B). 

Despite mostly converging in the 90–100% validation 
accuracy range after 100 epochs, all the models had 
widely different starting accuracies, with ResNet, VGG16, 

and VGG19 starting near 30% while AlexNet and our CNN 
started higher (Figure 6B). We believe this is also a function 
of parameter counts; CNN parameters are initialized in a 
pseudorandom manner, so at first, a larger model like VGG16 
at 138.4 million parameters may effectively be making more 
random and inaccurate classifications on the validation set 
than AlexNet at 62.3 million parameters (Table 1). 

The above analysis shows that our shallow CNN is 
substantially more suitable for mobile development due to its 
low resource consumption and greater accuracy than some 
deep learning models. This allowed us to develop PlantDoctor, 
a mobile application for farmers and growers that utilizes 
CNNs to identify plant diseases via leaf images captured 
by the phone camera and suggest appropriate treatments 
(Figure 7). The app functions as a mobile expert system and 
is an effective alternative to diagnosing diseases with human 
experts and other laboratory methods. The low execution 
time of the shallow CNN allows interpretation of leaf images 
in real time; users only need to point their phone camera at 
a plant leaf to receive a near-instant diagnosis. Furthermore, 
due to the model’s small size, we have been able to expand 
the number of plants that the app can diagnose to eight other 
plants by storing a CNN for each plant all simultaneously 
within the app. The CNNs trained to diagnose diseases for 
other plants achieved similar high accuracies to our original 
tomato disease CNN. If instead deep CNN architectures were 
trained to diagnose diseases of all nine plants and stored on 
the app, the app would have been significantly larger in size 
and require more time to load each model. As the CNNs are 
easily stored completely within the device, the app does not 
require an Internet connection to run and can be taken out 
into remote fields. In the future, we will be able to expand to 
many more plants while keeping the app small. 

We were subject to some time and resource constraints; 
thus, we had to limit hyperparameter tuning to optimizing 
the most influential hyperparameters. In the end, this limited 
optimization seemed be sufficient, as our optimized shallow 
CNN could outperform deep CNNs.

In the future, we can explore the application of our shallow 
CNN to predict diseases by training with datasets of leaves 
with smaller or fewer symptoms, allowing growers to take 
preventive measures against diseases in their early stages 
before the infection becomes a larger problem. We can 
also explore the identification of diseases through photos of 
symptoms on other plant parts like the fruit or stem, which is 
useful when symptoms are absent on leaves. When expanding 
the functionality of our CNNs, we can use transfer learning in 
our training process. Transfer learning is an approach where 
models that have already been trained are reused as the 
starting point for training on a different data set. The relatively 
fast training time of our shallow CNN will help this process be 
efficient.

Our research demonstrates that shallow CNNs are a 
feasible and accurate approach to identifying plant diseases, 
without needing the large amounts of computational 
resources, execution time, and memory space required by 
conventional deep CNNs. By utilizing our app, farmers can 
obtain fast, reliable plant diagnosis of diseases, allowing 
them to take earlier action, reducing the financial loss of 
unsalvageable plants. With our CNN’s successful integration 
into a mobile application, we believe we have created a tool 
helpful for farmers and growers to get precise and immediate 

Figure 7: PlantDoctor mobile app and performance of CNNs 
made to diagnose other plants. A) Screenshots showing the app’s 
usage. Users can select a type of plant to diagnose, point the phone 
camera to a diseased leaf of the plant, and obtain a diagnosis with 
information on the disease and appropriate treatments. B) Test 
accuracies and C) test loss values of CNNs trained to diagnose other 
plants are shown.
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identification of plant diseases allowing for timely and 
appropriate treatments. 

MATERIALS AND METHODS
 We used Google Colaboratory, an online Python notebook 
with Cloud GPU, as the platform to do all our experiments. 
We used TensorFlow, a Python library for machine learning 
model development, to create, train, and test CNNs. All CNNs 
we created in our experiments were trained with categorical 
cross-entropy loss, Rectified Linear Unit (ReLU) activation 
for hidden layers, and the stochastic gradient descent 
optimization function. 

Data preparation 
We obtained 18,160 disease-labeled tomato leaf images 

from the PlantVillage Dataset. We shuffled the dataset and 
split it into 64% for the training set, 16% for the validation set, 
and 20% for the test set. Images were resized to 224 x 224 
pixels to fit the default image size for the deep CNNs trained 
later on.

To augment the training dataset, in other words to provide 
CNNs with more data to learn the patterns of each disease 
during training, we applied color changes, rotations, and flips 
to 25% randomly-chosen images from the training dataset. 
We further augmented the training data by adding 3,000 
images of labeled tomato plant leaves whose backgrounds 
were replaced with a solid color, unlike the original 18,160. 
This increased the number of images in the training dataset 
from 11,623 (64% of the original 18,160) to 14,623.

The Python libraries NumPy, pandas, and TensorFlow 
were used for data preparation procedures.

Hyperparameter tuning Stage 1
Nine CNNs were created with N convolutional layers, M 

max pooling layers, one 4,096-node fully-connected layer, 
and an output layer with softmax activation, where N and M 
ϵ {1, 2, 3}. These were trained for 65 epochs each. The CNN 
with highest test accuracy and lowest test loss determined 
the optimal number of convolutional and max pooling layers 
in our shallow network.

Hyperparameter tuning Stage 2
We created nine CNNs with three convolutional layers 

with N convolutional filters each of M size, three max pooling 
layers, one fully-connected layer, and one output layer, where 
N ϵ {32, 64, 96} and M ϵ {3x3, 5x5, 7x7}. These were trained 
for 65 epochs each. The CNN with highest test accuracy and 
lowest test loss determined the optimal number and size of 
convolutional filters for the shallow network. We constructed 
a CNN with optimal hyperparameters determined from Stage 
1 and Stage 2 hyperparameters, called the “optimized shallow 
CNN.”

Comparison of shallow and deep networks
We recreated the four deep CNN models VGG16, 

VGG19, AlexNet, and ResNet following their documented 
architectures (20–22). Each of the four deep CNNs and 
our optimized shallow CNN was trained for a maximum of 
100 epochs and then tested. We accounted for potential 
overfitting by restoring the best version of the model that 
achieved the highest validation accuracy during training. This 
was done by implementing a callback to re-save the model’s 

weights during training every time it achieved a new high in 
validation accuracy. The final trained model was tested on the 
test dataset to produce a test accuracy and test loss. The test 
accuracy and test loss of the shallow CNN was compared to 
those of the other deep CNNs’ to determine if it was capable 
of outperforming other deep CNNs. 

To compare the computational costs between our 
shallow model and the deep models, we collected parameter 
counts, using the TensorFlow summary function; gigaflops of 
operation using the analytical library keras-flops; and training 
time, using a timer to record the duration of the 100 epochs 
of training. We then transferred the models’ weights to a 
mobile app and timed how long it took to load and execute 
the models. 

Building the mobile app
We built the user interface of the mobile app with React 

Native (23). We downloaded the shallow CNN’s weights and 
transferred them to the mobile app’s storage. The Tensorflow.
js (24) library was used to load the CNNs and run inference 
on photos taken in real-time frames or from the camera roll. 

To expand the app’s functionality to more plants, we 
downloaded data from the PlantVillage dataset for eight 
other plants: corn, grape, potato, apple, cherry, peach, bell 
pepper, strawberry. We made new copies of the shallow CNN 
architecture with randomized initial weights. We trained one 
copy on 80% of each of the plants’ datasets and tested them 
on the remaining 20% to find the test accuracy and loss. 
When finished, we downloaded the other plant CNN models’ 
weights to the mobile app and set up TensorFlow.js to run the 
CNN requested by the user.
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