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differently shaped nuclei and measuring expression levels of 
specific genes (4). Accurate cell nuclei segmentation is also 
important for clinical research and medical analyses including 
the release of open-source evaluation frameworks (5), study 
of the observable characteristics of cells (6), segmentation of 
blood cells (7), and cell type classification (8). Segmenting 
the image and isolating nuclei from the rest of the cytoplasm 
and associated elements (like background tissue) remains 
arguably the most vital research challenge for practitioners 
(9). Therefore, automating this task with precise algorithms 
can potentially save several hours of manual effort per sample 
and eliminate human subjectivity. In recent years, the advent 
of deep neural networks and associated machine learning 
techniques have had transformational impact in the broader 
field of image classification and object detection.

Object detection has its roots in computer vision. The 
early machine learning algorithms for object detection 
typically define features on the image and subsequently use 
statistical techniques like support vector machines to classify 
the presence or absence of the object (13). The new age 
deep learning techniques, in contrast, typically attempt to 
do end-to-end object detection without specifically defining 
features. These deep learning methods are largely based on 
convolutional neural networks (CNNs).  For general-purpose 
object detection in images, a breakthrough paper from 2012 
introduced Alex Net (10) – an eight-layer CNN trained with 
millions of parameters on the ImageNet dataset (11), using 
over one million training images. Since then, even larger, and 
deeper networks have been trained for image classification 
and object detection. 

Image segmentation extends the notion of object detection 
to mark the presence of an object through pixel-wise masks 
generated for each object in the image. The goal is to 
determine the shape of each object and extract it from the 
background. Note that, in segmentation, each pixel needs to 
be assigned a label corresponding to the class of interest (e.g., 
nucleus or not). Broadly, there are two types of approaches 
– semantic segmentation, where each pixel is evaluated 
for the same class label (e.g., nucleus) in the output mask, 
and instance segmentation, where each pixel has a unique 
identity/class label (e.g., nucleus 1, nucleus 2 etc.) in the 
output mask. Figure 1 demonstrates the difference in output 

INTRODUCTION
Fluorescence microscopy is an optical microscopy 

technique that uses fluorescence to detect and image 
biological specimens as well as three-dimensional subcellular 
structures (1, 2). It is an indispensable tool in pre-clinical 
research, enabling the systematic dissection of life’s molecular 
machines (3). Accurate three-dimensional segmentation of 
biological specimens is important to characterize and quantify 
cells, nuclei, and other microscopic structures. For example, 
it plays a key role in identifying cancerous cells which have 
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Cell segmentation is the task of identifying cell nuclei 
instances in fluorescence microscopy images. It 
plays a key role in biomedical analysis tasks like cell 
characterization, cancer cell identification, and gene 
expression measurement. There has been a recent 
proliferation of deep neural network-based object 
detection techniques for cell segmentation. However, 
previous literature does not suitably address the 
proper understanding of the different methods 
and the merits of the various neural architectures 
proposed. One key design point relates to the learning 
of segmentation masks and how neural methods go 
about detecting, segmenting, and extracting nuclei 
from unseen images. The goal of this paper is to 
benchmark the performance of representative deep 
learning techniques for cell nuclei segmentation 
using standard datasets and common evaluation 
criteria. We investigate whether for cell nuclei 
segmentation, learning the nuclei masks in parallel 
with boundary detection features of the image 
provides superior performance and significantly 
cleaner separation of nuclei from images. We further 
explore the trade-off between increased accuracy, 
achieved through more complex deep learning 
models, and the heavy requirements imposed on 
both computational resources and training times. We 
believe this paper establishes an important baseline 
for cell nuclei segmentation, enabling researchers to 
continually refine and deploy neural models for real-
world clinical applications.
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of object detection, semantic segmentation, and instance 
segmentation on a sample microscopy image. The U-Net 
encoder-decoder architecture, proposed by Ronneberger et 
al. (12), is arguably the most popular semantic segmentation 
approach giving superior results on biomedical images (13). 
Using substantially deeper networks and a residual learning 
framework, ResNet (14) is another semantic segmentation 
technique with significant improvements in accuracy, reported 
on the MS COCO (15) dataset for common object detection. 
Fast and Faster Region based-CNNs (R-CNNs) (16), on the 
contrary, are instance segmentation techniques that use 
fully convolutional networks to simultaneously predict object 
bounds and class labels at each position. Mask R-CNN 
extends Faster R-CNN by adding a branch for predicting an 
object mask in parallel with the existing branch for bounding 
box recognition (17). Both methods have won several MS 
COCO competitions and represent state-of-the-art for object 
detection (15-17). 

Masks play a key role in the task of segmentation. 
Specifically, a mask comprises the most important aspect 
of each input image for prediction of the original image, 
without (ideally) affecting the prediction accuracy. These 
segmentation neural models are used in combination with 
an input set of training masks. Training masks are manually 
annotated by biologists, and the segmentation task requires 
learning from the input masks and predicting a target mask 
for a new (previously unseen) image. The research challenge, 
therefore, is to determine masks for seen datasets, thereby 
evaluating their ability to generalize and predict segmentations 
on unseen images. 

Different neural network-based techniques approach 
the segmentation process in different ways, which results in 
performance trade-offs in terms of prediction accuracies. At a 
high level, the process of generating a mask essentially entails 
labeling pixels in an image as belonging to the class of interest 
(e.g., a car, a human, or a cell nucleus) or not. Approaches by 
the authors of Faster R-CNN learn the candidate bounding 
boxes first and then from within the candidate boxes performs 

classification and separation of the object instances (16). In 
doing so, they learn the masks in two stages. In contrast, 
authors of the Mask R-CNN algorithm show that for the 
general problem of object detection, learning an object mask 
in parallel with the boundary detection features outperforms 
other approaches (17). The importance of identifying the 
object mask and the class label in parallel with detecting 
the class boundaries implies one single loss function to be 
optimized simultaneously across bounding box generation, 
classification, and mask generation. 

We hypothesize that for the specific task of cell nuclei 
segmentation, learning the nuclei masks in parallel with the 
boundary detection features provides superior performance 
in terms of clean separation of nuclei from the images. While 
an increased accuracy in the task can be obtained by stacking 
multiple neural networks, it creates heavy requirements on 
computational resources. Therefore, we will also evaluate the 
trade-offs between performance and computing resources. 
We present a comprehensive study of four state-of-the-art 
representative neural networks on the Kaggle 2018 Data 
Science Bowl dataset (18).  We believe this is a first-of-a-
kind investigation in an emerging field of research and the 
experimental evidence presented herein can expedite the 
adoption and improvement of cell segmentation techniques.  

RESULTS
To evaluate the performance of different neural 

architectures on the nuclei segmentation task, we selected 
the Intersection over Union (IoU) measure as the common 
metric of measurement (24). IoU is known to be a reliable 
metric for measuring the overlap between two bounding 
boxes or masks and hence chosen for evaluating the efficacy 
of nuclei segmentation. If the prediction is completely correct, 
IoU would be equal to 100%. The lower the IoU, the worse 
the prediction (segmentation) results. The performance of 
the different models in terms of train and test accuracy of 
predicted masks, mean IoU, and training times are presented 
in Table 1.

Figure 1. Object Detection, Semantic Segmentation, and Instance Segmentation of cell nuclei. This image compares the three different 
methods of cell nuclei segmentation. In object detection, each image pixel is classified whether it belongs to a particular class (nucleus) or 
not by grouping pixels together to form bounding boxes therefore reducing the problem to deciding if the bounding box is a tight fit around 
the object. Semantic segmentation is the task of clustering parts of images together which belong to the same object class: nucleus or not 
nucleus. Finally, instance segmentation involves assigning a unique label to each instance/object of a class, thereby being able to differentiate 
between multiple nuclei.



6 July 2021  |  VOL 3  |  3Journal of Emerging Investigators  •  www.emerginginvestigators.org

The training accuracy of a model signifies how well the 
model learns on “seen” data (images). Test accuracy signifies 
how well the model generalizes on “unseen data.” Training 
times represent the time taken to create the model before it 
can infer. Lower training times are efficient, especially when 
computing resources are limited. They also enable faster 
retraining and redeployment in real world scenarios. As seen 
in Table 1, there is a wide variation in the mean (average) 
IoUs, ranging from 62% to 88%. The simple CNN has the 
least training time of about two hours, but also the minimum 
test accuracy of 93.70% and mean IoU of 62%. In contrast, 
the ResNet has a higher test accuracy than simple CNN 
of 96.30% and mean IoU of 77%, but also has the longest 
training time of nearly 11 hours (Table 1). 

While CNNs work well with general-purpose object 
classification, they are demonstrably not suitable for cell 
nuclei segmentation. To address this problem, the next 
set of experiments focused on the U-Net encoder-decoder 
architecture for specialized semantic segmentation. U-Net 
delivers superior performance, in terms of test accuracy 
and IoU, when compared to CNNs (Table 1). For our 
experimental settings, it takes nearly four hours to train the 
U-Net network. The mean IoU score was 83% with a 99.75% 
training accuracy and a 98% test accuracy. The contraction 
and expansion layers serve as convolution and up sampling 
layers, respectively. Consequently, the image is recreated 
with segmented masks similar to the input size. 

As highlighted in Table 1, it takes approximately five hours 
to train the Mask R-CNN network, thereby producing the 
highest mean IoU score of 88% and a test accuracy of 99.20%. 
The masks generated by Mask R-CNN were observed to be 
distinctly clearer and the nuclei cleanly separated from each 
other, compared to previous methods. Figure 2 shows a 
probability density map of the segmented nuclei predictions 
produced by the Mask R-CNN model - with a value between 
0 to 1 next to each nucleus, indicating the confidence of the 
model of a nucleus being present. The image is a 2D light 
microscopy image of stained nuclei from stomach lining 

tissue obtained under fluorescence microscopy conditions. 
The nuclei of the tissue have been stained primarily with DAPI 
or Hoechst. The aggregated very bright spots in the top left 
section represent multiple overlapping nuclei. 

DISCUSSION
The goal of our research is to understand various deep 

learning architectures and compare their efficiencies for cell 
nuclei segmentation. We found that the choice of the neural 
net architecture has a significant impact on the accuracy of 
the task. Hence, design choices are crucial for downstream 
diagnostics. We also found that instance segmentation 
techniques like Mask R-CNN outperform convolutional 
models - in line with our hypothesis that simultaneous learning 
of boundary detection features and masks works better for 
cell segmentation. Lastly, we also discovered a distinct trade-
off between training times and prediction accuracies that is 
important for practitioners to consider. 

Our first observation is that convolutional networks – 
both simple CNNs and deeper variations like ResNet, when 
trained end-to-end and on individual pixels – hold promise 
for the task of nuclei segmentation. Additionally, between the 
two classes of CNNs, ResNet has a higher accuracy because 
of its ability to learn deeper representations. ResNets take 
substantially longer time to train. 

The second observation is that for fluorescent microscopy 
images with multiple nuclei, increasing the depth of neural 
networks (via multiple stacked layers in ResNet) vastly 
improve the accuracies of the predicted masks. Thus, 

Table 1. Comparison of results on Kaggle dataset.

Figure 2. Sample Mask R-CNN output for cell nuclei 
segmentation. The image is a 2D light microscopy image of stained 
nuclei from stomach lining tissue obtained under fluorescence 
microscopy conditions. The nuclei of the tissue have been stained 
primarily with DAPI or Hoechst. The aggregated very bright spots 
in the top left section represent multiple overlapping nuclei. This 
is an example of instance segmentation where the image shows 
a probability density map of the segmented nuclei predictions 
produced by the Mask R-CNN model - with a value between 0 to 
1 next to each nucleus, indicating the confidence of the model of a 
nucleus being present.
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whenever longer training times are acceptable (or additional 
compute resources are available), the ResNet family of 
networks could serve as a viable backbone framework for 
convolutional networks in segmentation tasks. 

The third observation highlights the fact that semantic 
segmentation frameworks like U-Net perform better and 
faster than CNNs on nuclei segmentation task. However, 
U-Net predicts a single mask for the entire image and needs 
complex post processing to separate a mask for each instance 
of the nucleus in the cell. 

Next, we observe that the much-cited problem of vanishing 
gradients occurs with using the sigmoid activation function 
in Residual Networks, taking forever to train the network 
(10). This is more enhanced when the depth of the network 
increases. 

Our final observation and arguably the most important 
one relates to the Mask R-CNN technique, which produces 
a pixel-level mask in parallel with the class label. Since Mask 
R-CNN decouples the problems of mask and class prediction, 
a binary mask is generated for each class with minimal 
competition (overlap) among classes; this is in stark contrast 
to convolutional techniques that attempt per-pixel multiclass 
categorization, coupling segmentation and classification. Our 
results suggest that networks like Mask R-CNN that learn the 
instance nuclei masks along with boundary features perform 
best for nuclei segmentation tasks as depicted in Table 1, 
with the network outperforming all other networks across 
various networks.

Further, as models become more complex, training times 
increase with better accuracies. While deep learning models 
demonstrate superior performance on their own, they can 
often be used in combination with one another. For instance, 
Hollandi et al. proposes combination of U-Net and Mask 
R-CNN, to predict masks (25). The algorithm outperformed 
the other 739 submissions to the 2018 Data Science Bowl 
- however, it was computationally exhaustive. Leveraging 
cloud-based computational services in such scenarios is 
therefore an important direction to pursue (26). Solving for 
the cell nuclei segmentation task under resource constraints 
creates new requirements on lean neural models that work in 
federated/distributed settings and address critical applications 
in biological cell research (27, 28).

METHODS
Our work used the Kaggle dataset to serve as the 

benchmark for comparing deep learning models on the 
cell nuclei segmentation task, using IoU as the common 
metric of measurement (18). Table 2 lists the models used 
in our study and the selected hyperparameters that produce 
optimal results on the Kaggle dataset. In our experimental 
setup Simple CNN, U-Net and Mask R-CNN models were 
implemented from scratch in Python with hyperparameter 
optimizations. The ResNet implementation was based on 
prior work (14). All models were trained using Keras deep 
learning API in TensorFlow - on a Google Colab instance with 

an NVIDIA Tesla T4 GPU and up to 12GB RAM/128GB disk 
space. 

The 2018 Data Science Bowl Kaggle dataset contains 
a dataset of 670 training images and 65 test images. The 
dataset represents 22 different cell types including liver and 
stomach lining tissue. The images in the Kaggle dataset are 
two-dimensional light microscopy images of stained nuclei. 
Most of the dataset comprises fluorescent images with cells 
of different sizes and various types, primarily stained with 
DAPI or Hoechst. It also contains tissue samples stained 
with hematoxylin and eosin, displaying structures from a 
diversity of organs and animal models. These images were 
acquired under a variety of conditions and vary in the cell 
type, magnification, and imaging modality (brightfield vs. 
fluorescence). The dataset provides a training set of images 
containing the nuclei along with the corresponding masks and 
a test set of images for which one must generate the target 
masks. The nuclei segmentation methods were challenged to 
generalize on unseen data without any additional annotation 
or training. 

We selected four representative neural network 
architectures, i.e., Simple CNN, ResNet, U-Net and Mask 
R-CNN and perform hyperparameter optimizations for each 
of the corresponding methods. These networks have been 
widely cited for their superior performance on general-
purpose object detection and have their own unique approach 
to generating segmentation masks. 

Using the Kaggle dataset, we evaluated the four neural 
network architectures of Simple CNN, ResNet, U-Net and 
Mask R-CNN. Table 2 lists the selected hyperparameters 
that produced the optimal results for each of them. We next 
describe how each of these architectures were implemented 
for the cell nuclei segmentation task.

Table 2. Hyperparameters for different deep learning methods.
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Simple convolutional neural networks
Simple convolutional neural networks are powerful 

tools that have demonstrated high performance on image 
classification tasks (19). For the image classification task, a 
CNN takes an input image, assigns importance (learnt weights 
and biases) to various aspects in the image and attempts to 
differentiate one from the other. It is composed of multiple 
building blocks - convolution layers, pooling layers, and fully 
connected layers, and is designed to adaptively learn spatial 
hierarchies of features through a backpropagation algorithm 
(20).

For the cell nuclei instance segmentation task, we 
leveraged the CNN to predict one of three possible class 
labels for each pixel – (i) Class 1: pixel belonging to the 
nuclei; (ii) Class 2: pixel bordering the nuclei; and (ii) Class 
3: Background pixel, A simple CNN is the first deep learning 
model we evaluate using the following hyperparameters. We 
used one batch normalization layer to normalize the inputs 
to the next layer and reduce number of training epochs 
(overfitting) (29), followed by 6 fully connected dense layers 
and a 2-dimensional convolutional output layer, that gives us 
the predicted segmented mask for each image. The model 
is trained for 15 epochs with a batch size of 32. A stochastic 
gradient based ‘Adam’ optimizer (19) is used with a sigmoid 
activation function and a learning rate of 0.1. A kernel size of 
(3, 3) is used and a sigmoid activation function implemented 
for the output layer. The output is a high-resolution image with 
each pixel classified to a label (nucleus/not nucleus) thereby 
producing one single mask from the image. 

Residual Network (ResNet) (14)
One could in theory extend the eight-layer CNN to include 

more layers for better learning. However, the much-cited 
problem of vanishing gradients (10) occurs with the sigmoid 
function, taking forever to train the network. This is more 
enhanced when the depth of the network increases. The next 
variation of CNNs addresses this issue. The Residual Network 
(ResNet) is a variation of CNNs that uses a breakthrough 
architecture to train networks that are substantially deeper 
(150+ layers) than ones used previously (14). ResNet allow 
skip connections that mitigates the problem of vanishing 
gradients when using gradient descent and back-propagation. 
This model was the winner of ImageNet challenge (11) in 
2015. Comprehensive empirical evidence demonstrate 
that these residual networks are easier to optimize and can 
gain accuracy from considerably increased depth (14). The 
depth of representations is extremely important for visual 
recognition tasks. We wish to briefly comment that the ResNet 
implementation uses transfer learning to leverage pre-trained 
weights (details in (14)) from the original model trained on the 
COCO common object dataset. 

In this paper, we tune the ResNet for the cell nuclei 
segmentation task using the following hyperparameters. We 
implement the latest ResNet-which has 152 stacked neural 

nets referred to as ResNet-152. There are 20,000 steps 
involved in the training and checkpoints are created at the end 
of the 1,000th step. The model is trained for 40 epochs with 
a batch size of 10.  A Rectified Linear Unit (ReLU) activation 
function is used with an Adadelta optimizer and a learning rate 
of 0.1 as mentioned in Table 2. Similar to the CNN, the output 
from the ResNet is a high-resolution image with each pixel 
classified to a label thereby producing a single image mask.

U-Net (21) 
Next, we consider the U-Net architecture. The U-Net 

encoder-decoder implementation was proposed by 
Ronneberger et al. developed along with TensorFlow (21). 
Initially developed for radio frequency interference mitigation, 
the network can be trained to perform image segmentation 
on arbitrary imaging data (22). The network starts with blocks 
of convolution layers and max pooling layers followed by 
deconvolution layers and recreating the image step by step. 
The output is similar to the input image size with segmented 
or labeled masks.  U-Net is an end-to-end fully convolutional 
network but does not contain dense layers (unlike simple 
CNNs). We select U-Net as a candidate deep learning method 
primarily due to the state-of-art encoder decoder architecture. 
It follows a convolve-resample process where the convolution 
layers convolve through the image and get a detailed 
observation of the image. The model can be made more detailed 
by increasing the convolution layers. The deconvolution layers 
are generated by using the convolution transpose function in 
Tensorflow which performs the reverse of convolution (23). 
The output is generated by gradually recreating the image 
using the convolution layers used previously. Since the U-Net 
is a semantic image segmentation technique where each pixel 
is labeled to the corresponding class, the output is a high-
resolution image, with labels, bounding box parameters and 
each pixel classified to a particular class. Note that, U-Net 
produces one single mask for the whole image which is the 
union of all masks. Post processing is required to split a single 
mask into a mask for each instance of the nuclei. 

We implement the U-Net network using the following 
hyperparameters. We use 19 layers of convolution and 4 
deconvolution layers. We also use 6 pooling layers to consider 
maximum values and reduce architecture size. The model 
is trained for 20 epochs with a batch size of 16.  An ‘Adam’ 
optimizer is used with a sigmoid as well as Exponential Linear 
Unit (ELU) activation function and a learning rate of 0.01. Since 
the U-Net is a semantic image segmentation technique where 
each pixel is labeled to the corresponding class, the output is 
a high-resolution image, with labels, bounding box parameters 
and each pixel classified to a particular class. 

Mask R-CNN
The Mask R-CNN is an extension of the new genre of Fast 

and Faster R-CNN techniques, widely used for object detection 
tasks (16). For a given image, Faster R-CNNs simultaneously 
return the class label and bounding box coordinate for each 
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object in the image. The Mask R-CNN framework extends 
the Faster R-CNN, where a mask prediction branch is added 
in parallel to the class label and bounding box prediction 
branch. Thereby, in addition to the class label and bounding 
box coordinates for each object, Mask R-CNN also predicts 
the object mask. This only adds a small overhead to Faster 
R-CNN.

The Mask R-CNN is an instance segmentation network 
which can automatically predict both the bounding box and 
the pixel-wise mask of each object in an input image. For a 
given image, Mask R-CNN, in addition to the class label and 
bounding box coordinates for each object, also returned the 
object mask. In other words, each unique class instance (e.g., 
a cell nucleus) is simultaneously detected, separated, and 
extracted by this technique. The network generated 28x28 
pixel masks for each detected region of interest. These masks 
were then passed through a threshold to get a complete binary 
mask for each nuclei instance. The parallel prediction of masks 
and class labels in Mask R-CNN underlines its flexibility and 
generality. This is also the reason why Mask R-CNN produces 
significantly superior performance compared to its peer 
methods.

We ran Mask R-CNN on the Kaggle dataset using the 
following hyperparameters. The network used six 2-D 
convolutional layers, six batch normalisation layers and six 
activation layers with a rectified linear unit activation function. 
A rectified linear unit (ReLU) activation function was used with 
a stochastic gradient descent optimizer as in Table 2. We train 
the model for 30 epochs with a batch size of 16 and learning 
rate of 0.01. The Mask R-CNN is an instance segmentation 
network which can automatically predict both the bounding 
box and the pixel-wise mask of each object in an input image. 
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