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and respond appropriately even to objects and situations 
that we may not have come across earlier (1). Categorization 
is thus a common phenomenon in one’s daily life. It is the 
simple act of differentiating between objects or stimuli and 
making sense of the stimulus in your brain. Category learning 
identifies the optimal strategy for sorting objects into various 
categories (2).

Although category learning is essential, people have 
varying aptitudes for it. While some may be able to quickly 
pick up the optimal strategies for categorization, others may 
struggle to learn (3). There may also be differences in the 
ability to learn categories in different modalities, meaning 
forms of sensory perception, such as auditory and visual 
stimuli. Selectively attending to visual dimensions may be 
easier than selectively attending to acoustic dimensions, due 
to easy-to-verbalize categorization rules in the visual modality 
compared to difficult-to-verbalize rules in the auditory modality 
(4, 5). Dimensions are a way to define features of stimuli. For 
example, visual dimensions include color and shape and 
auditory dimensions include pitch frequency and duration (6). 
Working memory capacity influences how well participants 
learn nonspeech rule-based (RB) and information-integration 
(II) categories (7, 8), RB categories rely on working memory 
and selective attention processing, where the differences 
between the categories are easy to verbalize (2). II categories 
rely on procedural learning mechanisms instead of working 
memory where the differences between the categories are 
more implicit (2). Other category types include weather 
prediction (predicting “rain” or “sun” based on four clues) and 
prototype distortion (sorting random patterns of dots) (2). 
Working memory is a form of short-term memory that holds a 
small amount of information in mind for a short amount of time 
(7, 8). Working memory is used to execute cognitive tasks and 
plays a large role in an individual’s intelligence, processing, 
comprehension, and learning (9). Auditory working memory 
is used to preserve auditory stimuli in one’s memory for short 
periods of time (10). Visual working memory is used to keep 
colors, shapes, and other visual stimuli in one’s short-term 
memory (11).

One theory about category learning, the Competition 
between Verbal and Implicit Systems (COVIS) theory, suggests 
that there are two separate systems involved in category 
learning: implicit and explicit (12). The implicit system supports 
learning primarily through procedural reflexive learning, and 
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the complex, multimodal world, we learn under 
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irrelevant information. However, in the lab, learning 
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and auditory category learning in the presence of 
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to distinct neural learning mechanisms, rule-based 
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memorizing a sequence of letters. We found that 
individuals with higher working memory capacity had 
higher overall task accuracy, regardless of the type of 
category they learned or the type of visual distractors 
they had to process. Higher working memory 
capacity was also associated with higher accuracy 
on questions about the visual distractors. These 
results shed light on how auditory category learning 
proceeds under distracting conditions and the 
importance of understanding the implications. While 
some students may be less affected by distracting 
stimuli, such as music, TV, and conversation, others 
may be more impacted by distractions.

INTRODUCTION
How can we differentiate between apples and oranges, 

domestic pets and wild animals, a cry of surprise and a cry 
of pain? The answer is by category learning. If our brain were 
to store every independent record of an encounter with a 
fruit to differentiate between an apple and an orange, then 
it would require a tremendous amount of storage capacity. 
Instead, our brain can detect the higher-level structures of our 
experiences and the commonalities between them and group 
them into meaningful categories. This allows us to recognize 
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the explicit system supports reflective learning primarily 
through hypothesis testing, selective attention, and working 
memory mechanisms (13, 14). Through this dual learning 
systems perspective, it has been suggested that procedural 
learning, the basis for implicit categorization, occurs when 
an association is formed between a group of sensory cells 
and an abstract cognitive or cortical-motor response (15). As 
a result, implicit categorization is more difficult to verbalize. 
In the lab, we can study implicit categorization by training 
participants on information-integration (II) categories. On 
the other hand, working memory is a critical skill for explicit 
categorization because when learning, one must actively 
remember the previous stimuli and the feedback they have 
received to find the optimal rule separating the categories. 
In the lab, we can study explicit categorization by training 
participants on rule-based (RB) categories. Although the 
COVIS theory was originally developed to explain category 
learning in the visual modality, it was recently extended to the 
auditory modality (15, 16).

Working memory is important for category learning and 
higher working memory is associated with better learning 
performance (17). Individuals differ in both working memory 
capacity and the efficiency with which they use their working 
memory capacity (18). Generally, higher working memory has 
been linked to better RB and II learning, but there is evidence 
that working memory may be more important for RB than II 
learning due to RB’s dependence on the explicit system and 
selective attention (19-22-).

Working memory is especially important when distractions 
are present. Typically, visual stimuli typically take more 
resources to process, and attention is often turned toward the 
visual modality, resulting in inattentional deafness, or a lack of 
attention toward the auditory modality (23). Prior studies found 
that during conditions of high visual load, task performance 
is poorer when the auditory stimuli were predictable, 
implying that working memory significantly influences task 
performance when there are distracting stimuli present (24).

In the current study, we are interested in understanding 
how working memory relates to auditory category learning in 
the presence of visual distractors, as one might encounter 
in the complex, multisensory world, such as in a classroom. 
Prior work has shown that having increased working memory 
ability coincides with being better able to filter irrelevant visual 
distractors processed during visual tasks and reduce the 
interference of irrelevant auditory distractors during auditory 
tasks (25, 26). 

This paper seeks to shed light on the debate about cross-
modal distraction by studying the impact of working memory 
in auditory category learning in the presence of competing 
visual stimuli. Specifically, an individual with an innately 
higher working memory capacity will fare better in increasingly 
complicated visual tasks than would an individual with a lower 
working memory capacity (27, 28). However, it is still unclear 
how visual distractors during auditory-centered tasks affect 
higher working memory capacity.

We tested two alternative hypotheses about the association 
of working memory capacity and auditory category learning 
in the presence of visual distractors. In the experiment, 
participants were randomly assigned to learn one type 
of category (RB or II) in one condition of competing visual 
information (simple or complex). The participants learned 
to sort complex auditory stimuli (static ripples that varied in 
spectral modulation and temporal modulation) into one of two 
categories in the presence of visual distractors.

The first hypothesis was that the higher an individual’s 
working memory capacity, the higher their accuracy would 
be for both RB and II categories, regardless of the type of 
visual distractor. The second hypothesis was that working 
memory capacity would interact with the complexity of visual 
distractors, such that with more complex visual distractors, 
the learner would have fewer working memory resources 
to use in the auditory category learning task. As a result, 
auditory category learning may be worse in complex than 
simple visual distraction conditions and higher working 
memory may not be associated with better auditory category 
learning performance. We found that individuals with higher 
working memory capacity had better learning performance, 
regardless of the type of category they learned or the type of 
visual distractors they had to process.

RESULTS
In this experiment, we examined the effect of working 

memory capacity on auditory category learning in the 
presence of competing visual information. Participants were 
randomly assigned to learn one type of category, RB or II 
(Figure 1A-B), with either simple or complex visual competing 
information (Figure 1C). During learning, participants heard a 
stimulus while seeing visual stimuli on the screen, responded 
which category they thought the auditory stimulus belonged 
to, and received feedback about whether they were correct or 
incorrect. We measured correct identification of the category 
stimuli as participants’ ability to learn the categories. RB 
sounds differed in their temporal modulation alone, while II 
differed in both temporal modulation and spectral modulation 
(Figure 1). As a result, for the RB categories, a simple rule 
on temporal modulation rate could determine category 
identity. For example, category 1 has a faster temporal 
modulation rate than category 2 (Figure 1B). In contrast, 
for II categories, a simple rule is not sufficient to determine 
category identity and participants need to use both temporal 
and spectral modulation dimensions to determine category 
identity (Figure 1A). On a small subset of trials, participants 
responded to questions about the visual distractor stimuli to 
ensure they were paying attention to them. After participants 
completed the category learning task, we recorded 
participants’ operation span (OSPAN) scores as a measure 
of their working memory capacity (Figure 2).
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Stimuli
The auditory stimuli consisted of static ripples that varied 

in spectral modulation and temporal modulation. These 
dimensions are complex dimensions of sound, underlying 
music and speech perception (29). Interested readers 
can find examples of the stimuli can be found in the online 
repository (30). The visual stimuli were images consisting 
of four shapes (squares, circles, teardrops, or triangles) of a 
single or different colors (blue, red, black, white, yellow) in 
different locations on the screen and varied in their complexity 
(Figure 1B). The images were either all the same shape and 
color (simple) or all different shapes and colors (complex). All 
stimuli were created by the experimenters.

Summary of Task Performance
Overall, participants learned the auditory categories, 

evidenced by their better-than-guessing (50%) performance 
(Figure 3A). To understand how well participants were able 
to learn these categories in the presence of visual distractors, 
we compared the ability to correctly categorize the auditory 
stimuli (i.e., accuracy) across conditions. Participants learned 
the RB and II categories to similar levels of accuracy (mixed-
model ANOVA, F(1, 143) = 2.55, p = .12, ηG

2 = 0.012). The 
visual complexity of the distractors (simple vs. complex) did 
not significantly affect participants’ accuracy (F(2, 143) = 0.61, 
p = .55, ηG

2 = 0.006). Accuracy also did not differ when 
considering category and visual complexity type together 
(F(2, 143) = 0.03, p = .97, ηG

2 = 0.0003).

Figure 1: Category distributions for auditory stimuli and 
examples of visual distractors. A. Auditory stimuli for Information-
Integration and Rule-Based categories. Each dot represents an 
individual sound with a particular temporal modulation rate (x-axis) 
and spectral modulation rate (y-axis). B. Examples of simple and 
complex and visual distractors shown at the same time as the 
auditory stimuli. The simple distractors consisted of four of the same 
shapes (square, drop, triangle, or circle) of the same color (white, 
black, blue, yellow, red) and complex distractors consisted of four 
different shapes, each with a different color. 

Figure 2: Experiment and task procedures. Overview of the full experiment procedure and the trial procedures for the categorization task 
and the operation span (OSPAN) working memory task.
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However, we found that performance differed across 
blocks for the RB and II categories, evidenced by a significant 
interaction between block and category (F(3.95, 564.3) = 0.62, 
p = .001, ηG

2 = 0.01). To further examine this, we ran Bonferroni-
corrected post hoc tests on the effect of category in each 
block. We found that the accuracy in RB tasks (mean = 73%) 
was significantly higher than the accuracy in II (mean = 65%) 
tasks in the third block only (p = .000438) with no other block 
had a significant difference between the two (p > .61). In other 
words, there was no significant difference in the participants’ 

task accuracy between RB and II categories in most of the 
blocks except for the third block, in which participants had a 
higher RB accuracy than II accuracy.

We also examined whether participants attended to the 
visual distractor stimuli. Specifically, on 10% of trials (30/300 
trials), after categorizing the sound and receiving feedback, 
participants were given a visual array that was either identical 
to or different from the previous visual array. Participants 
responded whether this new array was exactly the same or 
different from the previous array. Participants also attended to 
the visual distractor stimuli, evidenced by their above-chance 
accuracy on the same-different questions in both the simple 
(t(50) = 14.2, p < .001, d = 1.98) and complex conditions 
(Figure 4A; t(50) = 14.7, p < .001, d = 2.06). Performance 
on the visual distractor questions was significantly better for 
the simple stimuli (mean = 76%) than the complex stimuli 
(mean = 71%; F(1, 98) = 5.53, p = .021, ηG

2 = 0.053). There 
was no significant difference based on the type of category 
participants learned (F(1, 98) = 0.50, p = .48, ηG

2 = 0.0050) and 
there were no significant differences based on consideration 
of both the type of distractor (simple vs. complex) and category 
type together (F(1, 98) = 0.02, p = .89, ηG

2 = 0.00021).

Relationship between Working Memory and Category 
Learning

The main question we investigated was whether working 
memory capacity impacts one’s category learning ability 
under visually distracting conditions. We hypothesized that 
higher working memory capacity would be associated with 
better category learning performance and may be affected 
by the complexity of the visual distractors. Specifically, we 
measured participants’ visual working memory capacity 
based on their score on an operation span task.

To understand if working memory was related to category 
learning ability, we first used a simple linear regression to test 
if working memory score significantly correlated with final 

Figure 3: Category learning performance and relation with 
working memory. A. Mean proportion of correct answers for 
each block for Information-Integration (II) and Rule-Based (RB) 
categories. Error bars reflect SEM and the dashed line reflects 
chance performance (50%). B. Regression results for the relationship 
between working memory and category learning averaged across 
both categories and visual complexity conditions (left) and separately 
by complexity of visual distractors (right). 

Figure 4: Visual distractor performance and relation with working memory. A. Mean proportion of correct answers on visual distractor 
same-different questions. Error bars reflect SEM and the dashed line reflects chance performance (50%). Lighter dots represent individual 
participants. B. Regression results of relationship between working memory and visual distractor questions separately by complexity of the 
visual distractors and averaged across both categories.
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block accuracy (Figure 3B). Overall, we found that working 
memory score was significantly related to categorization 
accuracy (R2 = 0.049, p = .014). As working memory score 
increased by one, final block accuracy increased by 0.19% 
(β = 0.19, SE = 0.075).

We then tested whether working memory score 
significantly predicted final block accuracy differently in 
the simple or complex visual distraction conditions using a 
multiple linear regression model (Figure 3B, Table 1). The 
overall regression was not statistically significant (R2 = 0.039, 
p = .075). We did not observe a statistically significant 
difference in the relationship between working memory and 
final block accuracy for the simple and complex distraction 
conditions.

Finally, we examined if working memory score significantly 
predicted final block accuracy based on the interaction of 
category and visual complexity condition using multiple 
linear regression (Table 2). The overall regression was not 
statistically significant (R2 = 0.061, p = .073). We did not 
observe a statistically significant difference in the relationship 
between working memory and final block accuracy across 
different combinations of types of category participants 
learned (RB, II) and the complexity of visual distractors 
(simple, complex).

Working Memory and Visual Distractor Accuracy
We tested whether working memory ability significantly 

predicted performance on the visual distractor questions 
using a simple linear regression model. The overall regression 
was statistically significant (R2 = 0.043, p = .020). The higher 
one’s working memory capacity, the better they performed 
on the visual distractor questions (β = 0.17, SE = 0.073), and 
as working memory score increased by one, accuracy on the 
visual distractor questions increased by 0.17%. 

We also assessed whether working memory predicted 
performance on the visual distractor questions differently 
based on whether the visual distractors were simple or 
complex using a multiple linear regression model (Figure 4B). 
We defined the regression model with final block accuracy 
as the predictor variable and visual distractor type (simple, 
complex) and working memory score as fixed effects. The 
overall regression was statistically significant (R2 = 0.10, 
p = .0038). Working memory score significantly predicted 
accuracy on the visual distractor questions for the simple 
condition, and as working memory score increased by one 
unit, accuracy on the visual distractor questions for the simple 
condition increased by 0.23% (β = 0.23, SE = 0.10, p = .032). 
This was not significantly different from the complex condition 
(β = -0.038, SE = 0.14, p = .79). The relationship between 
working memory and accuracy was not significantly different 
in the simple and complex conditions. Together, these results 

Table 1: Linear regression model results for effect of working memory on categorization based on condition. Table depicts the 
Estimate from the regression model, SE (Standard Error), and p-value of the linear regression model for the fixed effects of intercept, OSPAN 
score, complex stimuli, and the interaction between OSPAN score and Complex stimuli (OSPAN x Complex). 

Table 2: Multiple linear regression model results for working memory and categorization based on interaction between condition 
and category. Table depicts the Estimate, SE (Standard Error), and p-value of the linear regression model for the fixed effects of intercept, 
Rule-Based category, Complex stimuli, OSPAN score, interaction between Rule-Based and Complex stimuli, interaction between Rule-Based 
and OSPAN score, interaction between Complex stimuli and OSPAN. Score, and interaction between Rule-Based, Complex stimuli, and 
OSPAN score.
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indicate that higher working memory capacity is associated 
with better performance on the visual distractor questions, 
regardless of whether the visual distractors were simple or 
complex.

DISCUSSION
This study tested the relationship between working memory 

capacity and auditory category learning in the presence 
of competing visual stimuli. We hypothesized that higher 
working memory would be better for learning overall, but 
that working memory ability might have a stronger influence 
on learning when distractors were simple as opposed to 
complex. Our results support the first hypothesis. We found 
that working memory was positively associated with auditory 
category learning and retention of information about the 
visual distractors regardless of the kind of distractor. These 
results support a view of working memory capacity as being 
related to the ability to simultaneously attend to auditory and 
visual information.

We also found that in block 3, task accuracy in the II 
category was significantly higher than RB task accuracy. This 
was not seen in any other block, and it was likely due to the 
sampling of the stimuli from the II category in that block. That 
is, due to random chance, the stimuli presented in block 3 may 
have been harder for participants to categorize. There were 
no other differences between RB and II categories across 
other blocks, so we do not believe that the difference in block 
3 reflects any meaningful difference between the learnability 
of the two types of categories.

On average, we saw a 0.19% increase in accuracy on 
the category learning task, for every increase of 1 unit in 
working memory. Working memory score varied from 5 to 80 
for participants in this study, meaning that a 0.19% increase 
in task accuracy can have important effects as the working 
memory capacity of participants increases. Although a 0.19% 
increase in accuracy for every increase in working memory 
score may seem like a very minute increment, it can be rather 
impactful for large changes in working memory capacity. For 
example, a working memory score of 10, the lower end of 
the spectrum, yields a percent accuracy of around 68.3%, 
while a working memory score of 60, the higher end of the 
spectrum, yields a percent accuracy of around 77.8%. This 
is a difference of 9.5%, and for students, this is almost the 
difference between a whole letter grade, which can greatly 
affect their academic performance. Therefore, this study 
could have implications for understanding how students learn 
and process information in the classroom.

According to load theory, the processing of visual 
distractors likely diminished the resources available to the 
auditory modality, especially because the brain requires 
more resources to process visual stimuli (23). This may 
have caused the participants’ task performance to be lower 
in accuracy, although this effect likely did not depend on the 
complexity of the visual distractor. Future work should directly 
compare learning with no visual distractors to learning with 

simple or complex visual distractors. A different effect may be 
observed if the distractors were composed of auditory instead 
of visual stimuli, and thus this work may also be expanded into 
understanding the impact of auditory distractors on auditory 
or visual category learning.

One limitation of this study is the inability to completely 
control participants’ learning environments. Specifically, 
because participants completed the study on their own, we 
could not control for the distractions in their environments. 
For example, participants may have had various forms of 
auditory, visual, or other sensory distractions around them 
while completing the tasks. It is possible that any additional 
distractions may have diminished the cognitive resources 
available for the tasks assigned. Non-experimental distractors 
may have impacted participants’ performance on the category 
learning task or the working memory task. Furthermore, when 
considering the complexity of the visual distractors, we did 
not observe a statistically significant relationship between 
working memory and category learning performance. It is 
possible that this relationship exists, but we were not able 
to detect it here due to the possible presence of additional 
distractors. This may indicate the necessity to examine this 
relationship in a larger sample with increased power to see 
any potential relationship. Future work may address the 
interaction between experimental and non-experimental 
distractors on learning, limiting any additional distractors that 
participants may have had, and therefore decreasing the 
effects of any other variables. Future work may also delve 
deeper into the learnability of RB tasks compared to II tasks, 
adding to the current body of research on the topic.

In our daily lives, we can learn and categorize stimuli in 
complex, multimodal environments with a large amount of 
irrelevant information. In the lab, category learning is often 
studied in simple conditions without any distractions. In this 
study, we explored the association between working memory 
capacity and auditory category learning in the presence of 
visual distractor stimuli. We found that individuals with higher 
working memory capacity were better at learning, regardless 
of the type of category they learned or the type of visual 
distractors they had to process. This research suggests that 
based on working memory ability, students may fare differently 
in the presence of distracting stimuli. For example, students 
often have background music or the television on while 
studying. These results uncover more information about the 
ways in which students learn and process information in the 
presence of distracting stimuli, for example in the classroom. 
Furthermore, the results of this study may also be able to 
be extended to helping children with learning disabilities, 
as disorders such as autism and ADHD have been linked to 
difficulty in filtering out distractions (31). Regardless of the 
complexity of these stimuli, higher working memory capacity 
may bolster learning in the face of irrelevant information.
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MATERIALS AND METHODS
Participants

Participants were 102 individuals (37 male, 65 female), ages 
18-35, recruited from Prolific (32), an online tool that allows 
access to a global population of participants. Participants 
completed this experiment on Gorilla Experiment Builder, an 
online experimental platform (33). Participants were randomly 
assigned to conditions and the number of participants in each 
condition are as follows: 26 II-Simple (15 male, 11 female, 
mean age = 22.7 years), 25 II-Complex (16 male, 9 female, 
mean age = 23.8 years), 25 RB-Simple (19 male, 6 female, 
mean age = 22.5 years), and 26 RB-Complex (15 male, 
11 female, mean age = 21.8 years). II-Simple stands for 
participants assigned to the II category learning task with 
simple visual distractors; II-Complex stands for participants 
assigned to the II category learning task with complex visual 
distractors; RB-Simple stands for participants assigned to 
the RB category learning task with simple visual distractors; 
and RB-Complex stands for participants assigned to the 
RB category learning task with complex visual distractors A 
power analysis was conducted using the WebPower package 
in R and indicated that 23 participants per condition would 
be needed to achieve an effect size of F = 0.3 with power of 
0.8 at alpha = 0.05 (32). The effect size was chosen based 
on prior work (35). Participants were compensated $10/hour 
for participation. Research protocols were approved by the 
Institutional Review Board at the University of Pittsburgh. 
The de-identified data is publicly available through the Open 
Science Framework (36).

Procedure
Participants first completed a category learning task, and 

then a working memory task.
Category learning task. During the category learning 

task, participants were told to learn two different categories 
of sounds. At the same time as they heard the sound, they 
saw visual objects appear on the screen. They were told to 
pay attention to both the sounds and the visual objects as 
they would be periodically asked about the visual objects. 
Participants completed six blocks of training with 50 trials per 
block.

For each trial, participants heard a category sound 
while four visual objects appeared on the screen for one 
second, after which the participants identified what category 
(category 1 or category 2) the sounds belonged to using the 
1 or 2 keys on the keyboard. If the category was RB, then 
there was a simple way to differentiate between categories: 
category 1 had a higher temporal modulation, in Hz, while 
category 2 had a lower temporal modulation. If the category 
was II, it was harder to differentiate between categories: 
a stimulus from category 1 would have higher spectral 
modulation than a stimulus from category 2 with the same 
temporal modulation. There was not a set amount of time 
to complete each trial or task. Assignment of category to 
keyboard key was counterbalanced across participants, 

meaning that some participants pressed “1” for Category 1, 
while some pressed “2” for Category 1. Participants then 
received feedback about whether they were correct, by way 
of the word “Correct” or “Incorrect” appearing on their screen 
for one second. For 10% of the trials, after receiving category 
feedback, participants also completed a visual check to 
ensure that they were attending to the visual stimuli. For the 
visual checks, participants were presented with an image on 
the screen that was either identical or different from the image 
that they had previously seen during the trial. Participants 
responded whether the second image was the same as or 
different from the first image (Figure 2). After each trial, there 
was a one second inter-trial interval. 

Working memory task. We recorded participants’ 
operation span (OSPAN) scores as a measure of their working 
memory capacity (36, 37). The OSPAN test used consists of 
a series of trials in which the participants were shown simple 
arithmetic problems (e.g., (9 + 5) x 1 = 15) and reported 
whether the solutions shown were correct or incorrect. 
Participants had a maximum of 5 seconds to respond, 
followed by a 0.5 second delay. Participants were then shown 
individual letters for 0.8 seconds (Figure 2). Participants were 
shown 15 equation-letter sequences that spanned from three 
to seven letters. At the end of a sequence, participants were 
asked to recall the letters in the order they were presented. 
The OSPAN score was calculated as the sum of the length of 
completely correct sequences, with one point being awarded 
for every correct letter. For example, if a participant correctly 
reported all three letters in a sequence, three points would be 
added to their score. 

Data Analysis and Statistics
 Data analysis was done in R, version 4.1.0 (38). Statistical 
significance was defined based on frequentist thresholds 
with an alpha of 0.05. We compared categorization accuracy 
across conditions using a mixed-model ANOVA with the 
complexity of the irrelevant visual distractors (simple, 
complex) and category type (RB, II) as between-subjects 
factors and block of 50 trials (1-6) as a within-subjects factor. 
We compared performance on the visual distractor questions 
across categories and visual distractor conditions using a 
two-way ANOVA with visual distractor complexity (simple, 
complex) and category (RB, II) as factors.
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