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competency of a network other than test accuracy, which is 
often heavily situational and can overrepresent functionality 
due to overfitting (that is, when a neural network works only 
on the specific training set or test set). As the field of machine 
learning grows, it becomes more important to understand 
the effects of training on neural networks and their weights - 
numbers that influence the output of a neural network that are 
crucial to their operation.

This investigation focuses on neural networks. At 
its simplest, a neural network works very similarly to a 
mathematical function, with weights modifying input values 
multiplicatively and biases modifying them additively. One way 
of “learning” new mappings from input to output is supervised 
learning where the network is fed both an input output pair 
which is known to be correct. For example, you could provide 
an image of a cat as input and the classification “cat” as the 
output. With this input and output the network calculates loss, 
a measure of how inaccurate the network’s prediction was. 
The network then uses an algorithm, to modify the weights 
and biases to better map the input to the correct output. This 
kind of basic neural network is often called a fully connected 
neural network.

Convolutional Neural Networks (CNNs) are neural 
networks which contain at least one, but usually more, 
convolutional layers. Layers at their most basic are steps in a 
neural network which data must pass through, usually being 
modified in some way before being output to the next layer 
or as an output. Convolutional layers in particular, are layers 
which apply convolutions to an image. A convolution is an 
image analysis technique in which a filter - an ordered set of 
weights - is iterated over the input, modifying it to create a 
new output. Due to convolutions being the core of this type of 
neural network, these networks are often used to analyze and 
make predictions based off of images.

A simple CNN was created using Python and then trained 
with Cifar-10 (3), an image database used for machine 
learning. The filters used in the convolutions were then 
analyzed using techniques similar to those outlined during the 
1989 Neural Information Processing Systems conference (4). 
This analysis generated qualitative and quantitative data used 
to compare the varying levels of training. My research aims 
to contribute to an understanding of the effect of training on 
weights by determining whether consistent and measurable 
patterns appear in visualizations of weights at varying 
degrees of training. To accomplish this goal, visualizations of 
weights were analyzed to look for patterns at varying levels 

INTRODUCTION
Neural network technology, and machine learning 

more generally, is present throughout much of our modern 
world, from self-driving cars to text recognition (1). Machine 
intelligence is becoming a crucial part of our society, most 
notably in healthcare, education, the automotive industry, 
and general safety (2). Neural networks, machine learning 
implementations which use systems of weights and biases 
to make decisions, are often part of these intelligent systems. 
Due to the integration of machine learning in highly important 
fields of society, deficiencies in our understanding of its 
function can often be devastating. If an automated vehicle 
fails to notice and recognize an obstacle, it could result in 
death, similarly if an automated doctor in the not-so-distant 
future were to misdiagnose a patient it could be equally 
fatal. Understanding the effect of training on components of 
a neural network deepens our insight into how the weights 
affect predictions of the neural networks. This deeper insight 
could open up the possibility for new techniques of measuring 

SUMMARY
Neural networks are used throughout modern society 
to solve many problems commonly thought of as 
impossible for computers. As their use becomes 
more widespread, an issue of measurement arises. 
In order to create metrics with which to measure 
the ability of neural networks, new techniques 
must be constantly developed. The purpose of this 
research is to determine whether varying training 
produces measurable and consistent patterns in the 
visualizations and weights of Convolutional Neural 
Networks. In order to carry out this investigation, a 
convolutional neural network was designed and run 
with varying levels of training to see if consistent, 
accurate, and precise changes or patterns could be 
observed. To determine if such a change or pattern 
existed, the weights and filters were analyzed through 
visualizations, both qualitatively and quantitatively. 
Several patterns were discovered in the visualizations, 
but they were inconsistent across layers and the 
quantitative models were only consistent in specific 
circumstances. This indicated that while training 
introduced and strengthened patterns in the weights 
and visualizations, the patterns observed may not be 
consistent between all neural networks.
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of training. In the analysis, a pattern was found and termed 
“softness”, it was tracked both as a quantitative variable 
and as a qualitative variable. We predicted that quantifiable 
patterns would be detected, but they would most likely not be 
consistent.

RESULTS
The first qualitative trend noticed was a change in the 

distribution of strong weights among the filters. When there 
was little training, the weights were distributed with a random 
spread. As training increased, clusters of weights began to 
form. The distribution of weights across the filters changed 
from a random spread with little training to a spread with 

clusters of strong weights when there were higher training 
levels (Figures 1 & 2). Two other visualizations were created to 
analyze the weights. Both visualizations contained a number 
of panels, each with an image which has had a unique filter 
applied to it. The visualizations differed in the base images 
that were used; one used an image of a bird taken from the 
Cifar-10 dataset, while the other used an image of black and 
white static noise. A prominent pattern in these visualizations 
was the increasing prevalence of “soft” images when filters 
are better trained, seen in both the images generated from 
static and the bird images in both the first and second layer of 
both of these image sets (Figures 3 & 4). Images which are 
soft have pixels where close location corresponds with close 

Figure 1. Weights of filters with little training are randomly 
distributed. All 16 filters in layer 1, after 2,000 iterations. Each panel 
is one of the filters of layer 1, the colors represent the value of the 
weights with blue being low and red being high. The exact values of 
the weights are not important in this situation because all we need 
to see are the patterns in the intensity and sign. Note the prevalence 
of intense weights throughout the filters, mixed seemingly randomly.

Figure 2. All 16 filters in layer 1, after 30,000 iterations. Weights 
of filters with more training form clusters Each panel is one of the 
filters of layer 1, the colors represent the value of the weights with 
blue being low and red being high. The exact values of the weights 
are not important in this situation because all we need to see are 
the patterns in the intensity and sign. There are far fewer intense 
weights, which appear mostly in clusters with a similar sign.

Figure 3. Images generated by applying all 16 filters in layer 1, 
after 2,000 iterations, to an image in the “bird” class of Cifar-10. 
Applying filters with little training to sample images generates images 
with little softness. Each panel was generated using a different filter 
from layer 1. Very few filters produced images that are soft (soft 
images highlighted in red).

Figure 4. Images generated by applying all 16 filters in layer 1, 
after 30,000 iterations, to an image in the “bird” class of Cifar-10. 
Applying filters with more training to sample images generates 
images with greater softness. Each panel was generated using a 
different filter from layer 1. Far more filters produced images that are 
soft compared to the filters that were trained to 30,000 iterations (soft 
images highlighted in red).
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values, visually this means there are very few edges and little 
pixelation. When trained to 2,000 iterations, few of the 16 filters 
in layer 1 generated images which appeared soft. However, 
when trained to 30,000 iterations far more of the images 
were soft. This trend also occurred to some extent with the 
images generated by applying filters to static noise and when 
using filters from layer two (data not shown). However, the 
specific number of soft images varied per session even when 
the number of iterations remains constant. In two separate 
sessions filters were trained with 30,000 iterations but the 
filters of one session produced far more soft images than the 
other despite the same amount of training (Figures 4 & 5).

A graph was generated that showed the accuracy during 
training (Figure 6). This helped show the training trend for the 
model which gives an idea of what kind of numerical models 
might be plausible while analyzing the quantitative data. We 

observed that the rate of increase in accuracy decreased at 
higher training levels suggesting that a pattern would probably 
not be linear.

Almost all of the data had very low R and R-squared 
(R2) values, meaning that not many of the linear regression 
equations fit the data very well. The notable exceptions were 
power functions from the second layer (Figure 7). The data 
generated from the bird image had an R2 value of about 
0.9220 and the data generated from the static noise image 
had an R2 value of about 0.8996. Other than these two, all of 
the R2 values were below 0.8. Power functions for layer two 

Figure 5. Images generated by applying all 16 filters in layer 1, 
after 30,000 iterations, to an image in the “bird” class of Cifar-10. 
Each panel was generated using a different filter from layer 1. The 
amount of softness is highly variable even with the same amount of 
training. While there are still more soft images then in Figure 3 with 
2,000 iterations, there are noticeably less than in Figure 4, which had 
the same amount of training and was just a different session.

Figure 6. Test-based accuracy during training, reported at 
intervals of 10 iterations. Test based accuracy suggests a non-
linear model. This figure includes the least squares regression line 
in red as a reference. 

Figure 7. Bar graph showing the values of R2 for a line 
comparing softness to number of iterations. The graph includes 
the R2 values for all combinations of variables, that being layer, 
model, and image. In layer 2, the power model has a very high R2 
value for both images. A high R2 value for the power model in layer 
2 suggests that this model fits the data well.

Figure 8. Residual graph showing the residuals for a power 
model of softness scores. Softness scores were calculated from 
the bird images generated from layer 2 as described in the methods 
section. There is not a strong curvature, which indicates that the 
power model would remain somewhat consistent if the model were 
extended to higher and lower batch sizes.
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of the bird and static noise data, also had the lowest p-values 
for the two-tailed linear regression t-test with 1.05x10-5 and 
2.90x10-5 respectively. However, these two were not the only 
regression equations that were significant at α = 0.05. All 
of the first layer data had significant p-values, but very low 
R2 values; however, from layer two, only the power function 
and the exponential model generated from static noise were 
significant at α = 0.05.

The residual graphs provided additional information as 
to whether the regression equations held up over time, an 
example of which can be found below (Figure 8). All of the 
graphs had some degree of curve, but several demonstrated 
more random scatter than others. The most random graphs 
were from layer two of the static noise straightened as a 
power function, both layer one and two of the bird image 
unstraightened, and layer one of the bird image straightened 
as a power function. The rest showed much more severe 
curving, which suggested that the pattern falls off as the data 
is extended.

DISCUSSION
We observed some consistent patterns in the weights 

and visualizations which were very localized or inconsistent. 
There is some evidence to suggest that consistent patterns 
are present, but evidence also suggests that these patterns 
may not be consistent across neural network models. 
The existence of consistent patterns in the weights was 
supported by qualitative evidence. We observed patterns 
in the visualizations of the weights through the clustering of 
strong weights, as well as the increasing number of filters 
that produce soft images (Figures 1 & 2 and 3  & 4). The 
existence of patterns was further supported by the quantitative 
evidence, which demonstrates some consistency and rigor 
to these trends. In layer 2 of the data generated from static 
noise, there exists an accurate power function that shows a 
strong relationship between training and softness. A high R2 
value suggested that there was a strong correlation between 
the scores generated by the image and the number of 
iterations (Figure 7). The low p-value tells us that there was a 
significant linear correlation in the data when straightened as 
a power function. Finally, the random scatter of the residual 
graph showed that the power function is relatively consistent 
even as the pattern is extended. (Figure 8)

However, evidence suggests that the patterns might not 
be present in other neural network models or even when 
testing separate sessions. For example, a power function 
seemed to be the best fit for the data in layer 2, having higher 
R2 values and lower p-values than any other model for both 
images. The issue is that this same model was not consistent 
for layer 1, which is simply a different level of abstraction 
and doesn’t have any fundamental differences from layer 2. 
Layer 1 has different models for each image which presents 
the problem that the patterns would be inconsistent as layers 
vary tremendously across models. The patterns would most 
likely be inconsistent with different test images and when 

using different neural networks. Along with this quantitative 
inconsistency, the qualitative trends were inconsistent 
across sessions (Figures 4 & 5). Therefore, more advanced 
quantitative research may prove unfruitful.

Overall, there were consistent patterns in Neural Network 
weights and visualizations within a specific model, but those 
patterns may not extend much beyond that specific model. In 
order for the findings of this research to have an impact on 
applied machine learning, more research would be needed to 
widen the scope of these findings.
While we conducted this research to the best of our ability, 
we could take several steps to improve the validity of this 
research or to further it. One such step would be to use 
computers that can better handle machine learning. It would 
have been highly informative to see how the data extended 
beyond this point, and it might have prompted some new 
insights. Other steps that could have been taken to generate 
a more representative sample and outline stronger trends 
include increasing the sample size, running more sessions, 
and applying the weights to more images. If future research 
was to be conducted it would be important to apply more 
advanced image analysis techniques and statistical analyses 
so that trends can be better quantified and new trends might 
be discovered.

METHODS
In order to test for patterns, a Convolutional Neural 

Network (CNN) was used; as it provides an acceptable level 
of complexity but is also simple enough that its weights 
can be easily accessed and analyzed. The CNN was built 
in Python with the TensorFlow library (5); the CNN had two 
convolutional layers and two fully connected layers. The batch 
size is variable, but due to hardware limitations a batch size of 
50 was employed to generate the data. Cifar-10 (4) was used 
to generate the data, as it has a relatively large sample of 
images, but a manageable number of 10 classes. A function 
saved the convolutional filters as NumPy array files once the 
set number of training loop iterations had been completed.

A separate Python program was designed to view the 
filters in a variety of fashions. This program would display 
the filters as grids of colors ranging between blue and red 
depending on the value of the weight for each grid square. 
The program could also apply the filters to a sample image, 
in order to see how the filters affect the images they are 
applied to. The filters and images generated by the filters 
were grouped by which session and convolutional layer they 
were from. There were 5 different levels of training: 1, 2,000, 
10,000, 30,000, and 50,000 iterations. The sessions with 
only one iteration were treated as baselines since they were 
essentially random as they had no time to train. Then, small, 
moderately small, moderately large, and large numbers of 
iterations were chosen so that the differences in visualizations 
at noticeably different training levels could be compared. Due 
to time and computing restraints, more sessions with fewer 
iterations were run than those with many iterations. Three 
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sessions with 1 and 2,000 iterations were run, two sessions of 
10,000 and 30,000 iterations were run, and only one session 
of 50,000 iterations was run.

In order to analyze the change in the filters, three kinds 
of images were qualitatively analyzed for each filter. This 
qualitative analysis was meant mostly as a heuristic to find 
possible patterns and support the quantitative analysis. 
The first of these image types was the red and blue color 
interpretation of the filters. The next image type was 
generated when the filters were applied to a 32 x 32 image 
with randomized black and white pixels. The original black and 
white image was generated as a 32 x 32 matrix with random 
ones and zeros, which was then transferred to an image with 
ones representing white pixels and zeros representing black 
pixels. The final image type was generated by applying the 
filter to a sample image from Cifar-10. For this sample image, 
a simple bird image was chosen to further reveal patterns not 
identified by applying the black and white image. The images 
of the same number of iterations and that shared a layer 
were analyzed together. The images were originally analyzed 
qualitatively and note was taken of any recurring patterns 
or features in a layer. The number of “soft” images for each 
group was also recorded. To quantify image trends, a python 
program was developed to objectively measure “softness” of 
an image. 

The program first normalizes the images so that the value 
of each pixel is a floating point between 0 and 1. Once the 
images are normalized, a 3 x 3 filter is repeatedly applied 
to each image. This filter computes the standard deviation 
in that 3 x 3 area and returns it to the location in a matrix 
where the sample 3 x 3 area was taken. The standard 
deviations of each image were then averaged for each image, 
representing a score for the image which should theoretically 
be lower for softer images. After this score was computed, 
the scores for each layer were summed to give a total score 
for the layer. These scores were paired with their respective 
number of training iterations allowing the scores of each 
layer to be analyzed as a function of training iterations. Using 
these scores and their corresponding training iterations, 
statistics were generated in order to determine whether 
there was a relationship between training iterations and the 
softness score. A python program was used to generate a 
least squares regression line for the relationship between 
scores and iterations, R, the p-value for a two-tailed linear 
regression t-test with a null hypothesis of zero slope, and 
graphs of the residuals (Figure 8). As the accuracy graphs 
were clearly curved, the data was straightened to conform to 
exponential and power function models. Straightening, also 
called re-expressing, is a process which linearizes non-linear 
data, which serves many purposes. The same calculations 
were performed on both of the straightened data sets and the 
unstraightened data. 

Linear regression equations can be used to describe the 
straightened data and as such different models for a set of data 
can be compared. Linear data allows for a linear regression 

t-test to be performed to statistically determine whether the 
data is linear and thus fits the model which it was straightened 
for. In general, straightening works by determining which 
model the data follows and applying the inverse of that to the 
data. This effectively “undoes” the original function leaving the 
data as a set of linear points. Curves can often be described 
by one of two models; exponential, and power models. As 
such, in order to determine which model described the data 
curve, the data was straightened as if it was one of these. 
Several tests were run on the resulting, now linear, data to 
see which model it fit best.
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