
10 JANUARY 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

there exists an algorithm that can solve the problem in a time
that is proportional to n2, where n is the number of numbers in
a given set of numbers (4).
 In computational complexity theory, two important
classes of problems are the P class and the NP class (5).
P problems are problems whose solution can be found and
verified by a deterministic Turing machine in polynomial time.
NP problems are problems whose solution can be verified by
a deterministic Turing machine in polynomial time, and the
solution can be found on a non-deterministic Turing machine
in polynomial time (5). Within the class NP, there is a class
called NP-complete problems, which are NP problems that
are at least as hard as any other problem in the class NP (5).
NP-complete problems are especially important because, if
we find a method to solve a single NP-complete problem fast,
then we are mathematically guaranteed that the method will
also be able to solve other NP problems fast. This is because
NP-complete problems can be converted into one another
in polynomial time. For example, sudoku, which is just a
puzzle, is NP-complete (6). Hence, even though, sudoku
is not practically useful, if we can find a fast algorithm for
solving nxn sized sudoku, then we can convert an important
NP-complete problem into sudoku and solve the sudoku
instead. If P=NP, then the two groups of problems are not
separate from each other (5). It means that for every problem
in NP, there exists at least one algorithm that can solve it in
polynomial time on a deterministic Turing machine. If P≠NP,
then the two groups of problems are fundamentally separate
from each other and there exists at least one problem in NP,
such that there is no algorithm that can solve it in polynomial
time in a deterministic Turing machine, if one were to try every
conceivable algorithm (5).
 Numerous studies have been conducted to answer the
P vs NP problem, but none have prevailed as of writing this
paper (7). That is, we don’t know if P=NP or P≠NP. The
importance of solving this problem is highlighted by the fact
that numerous technological problems are considered NP-
complete problems. A prominent example, and perhaps a
significant one to our daily lives is the protein folding problem
(8). Proteins are one of the building blocks of life. Each protein
type is made of a unique sequence of amino acids, linked in a
long chain with covalent peptide bonds (9). There are 20 amino
acids that a protein can be made up of, and the sequence of
amino acids determines the 3-dimensional shape of a protein.
The precise 3-dimentional shape of a protein determines its
function in a cell (9). However, determining the shape of a
protein based on its unique sequence of amino acids is an
NP-complete problem (8). Generally, to simulate a given
molecule, such as a protein, on a classical computer to find
its structure, one would have to account for every quantum
state the molecule can have, and the number of these states

Solving a new NP-Complete problem that resembles
image pattern recognition using deep learning

SUMMARY
In computer science, non-deterministic polynomial
time (NP) denotes the set of problems for which a
solution, if it exists, can be checked quickly. We
also call the set of problems in NP that are at least
as hard as any other NP problem non-deterministic
polynomial time complete (NP-complete). Although
not known if they can be solved quickly as of writing
this paper, NP-complete problems can be converted
into one another quickly. A prominent and practical
example is the protein folding problem, which is a
problem of determining the shape and function of
proteins. Some models of the protein folding problem
have been shown to be NP-complete. In this paper,
we discovered and provided a mathematical proof of
a new NP-complete problem, that we named 3-Grid
Pattern Decision Problem (3- GPDP). 3-GPDP is a
decision problem that asks if a specific kind of pattern
exists or not on a grid/matrix of numbers consisting
of zeros and ones, much like image recognition.
We hypothesized that a neural net would be able to
solve 3-GPDP problems with high accuracy and low
loss when trained. In support of our hypothesis, our
experiment resulted in a neural net that performed
with 84% accuracy and 0.14 loss without underfitting
or overfitting. Moreover, there was also an increase
in accuracy and decrease in loss with more training
data. Hence, this further experimentally supported
that using neural-networks can be a good heuristic
approach to solve many NP-complete problems.

INTRODUCTION
 A Turing machine is a mathematical model of a computing
machine with a defined set of rules (1). When the Turing
machine is given a set of variables as an input, it transforms
it into a result or output following its predefined rules. In
theory, a Turing machine can do everything that a classical
computer can do. Computational complexity theory is a
sub-discipline of theoretical computer science that involves
placing computational problems into classes according to
their resource usage on Turing machines and then tries to
relate the different classes with one another (2). One of the
important resources to consider is time. If we can do some
computation on some input in polynomial time, it means that
as the size of our input grows, then the time it takes to do the
computation grows as a polynomial function of the input size
(3). For example, sorting a given set of numbers from smallest
to largest can be done in polynomial time. This is because

Naod Abraham1, Alan Kwok1
1Saint Mary Catholic Academy, Toronto, Ontario

Article

10 JANUARY 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

grows exponentially the bigger the molecule (10). Hence, this
presents a big hurdle to the pharmaceutical companies when
it comes to making new drugs. As a result of its immense
significance and numerous applications in our world, the Clay
mathematical institute announced a US $1,000,000 prize for
a solution to the problem in 2000 (7). Hence, The P vs. NP
problem is one of the most important open question problems
of our time, which is why many scientists have begun to use
heuristic approaches to solve problems that fall under the
umbrella of NP. In mathematics, heuristic approaches are
techniques that give approximate solutions when finding
solutions via classical methods are too slow or impossible
(11).
 One heuristic approach is deep learning. Deep learning is
a subfield of machine learning that uses algorithms known as
neural nets, abbreviation for neural networks, to learn patterns
from data to make predictions (12). Deep learning is used
when using an exact algorithm to perform a task is difficult
or impossible. Neural net algorithms are fed data to predict
solutions by learning from the data. Research has shown the
effectiveness of using deep learning to solve NP-complete
problems. For example, the Hopfield network was an effective
heuristic approach for solving sudoku (13). Hopfield networks
allow one to store one or more patterns, and then at a later
stage, those patterns can be retrieved by just providing part of
a pattern. Hopfield networks are especially good for different
patten recognition problems. However, using neural networks
as a heuristic approach for solving NP-complete problems
could be more effective by choosing NP-complete problems
that more closely resemble the type of problems that deep
learning is already used for on a daily basis, such as image
recognition (12).
 In this paper, we created and mathematically proved a
new NP-complete problem, that we named 3-Grid Pattern
Decision Problem (3-GPDP). 3-GPDP is a decision problem
that asks if a specific kind of pattern exists or not on a grid
of numbers consisting of zeros and ones. The nature of
3-GPDP resembles an image recognition problem. Hence,
since neural nets are algorithms that are especially good at
learning and recognizing patterns, especially for images, we
hypothesized that a neural net would be able to solve 3-GPDP
problems with high accuracy and low loss when trained. Our
experiment resulted in a neural net that performed with 84%
accuracy and 0.14 loss without underfitting or overfitting.
Moreover, there was also an increase in accuracy and

decrease in loss with more training data. This supported our
hypothesis. By building and training subsequent better neural
net models and increasing data size, one can potentially
achieve low enough training loss and high enough training
accuracy, such that it starts to become applicable to other
real-world important NP problems, that we otherwise have no
fast algorithms for. Details on how to decrease the loss and
increase the accuracy further are discussed in the discussion
section.

RESULTS
 We created and gave a mathematical definition of a new
NP-complete problem that we named Grid Pattern Decision
Problem (3-GPDP) (Appendix A). 3-GPDP is a decision
problem that asks if a specific kind of pattern exists or not on
a grid of numbers consisting of zeros and ones – essentially
it is an image recognition problem. We also mathematically
proved that 3-GPDP is an NP-complete problem (Appendix
B). We then proceeded to train a neural net to solve 3-GPDP.
The loss of the final training batch, final validation batch, and
the testing data set was about the same (0.137 average loss),
and this showed that the model was not overfitting. Addition-
ally, 0.1397 training loss showed that the model was not un-
derfitting either (Figure 1A). The accuracy of the final train-
ing batch, final validation batch, and the testing data set was
about the same (84.3% average accuracy), and this again
showed that the model was not overfitting. Also, 84.03% ac-
curacy in the training data showed that the model was not
underfitting either (Figure 1B).
 Additionally, letting the neural net train on batches of
3-GPDPs instead of all the 3-GPDPs at once was crucial,
as it revealed a correlation between the Neural net’s perfor-
mance and the amount of data it was trained on. The slope of
line of best fit between training loss and number of batches
of training data was negative (Figure 2A). Also, the slope of
line of best fit between validation loss and number of batches
of validation data was negative (Figure 2B). The slope of line
of best fit between training accuracy and number of batches
of data was positive (Figure 2C). Also, the slope of line of
best fit between validation accuracy and number of batches
of validation data was positive (Figure 2D).

DISCUSSION
 3-Boolean satisfiability problem (3-SAT) is the problem of
deciding if a 3-CNF formula is satisfiable or not (5). In math-

Figure 1: Neural network accuracy and loss. The loss (A) and accuracy (B) of the final training batch, final validation batch, and testing
data set.

10 JANUARY 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

ematical logic, a 3-CNF is said to be satisfiable if its liter-
als can be assigned true or false in a way that makes the
3-CNF formula true (14). 3-SAT is an NP-complete problem.
Therefore, if 3-GPDP is an element of NP-complete (3-
GPDP ∈ NP-complete), a deterministic Turing machine can
be used to reduce 3-SAT to 3-GPDP in polynomial time, and
if a 3-GPDP formula can be solved in polynomial time, then
the corresponding 3-CNF formula can be solved in poly-
nomial time. As a result, if we are able to show 3-GPDP ∈
NP-complete, we would be mathematically guaranteed that
whatever “effective” method we develop to solve 3-GPDP, will
also be an effective method to solve 3-SAT. The word “effec-
tive” in this context refers to being able to solve a problem in
polynomial time. It was shown in theorem 1 that 3-GPDP is
NP-complete. Hence, whatever effective solving method one
comes up with for 3-GPDP should also be effective for 3-SAT.
Another NP-complete problem is Boolean satisfiability prob-
lem (SAT) (5). Any SAT problem can be turned into a 3-SAT
problem. SAT is especially important because SAT was the
first NP-complete problem to be discovered, proof given by
the Cook-Levin theorem (15). Many NP-complete problems
have known algorithms that convert them into a SAT problem
in polynomial time. Hence, the close connection of 3-GPDP
to 3-SAT makes 3-GPDP of a special interest.
 Additionally, in this study our neural net had the same ar-
chitecture as a shallow autoencoder, and with a small ratio
of middle layer to output/input layer nodes. Hence, the small
ratio of middle layer to output/input layer nodes and the rela-
tively good effectiveness of our neural net makes us ponder
about the possibility of compression of the information in
3-GPDPs, and hence other NP-complete problems as well.
 If P≠NP, that means that there will never be a polynomial-

time algorithm to solve NP-complete problems. This poses
a problem because many NP-complete problem solutions
hold great value in technological companies. This issue
has prompted the research and application of heuristic ap-
proaches. In this study, we hypothesize that since 3-GPDP
is a problem of pattern extraction from images, a neural net
would result in high accuracy and low loss when solving the
3-GPDP. Despite having a simple architecture, our neural net
gave a final training loss of 0.1397 and final training accu-
racy of 84.03%. Although we observed great initial results,
improvements will need to be made to be practically useful
on a large scale. This can be acquired for future experiments
by providing more training data and changing the Neural net
architecture to Convolutional Neural networks (CNN) (12).
 This Neural Net gave a final accuracy of 84.03% and
0.1397 final loss after training, but it initially started with
a higher loss and lower accuracy (Figure 2). There was a
negative correlation between the training loss and number of
batches of training data. Also, there was a positive correla-
tion between the training accuracy and number of batches
of training data. This was also the case with the validation
loss and accuracy (Figure 2). This strongly implied that with
more data, the loss and accuracy can decrease and increase
respectively even more in future experiments.
 Another way we can increase accuracy and decrease loss
is by changing the architecture of the Neural net. Some Neu-
ral net architectures are better than others in certain tasks.
That is, given a certain task where a neural net must learn to
make predictions based on the data its given, depending on
the nature of the data, some neural network types do better
than others. For example, if the task is to learn to recognize
images, the preferred type of neural net architecture to use

Figure 2: Correlation between loss and accuracy of the neural net and the number of batches it was trained on. Loss of the neural net
and the number of batches it was trained on is correlated; (A) Training data, (B) Validation data. Accuracy of the neural net and the number of
batches it was trained on is correlated; (C) Training Data, (D) Validation Data.

10 JANUARY 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

is a convolutional neural network (CNN) (12). Due to compu-
tational resource limit, a CNN architecture was not used in
this study. However, it would be ideal for 3-GPDP given that
3-GPDP is essentially an image recognition problem. Addi-
tionally, one of the other ways higher accuracy and lower loss
can be achieved in conjunction with a CNN architecture is
by enhancing the training 3-GPDPs and their solutions, with-
out affecting their core content (Figure 3). Changing 3-GP-
DPs in this way, serves to enhance the important features of
3-GPDP.
 To conclude, if very low loss and very high accuracy are
achieved in future experiments, then neural nets can be used
as effective heuristic solvers for large enough 3-GPDP s. Note
that, NP-complete problems can be converted into one an-
other in polynomial time, much like 3-SAT and 3-GPDP in this
study. Hence, we can convert another NP-complete problem
into 3-GPDP via converting to 3-SAT first, solve the 3-GPDP
instead and convert the 3-GPDP solution back to the solution
of the given problem via the corresponding 3-SAT solution.
As a result, this can have various applications when it comes
to other NP problems that we otherwise have no approaches
that can solve them in a reasonable amount of time.

MATERIALS AND METHODS
 To test the performance of a neural net as a heuristic solv-
ing approach to 3-GPDP problems, a neural net with the same
architecture of a shallow autoencoder was trained on 10000
3-GPDPs. It was also validated and tested on 2500 3-GPDPs
and 2504 3-GPDPs, respectively. To create the training, vali-
dating, and testing datasets, a total of 15004 50 clause 3-CNF
formulas and their solutions were generated. Once they were
all generated, they were shuffled and saved. Every one of
the formulas was generated specifically to have an overall di-
versity in terms of difficulty and satisfiability. Then, using the
reduction method we discovered, they were all transformed
into corresponding 3-GPDPs and 3-GPDP solutions. Finally,
the neural net had to fit the 3-GPDPs to their corresponding
3-GPDP solutions. The training and validation data sets were
not given to the neural net all at once; instead, the training and
validation datasets were divided into ten batches. Finally, the
Neural net’s performance was evaluated based on the loss

and accuracy of the training, validation, and testing data sets.
Mean squared error and binary accuracy were used as a loss
function and an accuracy metric, respectively.

Generating 3-CNF formulas and their solutions
 3-CNF formulas were generated in the Discrete Mathe-
matics and Theoretical Computer Science (DIMACS) format.
The DIMACS format is a text-based file format for storing
a Boolean expression in a conjunctive normal form (16). In
order to generate the 3-CNF formulas, a function arbitrarily
named “method_1” was written. The function took in the fol-
lowing inputs: the total number of 3-CNF formulas, the num-
ber of clauses in each 3-CNF, and the range of variables of
the composing clauses. The function was programmed not to
have duplicate literals in one clause; however, a literal and a
negation of the same literal in the same clause was allowed.
The function returned the requested number of 3-CNF formu-
las in a DIMACS format with the desired properties.
 To avoid a neural net that was biased at the end of the ex-
periment, formulas were generated to have diversity in terms
of difficulty, i.e., the probability of being satisfiable. We did
this based on another study that investigated the probabil-
ity of satisfiability of 3-SAT problems (17). The probability of
a 3-CNF formula being satisfiable depends on the clause to
variable ratio. In our study all the formulas had 50 clauses, a
number arbitrarily chosen, but different 3-CNF formulas were
allowed to have different variable numbers. This allowed for
diversity in terms of difficulty (Figure 4). In our data for this
study, we only included 3-CNF formulas with clause to vari-
able ratio values ranging from 2/1 to 50/7, as this range al-
ready roughly included 0% to 100% probability of being satis-
fiable (Figure 4). Given that, clause to variable ratio = clause/
variable, clause = 50, and variable

the feasible variables in the given range of clause-to-variable-
ratio (2/1 to 50/7) were, {variable | 7 ≤ variable ≤ 25}.
 Determining how many 3-CNF formula of each type
(unique clause to variable ratio) was going to be generated
was based on a factor of time. Once a random formula with

Figure 4: Probability of satisfiability of 50-clause formulas,
as a function of the ratio of clauses to variables. The clause to
variable ratio range in this experiment was [2/1, 50/7], and since all
the formulas had 50 clauses, the variable range was [7, 25]. The
line is not a part of the graph, but it helps to show that the graph is
consistent with the other study (17).

Figure 3: Enhanced version of E2 for potential use with a CNN. 1)
All zeroes in E2 were transformed into four zeroes arranged in a 2x2
matrices. 2) All ones in E2 were transformed into four ones arranged
in a 2x2 matrices. 3) Rows and columns of ‘µ’s represent a separator
between the row and column clauses. ½ can be substituted instead
of ‘µ’ as it is equally as far away from both zero and one, which helps
avoid bias toward either one or zero.

10 JANUARY 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

the desired properties was generated, it was solved by an
online version of Minimalistic Boolean satisfiability problem
solver (MiniSat) on the web (18, 19). We created another
function arbitrarily named “method-2” to carry out this pro-
cess. The function’s job was to take a 3-CNF formula in a
DIMACS format and upload it to an online version of MiniSat
on the web using the selenium application programing inter-
face (selenium API) to acquire a solution. If the formula was
satisfiable, MiniSat returned which variables must be true for
the whole formula to be true. If it is unsatisfiable, MiniSat re-
turned the string, “UNSAT”, which stands for unsatisfiable.
After method-2 acquired a solution to the given formula, if
the formula met the desired criteria in terms of satisfiability
(i.e., satisfiable or unsatisfiable), the formula and its solution
were sent to a TXT file to be stored for later use. If the formula
didn’t meet the criteria, another formula was generated by
method-1, and the process looped until a formula was found
that met the desired criteria.
 Variables that had over 0.5 probability of being satisfiable,

were defined as “Type-1”. Variables that had lower than 0.5
probability of being satisfiable,

were defined as “Type-2”. The total training data was com-
posed of 15004 formulas, with 7500 formulas being unsatisfi-
able and 7504 being satisfiable. To make the process faster,
all satisfiable formulas were comprised of only Type-1 for-
mulas, and all the unsatisfiable formulas were comprised of
only Type-2 formulas. Note that there are 14 possible Type-1
variable numbers and 5 possible Type-2 variable numbers.
Hence, there were 536 formulas of each Type-1 variable num-
bers and 1500 formulas of each Type-2 variable numbers.
After all the data was generated, it was compiled, shuffled,
and then saved.

3-SAT to 3-GPDP transformation
 An instance of 3-SAT, E1= (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) ∧
(x∨¬y∨¬z), can be transformed into an instance of 3-GPDP,
E2, using the following steps (Figure 5A). First, write all the lit-
erals of the formula in a column in order. Second, write all the
literals of the formula in a row in order. Third, select a literal
along the row and evaluate the conjunction of the literal with
the literals along each column (If it is satisfiable = 1 and If it is
unsatisfiable = 0). Fourth, once a grid/matrix is constructed,
we can separate it into imaginary non overlapping 3x3 smaller
squares.
 The 3-GPDP is satisfiable if and only if there is at least

one set of satisfiable 1x1 squares, one 1x1 square from each
3x3 square, that align in a way that satisfies a certain symme-
try. That symmetry should be as follows. Let the x-axis point
in the direction across the columns of the 3-GPDP and let the
y-axis point in the direction across the rows of the 3-GPDP.
Then, across a given row of 3x3 squares, one should be able
to connect the 1x1 squares from that row of 3x3 squares us-
ing a straight line parallel to the x-axis. Also, across a given
column of 3x3 squares, one should be able to connect the
1x1 squares from that column of 3x3 squares using a straight
line parallel to the y-axis. Then, the symmetric pattern formed
along the 3x3 square rows must be the same as the symmet-
ric pattern along the 3x3 square columns. This is what makes
3-GPDP a pattern detection problem.
 After following the reduction steps above, one ends up
with a 3-GPDP equivalent of E1, E2 (Figure 5B). One thing to
note is that, as mentioned in the Generating 3-CNF formulas
and their solutions section, if a 3-CNF formula is satisfiable,
its solution can be given as the literals that have to be true
for the whole formula to be true. On the other hand, if it is un-
satisfiable, the solution just says “UNSAT” without returning
any variables. If a 3-GPDP is satisfiable, set all ones in the
3-GPDP that are not part of the pattern mentioned above to
zeroes. However, if it is unsatisfiable, set all the ones in the
3-GPDP to zeroes.
 Based on the transformation of 3-SAT to 3-GPDP, a valid
3-GPDP instance and a satisfiable 3-GPDP instances were
given a mathematical definition (Appendix A). Also, based on
the transformation of 3-SAT to 3-GPDP and the definitions,
3-GPDP was proven to be NP-complete (Appendix B).

3-SAT solution to 3-GPDP solution transformation
 Once all the 3-CNFs and their solution were generated, all
the 3-CNFs were reduced into corresponding 3-GPDPs. The
3-CNF solutions were transformed into their corresponding
3-GPDP solutions using a different algorithm. To show how
a 3-CNF solution could be used to create a corresponding
3-GPDP solution and vise versa, we evaluated E1 and used
the solution to solve E2 by following a simple algorithm. One
of the satisfying assignments of E1 is when x=1, y=1, z=1. The
algorithm replaced the values of the literals in Figure 5A with
the satisfying assignments of E1, that is x=1, y=1, z=1, and
then evaluated all the 1x1 squares, (True=1, False=0) (Figure
6A-B).
 If x=1, y=1, z=1 is a solution for E1, then x∧y∧z =1 must be
true. This means each literal is going to form a conjunction
with the others that evaluates to true, and this looks like a re-
peating pattern of ones along the rows and columns (Figure
6C). Since there is at least one of the literals in each clause,

Figure 5: E1 to E2 reduction. (A) Intermediate step of E1 to E2 reduction. (B) After following the reduction steps in Figure 5A, one ends up with
a 3-GPDP equivalent of E1, i.e., E2.

10 JANUARY 2023 | VOL 6 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

this satisfies the second condition, i.e., one 1x1 square from
each 3x3 square needs to be part of the pattern.
 If one wants to prepare a solution for a 3-CNF from a cor-
responding 3-GPDP solution, choose one literal that is paral-
lel to the repeating pattern of ones from each clause in the
3-GPDP solution. If the 3-GPDP solution is made up of only
zeroes, then the corresponding 3-CNF is unsatisfiable.

Neural Net
 All the neural net code was written using Python and the
Keras API from TensorFlow in Google Collaboratory. The

neural net was trained using Google Collaboratory’s GPU.
The architecture chosen was the same as a Shallow auto-
encoder’s architecture (Figure 8A). Like a Shallow auto-
encoder’s architecture, the input and output layers had the
same number of nodes (22500 nodes), and there was only
one middle layer with 1000 nodes. The Input and output layer
had 22500 nodes because the neural net took in a flattened
50 clause GPDP and 3-GPDP solutions (150x150 = 22500).
The number of nodes within the middle layer was arbitrarily
chosen. The activation function, loss function, and optimizer
were chosen based on their performance in autoencoders

Figure 7: The process of going from 3-CNFs and their solutions to a training a neural net to solve 3-GPDPs. 1) All 15004 3-CNF
formulas that were saved in a TXT file were transformed into the corresponding 3-GPDPs. 2) All the 15004 3-CNF solutions for the formulas
that were saved in a TXT file were transformed into corresponding 3-GPDP solutions. 3) All the 3-GPDPs and 3-GPDP solutions were
flattened from a two-dimensional array into a one-dimensional array, and the neural net had to fit the 3-GPDPs to their 3-GPDP solutions.

Figure 6: Creating a corresponding solution for E2 from the solution for E1. A) The values of literals in figure 5A replaced with the
satisfying assignments of E1, that is x=1, y=1, z=1. B) The result after all the 1x1 squares in figure 6A were evaluated. Notice that there is at
least one set of 1x1 squares, at least one 1x1 square from each 3x3 square, that align in a way that is symmetric across the rows and columns.
This is one of many other combinations, but since there is at least one, this 3-GPDP is satisfiable, just like its corresponding 3-CNF. C)
Relationship between the solutions of E1 and E2. 1) Since the solution of E1, (x=1, y=1, z=1), form a conjunction with each other that evaluates
to true, this looks like a repeating pattern along the rows and columns. 2) ‘C’ stands for clause. There must be at least one group of trues that
is part of the repeating patterns of trues mentioned in number one in each clause. This is equivalent to how there must be a least one literal
from each clause in a 3-CNF that evaluates to true for the whole formula to be true.

10 JANUARY 2023 | VOL 6 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

(Figure 8B). Adam was used as an optimizer. Hard Sigmoid
was used as an activation function, as it provides an upper
and lower boundary, which is one and zero respectively, and
it is almost linear which makes it faster to compute. Finally,
the performance of the neural net was judged based on its
loss and accuracy on the training, validation, and test data
sets. Mean squared error was used as a loss function. Also,
since the output nodes only contained either 1.0 or 0.0, Binary
accuracy with a threshold of 0.9 was used as an accuracy
metric.
 Once the 3-GPDPs and their solutions were generated,
the neural net was trained by trying to fit each 22500 long
array of 3-GPDP with its 22500 long array corresponding so-
lution. A common issue with neural nets is overfitting, that
is simply memorizing the output of a given input, or in this
case the solution of the given instance of 3-GPDP. This is
why 2504 3-GPDPs and their solutions were saved to later
be used as a test set to see if the neural net performs as well
when given data it had never seen before. Another common
issue with neural networks is underfitting, that is not being
able to perform on the training set, let alone data it had never
seen before. One of the ways this can be combated is by in-
creasing the complexity of the neural net or by adding more
features to the data. In this case, such features may include
the ones shown in Figure 3.
 To test if the neural net would improve with more data,
12500 3-GPDPs were fed into the neural net in batches of
1250 3-GPDPs at a time for a total of 10 batches during train-
ing. The batch number was chosen under the constraint of
ram limit. In each batch, the first 80% or first 1000 3-GPDPs
were classified as training data, and the last 20% or 250
3-GPDPs were classified as validation data.

ACKNOWLEDGMENTS
 I would like to thank my high school, Saint Mary Catholic
Academy. I would also like to thank the Journal of Emerging
Investigators for giving me an opportunity to share my work
with the world.

Received: December 12, 2020
Accepted: June 15, 2021
Published: January 10, 2023

REFERENCES
1. De Mol, Liesbeth. “Turing Machines.” Stanford Encyclo-

pedia of Philosophy, Stanford University, 24 Sept. 2018,
plato.stanford.edu/entries/turing-machine/.

2. Dean, Walter. “Computational Complexity Theory.” Stan-
ford Encyclopedia of Philosophy, Stanford University,
20 July 2016, plato.stanford.edu/entries/computational-
complexity/.

3. Arora, Sanjeev and Barak, Boaz. “Basic Complex-
ity Classes.” Computational Complexity: A Modern Ap-
proach, Cambridge Univ. Press, 2010, pp. 27–28.

4. Cormen, Thomas, et Al. “Sorting and Order Statistics.”
Introduction to Algorithms, MIT Press, 2009, pp. 150–
151.

5. Carlson, James, et al. “The P versus NP Problem.” The
Millennium Prize Problems, The Clay Mathematics Insti-
tute, 2006, pp. 87–94.

6. Haythorpe, Michael. “Reducing the Generalised Sudoku
Problem to the Hamiltonian Cycle Problem.” AKCE Inter-
national Journal of Graphs and Combinatorics, vol. 13, no.
3, 2016, pp. 272–282., doi:10.1016/j.akcej.2016.10.001.

7. “P Vs NP Problem.” Clay Mathematics Institute, 2020,
www.claymath.org/millennium-problems/p-vs-np-prob-

Figure 8: The neural net’s architecture. A) The neural net’s architecture diagram. B) The neural net’s architecture details 1) The Input,
Hidden, and Output were densely connected stacks of layers. 2) The Input layer had 22500 nodes and the hidden layer had 1000 nodes. 3)
The same as the input layer, the output layer had 22500 nodes 4): Binary Accuracy with a threshold of 0.9 was used as an accuracy metric 5)
From each training batch, the last 20% were used as a validation set. 6) The neural net was trained for five epochs every time.

10 JANUARY 2023 | VOL 6 | 8Journal of Emerging Investigators • www.emerginginvestigators.org

lem.
8. Guyeux, Christophe, et al. “Is Protein Folding Problem

Really a NP-Complete One? First Investigations.” Journal
of Bioinformatics and Computational Biology, vol. 12, no.
01, 2014, p. 1350017., doi:10.1142/s0219720013500170.

9. Alberts, Bruce, et al. “Proteins.” Molecular Biology of the
Cell, Garland Science, 2015, pp. 109–110.

10. Leontica, Sebastian, et al. “Simulating Molecules on a
Cloud-Based 5-Qubit IBM-Q Universal Quantum Com-
puter.” Communications Physics, vol. 4, no. 1, 2 June
2021, doi:10.1038/s42005-021-00616-1.

11. Mulder, Patty. “Heuristic Method.” Toolshero, 4 Mar.
2022, www.toolshero.com/problem-solving/heuristic-
method/.

12. Alzubaidi, Laith, et al. “Review of Deep Learning: Con-
cepts, CNN Architectures, Challenges, Applications, Fu-
ture Directions.” Journal of Big Data, vol. 8, no. 1, 31 Mar.
2021, doi:10.1186/s40537-021-00444-8.

13. Mladenov, Valeri, et al. Solving Sudoku Puzzles by Us-
ing Hopfield Neural Networks. May 2011, dl.acm.org/
doi/10.5555/2001305.2001330.

14. Mendelson, Elliott. “First-Order Logic and Model Theo-
ry.” Introduction to Mathematical Logic, 2015, pp. 62–62.

15. Cook, Stephen A. “The Complexity of Theorem-Proving
Procedures.” Proceedings of the Third Annual ACM
Symposium on Theory of Computing - STOC ‘71, May
1971, pp. 151–158., doi:10.1145/800157.805047.

16. Maplesoft. “DIMACS CNF (.Cnf) Format.” Maple-
soft, www.maplesoft.com/support/help/maple/view.
aspx?path=Formats%2FCNF.

17. Selman, Bart, et al. “Generating Hard Satisfiability Prob-
lems.” Artificial Intelligence, vol. 81, no. 1-2, 1996, pp.
17–29., doi:10.1016/0004-3702(95)00045-3.

18. Eén, Niklas, and Niklas Sörensson. “The MiniSat Page.”
Minisat, minisat.se/.

19. Galenson, Joel. “MiniSat.” Minisat.js, 30 Nov. 2014, jga-
lenson.github.io/research.js/demos/minisat.html

Copyright: © 2023 Abraham, Kwok. All JEI articles are
distributed under the attribution non-commercial, no de-
rivative license (http://creativecommons.org/licenses/by-nc-
nd/3.0/). This means that anyone is free to share, copy and
distribute an unaltered article for non-commercial purposes
provided the original author and source is credited.

Appendix A

A valid 3-GPDP instance and a satisfiable 3-GPDP instance definitions

Definition 1: A valid 3-GPDP instance is defined as follows:
A valid instance of 3-GPDP is any matrix, M, that satisfies all the following four requirements.

(a) M must be an 𝑛 × 𝑛 square matrix, where 𝑛 ∈ ℕ and 3|𝑛.
(b) Let S={𝑥: 𝑥 ∈ ℕ, 1 ≤ 𝑥 ≤ 𝑛}. ∀𝑝 ∈ 𝑆, 𝑀𝑃𝑃 = 1
(c) 𝑀 = 𝑀𝑇, that is M must be a symmetric matrix.
(d) ∀𝑥, 𝑦 ∈ 𝑆, 𝑀𝑥𝑦 = 1 or 𝑀𝑥𝑦 = 0

Definition 2: A satisfiable 3-GPDP instance is defined as follows:
Let the valid 3-GPDP be an 𝑛 × 𝑛 matrix, M, such that 𝑛 ∈ ℕ. Also, let the 1x1 matrices that contain the
number ‘1’ be true squares, and let the 1x1 matrices that contain the number ‘0’ be false squares. A valid
3-GPDP is satisfiable if and only if it satisfies all of the following four requirements.

(a) The 3-GPDP must be divided into
𝑛2

9
∈ ℕ 3x3 matrices that don’t overlap each other.

(b) In each 3x3 matrix, there must exist at least one true 1x1 matrix.
(c) Let the x-axis point in the direction across the columns of the 3-GPDP and let the y-axis point in

the direction across the rows of the 3-GPDP. There must be at least one set of 1x1 matrices, with
only one 1x1 matrix from each 3x3 matrix, that evaluates to true. Additionally, for each such set,
the 1x1 matrices must be aligned in a way that is symmetric along the rows and columns. The
symmetric pattern should be as follows:
 In each row of 3x3 matrices, one should be able to connect the 1x1 matrices that evaluate to
true from each 3x3 matrix in that row using a straight line parallel to the x-axis. In each column of
3x3 matrices, one should be able to connect the 1x1 matrices that evaluate to true from each 3x3
matrix in that column using a straight line parallel to the y-axis.

(d) The symmetric pattern across columns created by the true 1x1 matrices in requirement (c) must
be the same as the symmetric pattern created by the true 1x1 matrices in requirement (c) across
the rows. That is, set every 1x1 matrix that is not part of the symmetric pattern in requirement (c)
to false or ‘0’. Let this new matrix be 𝑊. Then 𝑊 = 𝑊𝑇 must be true.

Appendix B

Proof 3-GPDP is NP-Complete

Theorem 1: 3-GPDP is NP-Complete
Proof:
(1). To show that 3-GPDP is in the class NP, lets show that a given solution is verifiable if it is a valid solution
or not to a given 3-GPDP in polynomial time on a deterministic Turing machine. One of the ways a 3-GPDP
solution can be represented is by leaving one 1x1 matrix from each 3x3 matrix that is part of the symmetric
pattern as they are, true or ‘1’, and setting every other 1x1 matrix to false or ‘0’. This way one can easily
check if the remaining true matrices fit the desired symmetric pattern. If no 1x1 matrix is given from even
just one 3x3 matrix, then the 3-GPDP is not a valid solution. Hence, a solution can be given by a set
containing a pair of numbers, (𝑚, 𝑛) , where 𝑚 is the row number and 𝑛 is the column number. Those
pairs represent the location of the true 1x1 matrices in a given matrix of 3-GPDP solution. Let such set be,

𝑆 = {(𝑚, 𝑛)1 , (𝑚, 𝑛)2 , (𝑚, 𝑛)3, … , (𝑚, 𝑛)𝑝} , such that 𝑚, 𝑛, 𝑝 ∈ ℕ. Also, let an arbitrary 3-GPDP whose

solution is given by the set be 𝐺1. Now, verifying if a given solution is a valid solution can be done by

executing the following two tests. The first test verifies if the solution has the desired symmetry across its
columns in polynomial time on a deterministic Turing machine. The second verifies if the solution has the
desired symmetry across its rows, and if the symmetry across the rows is the same as the symmetry across
the columns in polynomial time on a deterministic Turing machine.

Test 1:

Step 1: Checking if 𝑮𝟏’s solution is size compatible with 𝑮𝟏. Let the column number of 𝐺1 be 𝑙. Check if

3 × √|𝑆| = 𝑙. If it is true, then proceed to step 2, other wise this solution is not valid. This step takes
polynomial time on a classical computer to execute.

Step 2: Checking if the spots of the true 1x1 matrices in 𝑮𝟏’s solution are also true in 𝑮𝟏. If the spots of
the true 1x1 matrices in 𝐺1’s solution are also true in 𝐺1, then proceed to step 3, other wise this solution
is not valid. This step takes polynomial time on a classical computer to execute.

Step 3: Checking if the matrices in 𝑮𝟏’s solution lie in the same row. To verify this, group together the
pair (𝑚, 𝑛) of the true 1x1 matrices that lie in 3x3 matrices, such that those 3x3 matrices lie side by side

horizontally. Hence, given a solution set, there should be √|𝑆| groups, and there should be √|𝑆| pairs in
each group. Also, in each group, the pairs must be in order. That is, the pairs representing the left most
3x3 square first and the pairs representing the right most 3x3 square last. Check if all pairs have the same
m value in each group. If it is true, then proceed to step 4, otherwise this solution is not valid. This step
takes polynomial time on a classical computer to execute.

Step 4: Checking if the matrices in 𝑮𝟏’s solution lie in the same column. To verify this, use the groups
from step 3. Then, in each group, take only the n value of all the pairs, and put them in a new array in the

same order as the pairs. Then, the 𝑎𝑡ℎ element, such that 𝑎 ∈ ℕ , from all the arrays should be equal. If it
is true, then proceed to step 5, otherwise this solution is not valid. This step takes polynomial time on a
classical computer to execute.

If the solution set passes all four steps, then the solution has at least the desired symmetry across

its columns. Since all the steps take polynomial time on a classical computer to execute, the test takes
polynomial time on a deterministic Turing machine to execute.

Test 2:

Step 5: Checking symmetry along rows and columns of 𝑮𝟏’s solution. Let 𝑅 be an 𝑛 × 𝑛 matrix, and let
the transformation of picking up 𝑅, and putting it down be equal to 1. Also, let the transformation of an
1800 flip along the straight line connecting the top left corner and the bottom right corner of 𝑅 be equal
to 𝑓. Due to the way 3-GPDP and its solution were chosen to be constructed, for a 3-GPDP and a valid 3-
GPDP solution, 𝑓 = 1. As a result, any arbitrary pattern that exist across the rows also exists along the
column, and vise versa, for a 3-GPDP and a valid 3-GPDP solution. Hence, this gives the following two
important results. (1) If for a given 3-GPDP solution 𝑓 = 1 , and there exists a symmetric pattern across
its columns, then there exists a symmetric pattern across its rows and this symmetric pattern is the same
as the symmetric pattern across the columns. (2) If for a given 3-GPDP solution 𝑓 ≠ 1, then it is not a valid
3-GPDP solution. This means that one can easily verify if there exists the desired symmetry across the
rows of a 3-GPDP solution, and if this symmetric pattern is the same as the symmetric pattern across the
columns in one go if the solution passes test 1. That is, by just simply verifying if 𝑓 = 1 for the given 3-

GPDP solution. Verifying if 𝑓 = 1 for 𝐺1’s solution can be done as follows. Since 𝐺1’s solution is

constructed out of 𝑆, then it is a 3√|𝑆| × 3√|𝑆| matrix. Let’s call this matrix 𝑀. Then, check if 𝑀 = 𝑀𝑇. If
this is true, terminate, otherwise the solution is not valid. This is a polynomial time process on a classical
computer.

Passing test 1 and test 2 implies that the solution has the desired symmetry across its columns
and rows, and the symmetric pattern along the rows is the same as the symmetric pattern along the
columns. Which implies 𝑆 is a valid solution. Otherwise, not passing test 1 or test 2 implies that 𝑆 is not a
valid solution. Since all the steps take polynomial time on a classical computer to execute, then verifying
if a given solution is valid or not always takes polynomial time on a deterministic Turing machine.

(2). Next is to show that 3-GPDP is at least as hard as 3-SAT. To do so, let 𝐹1 be an arbitrary size 3-CNF, so

it is in the form of 𝐹1 = ʌ 𝑖=1
𝑘 𝑐𝑖 , such that 𝑘 ∈ 𝑁 and 𝑐𝑖 is a clause. This 3-CNF can be reduced to the

corresponding 3-GPDP, let's call it 𝐹2, using the following pseudocode on a classical computer. Hence, it
can be done on a deterministic Turing machine as well. The 3_CNF given to the function must be an array
of the literals in a 3-CNF formula in order. A literal and its negation must be written in terms of a unique
positive integer, and product of that positive integer and (−1), respectively. For example, the literals in
𝐸1 = (𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (¬𝑥 ∨ 𝑦 ∨ 𝑧) ∧ (𝑥 ∨ ¬𝑦 ∨ ¬𝑧) can be represented as:
 𝑥 = 1, 𝑛𝑜𝑡𝑥 = −1, 𝑦 = 2, 𝑛𝑜𝑡𝑦 = −2, 𝑧 = 3, 𝑛𝑜𝑡𝑧 = −3. That is, 𝐸1 = [1,2,3, −1,2,3,1, −2, −3]

UNCTION

This is a 𝑂(𝑛2) algorithm on a classical computer, and hence the transformation of 3-SAT to 3-
GPDP is a polynomial time process on a deterministic Turing machine. Now suppose the solution of 𝐹1 is
given by 𝑆1 = {𝑚1 , 𝑚2 , 𝑚3, … , 𝑚𝑘}, such that m-1 represent the index number of the literals, one from
each clause, that must be true in the array 3_CNF. Let a solution for 𝐹2 be in the form described in part 1
of this proof, 𝑆2 = {(𝑚, 𝑛) ∶ 𝑚, 𝑛 ∈ 𝑆1 }. Then notice that, based on how the 3-CNF was transformed to

FUNCTION 3_CNF_to_3_GPDP_Converter(3_CNF)

 Declare Integer length= length of 3_CNF

 //the total clause number times 3

 Declare Integer 3_GPDP= Array [0: length, 0: length]

 For x = 0 to length

 For y=0 to length

 If 3_CNF[x]= -3_CNF[y] Then

 3_GPDP[x][y] =0

 Else

 3_GPDP[x][y] =1

 End If

 End For

 End For

3-GPDP in the pseudocode above, 𝑆2 passes test 1 and test 2. Hence, 𝑆2 is a valid solution for 𝐹2. To show
the converse, suppose the solution of 𝐹2 is given in the form described in part 1 of this proof, 𝑆3 =

{(𝑚1, 𝑛1) , (𝑚2, 𝑛2) , (𝑚3, 𝑛3) , … , (𝑚𝑝, 𝑛𝑝)} , such that 𝑚, 𝑛, 𝑝 ∈ ℕ and 𝑆3 passes test 1 and test 2. Let

another set, 𝑆4 = { 𝑚 ∶ (𝑚, 𝑛) ∈ 𝑆3 and 𝑛 = 𝑛1 }. If we let m-1 represent the index of the literals that
must be true in 𝐹1, then notice that 𝑆4 is a valid solution of 𝐹1 based on the pseudo code above. Hence, a
3-SAT is satisfiable if and only if the corresponding 3-GPDP is satisfiable. This implies that 3-GPDP is at
least as hard as 3-SAT.

As a result, 3-GPDP is in the class NP and a known NP-Complete problem, 3-SAT, can be reduced

to 3-GPDP in polynomial time on a deterministic Turing machine. Hence, we conclude that 3- GPDP is NP-
Complete. Q.E.D.

