
24 JULY 2022 | VOL 5 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

with practice, quickly. In principle, any configuration can be
solved in at most 20 moves, which is colloquially referred to
as “God’s number”, as an omniscient being could solve the
cube with this efficiency (5). Thus “speedcubing” was born—
the challenge of solving the Rubik’s Cube from a scrambled
state as quickly as possible (6). The first world speedcubing
championship was held in 1982, where American Minh Thai
set a record of 22.95 seconds, and since then solve times
have steadily decreased (7). As of this writing, the fastest
solve in a competition is 3.47 seconds, set by Yusheng Du in
2018 (8).
 For many speedcubers, the essential question is always
“what do I need to do to get faster?” The obvious answer is to
turn the faces faster, but this is not specific enough to provide
real help to a speedcuber looking to improve. Moreover, it
is not clear which factors are most important for solvers of
varying skill levels, and different cubers have unique areas
of strength and weakness. Should one focus on memorizing
more algorithms, or do they have diminishing returns beyond
a certain number of algorithms? Is it better to turn slower
and more smoothly, or turn fast with longer pauses? What
about for a solver who averages 30 seconds versus one who
averages 10?
 This study discusses some principal elements of
speedcubing. For those not familiar with this discipline,
we first explain the solving method popularized by Jessica
Fridrich, as of 2022 the most widely used speedsolving
method (9, 10). The Fridrich method solves the cube in layers,
so it is considered a “Layer by Layer” method. In the case of
the Fridrich method, these layers are solved from the bottom
upwards, so the bottom and middle layers are called the “first
two layers” and the top layer is called the “last layer.”
 Many speedcubers first learn a simpler Layer by
Layer method, often called the Beginner’s Method, before
transitioning to the Fridrich method (11). The Beginner’s
Method requires fewer algorithms—memorized move
sequences that apply specific actions to the cube—but has
more steps as a result, making it easier to learn but inefficient
compared to the Fridrich method. While the Fridrich method
requires 54 moves on average, the Beginner’s Method, on
average, uses 135 (12).
 The Fridrich method is also known as CFOP, an acronym
for the method’s four steps that are executed in sequence:
cross, first two layers (F2L), orientation of the last layer (OLL),
and permutation of the last layer (PLL) (Figure 1). First, the
cross step completes the four edges of the first layer. Next,
F2L involves pairing a first layer corner with its respective
middle layer edge and inserting both together. This step is
done four times, making F2L the longest step. Third, in OLL,
the solver executes one of 57 algorithms to reorient the pieces
in the last layer such that all pieces have the same color

Rubik’s cube: What separates the fastest solvers from
the rest?

SUMMARY
The Rubik’s Cube is a 3D combination puzzle.
Speedcubing is the activity of solving Rubik’s Cubes
as fast as possible. In this paper, we identified and
quantified key factors that enable some speedcubers
to be faster than others. Knowledge of these factors
could allow speedcubers to focus their practice
deliberately into specific areas, accelerating their
improvement. We hypothesized that a low fraction
of pause times, low regrip frequency, and low move
counts would show the strongest correlations with
faster solves. To test this, we analyzed 69 solve
videos frame by frame across a wide variety of ability
levels, as well as survey data collected from 1,385
speedcubers. To our knowledge this study represents
the most comprehensive factor study of speedcubing
to date. We discovered that the following factors
correlate most strongly with solve times: frequency of
regrips and rotations, fraction of time spent pausing,
cross move count, number of algorithms known, turn
speed, duration of pause in transition between cross
and first two layers (F2L) steps, and orientation of the
last layer (OLL) and permutation of the last layer (PLL)
recognition time. Based on our findings, we generated
specific recommendations for how speedcubers of
different ability levels might most efficiently improve
their solve times.

INTRODUCTION
 Invented in 1974 by Hungarian professor of architecture
Ernő Rubik, the Rubik’s Cube is a combination puzzle in the
form of a 3x3x3 cube (Figure 1) (1). Each of the six faces
comprises nine squares, with each square being one of six
solid colors: white, yellow, red, orange, green, or blue. Each
face of the puzzle can be rotated independently via an internal
twisting mechanism. To solve the puzzle, one must turn the
faces to rearrange the squares so that each face shows the
same color on all nine. The puzzle became a worldwide
sensation in the 1980s and since the early 2000s it has seen
a revival in popularity (2). The Rubik’s Cube remains the most
popular puzzle toy ever created, with more than 350 million
sold as of 2018 (2, 3).
 The combinatorics of the Rubik’s Cube gives the
puzzle a vast number of possible configurations:
43,252,003,274,489,856,000 or 4.3x1019 unique states can
be reached by turning its faces (3, 4). For most people,
merely solving the puzzle is a daunting challenge. However,
algorithmic approaches allow one to solve it reliably, and

Kepler Boyce1 and Cornelis Storm2

1 Gunn High School, Palo Alto, California
2 Eindhoven University of Technology, The Netherlands

Article

24 JULY 2022 | VOL 5 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

facing upwards. For a slower but less algorithm-intensive
variant, one can use 2-look OLL to split OLL into two steps,
requiring nine algorithms in total (13). Lastly, the PLL step
swaps and cycles the last layer pieces to put them in their
correct locations without disturbing their orientations, solving
the puzzle. There are 21 PLL algorithms in total, but one can
use the 2-look version with 6 algorithms at a small speed cost
(14).
 Conversely to 2-look OLL and PLL, there are options with
higher algorithm counts for speedcubers who desire further
efficiency, such as Corners of the Last Layer (COLL), Winter
Variation, and Zborowski-Bruchem Last Layer (ZBLL) (15, 16,
17). These techniques combine or skip steps of the solve to
save time; for example, COLL performs OLL while permuting
the last layer corners, Winter Variation orients the last layer
while inserting the final F2L pair, and ZBLL solves the last
layer in one algorithm from any position where all four last
layer edges are oriented. The disadvantage is that these
techniques require learning many additional algorithms.
ZBLL, for example, has a staggering count of 493 algorithms.
For this reason, many choose to stick with the 78 standard
CFOP algorithms. For more information on CFOP and other
speedcubing methods, see (10).
 Another important concept is look-ahead, which is
the ability to analyze the cube holistically, allowing the
speedcuber to plan moves in advance and transition between
steps more smoothly. A solver skilled at look-ahead can turn
at a consistent speed throughout the solve whereas a solver
who does not use look-ahead effectively will often pause
during the solve to search for pieces required in the next step.

 We hypothesized that look-ahead (i.e., duration of pauses)
and move count efficiency for the cross and F2L steps would
correlate most strongly with overall solve time, followed by
OLL and PLL recognition times (i.e., lengths of any pauses
prior to these steps). According to former world record holder
Feliks Zemdegs, F2L is the step where a solver can expect to
see a majority of their improvement (18). The step is largely
intuitive (i.e., not strictly algorithmic), meaning it often causes
intermediate solvers to make frequent pauses or hesitations
as they try to find key pieces and plan their moves. Zemdegs
also says that learning a variety of easy algorithms beyond
the 78 needed for full CFOP can be highly beneficial for
advanced solvers (18).

RESULTS
Video Analysis of Solves
 Our most detailed data came from analyzing video
recordings of individual cube solves. We analyzed videos
from speedcubers of varying skill levels frame by frame to
record variables like the time spent in each step, the duration
of the solver’s pauses, move counts, and total solve time.
With this dataset, we performed a correlation analysis.
 We expected that faster solvers likely would turn the cube
faster than slower solvers. We found a strong measured
correlation between average turn rate and solve time (r(67) =
-0.85, p < 0.00001, Figure 2). Here, turn rate was quantified
by Turns Per Second (TPS). Regardless of whether pause
times were included, faster solvers had higher average turn
rates.
 We found that F2L was the most time-consuming step
for virtually all solvers, comprising roughly 52% of the total
solve time (Figure 3). Though faster solvers appeared to
have comparatively faster crosses and slower last layers, the
correlations were weak (r(67) = 0.24, p = 0.047 and r(67) =
-0.04, p = 0 .744, respectively).
 We saw more significant differences between solvers
when we examined move count, which was the total number
of turns used overall and in each step. Faster solvers spent
fewer moves on the cross and last layer (r(67) = 0.42, p <
0.00033 and r(67) = 0.34, p = 0.0043, respectively) but

Figure 1: Rubik’s Cube and solved sections after each step of
the Fridrich method. (A) Rubik’s Cube in a scrambled state. The
goal of the puzzle is to rotate the layers to make each face a uniform
color. Image is used under a Creative Commons license. (B) Solved
cross step. (C) Solved first two layers (F2L) step. (D) Completed
orientation of the last layer (OLL) step. See text for more description
of these steps. Images by Wikimedia user Conrad Rider are used
under a GFDL license.

Figure 2: Measured turns per second (TPS) versus total solve
time (16 solvers, N=69 solves). TPS equals the total number of
moves divided by the solve time, while in “TPS (pauses ignored)”
pause times were subtracted from the solve time. TPS correlated
strongly with solve time (r(67) = -0.84, p < 0.00001).

24 JULY 2022 | VOL 5 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

there was negligible correlation between F2L move count
and solve time (r(67) = 0.05, p = 0.683, Figure 4). Faster
solvers achieved lower move counts overall (r(67) = 0.37, p =
0.00200).
 Solve time and fraction of time spent pausing showed a
strong correlation (r(41) = 0.72, p < 0.00001, Figure 5). We
also observed systematic differences between faster and
slower solvers regarding when they paused. Solvers who
averaged above 20 seconds paused for a larger fraction of
time in the cross and F2L steps as compared to the last layer
(Figure 5). In terms of absolute duration of pauses, F2L was
the largest source of pauses for all solvers, followed by the
last layer (Figure 6).
 Finally, our video analysis allowed us to observe key
differences in how solvers move. Faster solvers performed
regrips and cube rotations less often (r(67) = 0.75, p < 0.00001
and r(67) = 0.48, p = 0.00003, respectively, Figure 7).

Large-Scale General Survey
 As a second source of information, we analyzed data from
a survey of 1,385 respondents in the r/cubers Reddit online
forum (19). This survey included only general self-reported
information such as average solve time, years of speedcubing
experience, and number of algorithms known. Our only result
from the survey data is that solvers who know more algorithms
tend to have a faster average solve time (Figure 8). Nearly all
solvers faster than 10 seconds knew at least 100 algorithms,
which is more than the 78 algorithms used in standard CFOP.

DISCUSSION
 Faster solvers had higher turn rates, which made sense
as there is a limit of roughly 54 moves for how low one’s
average move count can be with CFOP (Figure 2) (12). Once
a solver reaches that point, time improvement must come
primarily from increasing TPS. Thus, a question arises: Is a
fast solver merely a slower solver “sped up?” That is, if we
play recordings of slower solvers at 1.5x or 2x speed, are they
indistinguishable from faster solvers? Or are there factors
beyond turn speed that differentiate fast solvers from slower
ones? To address this question, we needed to consider other
aspects of performance.
 Faster solvers spent fewer moves on the cross and last

layer but showed no improvement in F2L move count (Figure
4). The first finding matches what we hypothesized—a faster
solver will have gained better intuition for solving the cross in
fewer moves and learned more algorithms for the last layer
(most often by transitioning from 2-look OLL and PLL to the
standard, more efficient variants). The latter finding surprised
us, however, since many faster solvers invest time learning
advanced techniques intended to reduce F2L move count and
these efforts do not appear to benefit their solves.
 Faster solvers also spent a smaller fraction of their solve

Figure 4: Measured move count for each CFOP step and total
move count versus total solve time (16 solvers, N=69 solves).
Faster solvers spent fewer moves on the cross and last layer steps
(r(67) = 0.42, p < 0.00033 and r(67) = 0.34, p = 0.0043, respectively)
and fewer moves overall (r(67) = 0.37, p = 0.00200), but we found
no significant relationship between F2L move count and solve time
(r(67) = 0.05, p = 0.683). Nearly all of the move count improvement
was in the last layer, with a small amount in the cross.

Figure 3: Measured fraction of solve time spent in each CFOP
step versus total solve time (16 solvers, N=69 solves). The F2L
step was the most time-consuming in virtually all cases.

Figure 5: Measured pause time during each CFOP step (as a
fraction of that step’s total time) and total pause time (as a
fraction of solve time) versus total solve time (11 solvers, N=43
solves). A pause was any sequence of video frames in which all
layers of the cube were stationary. Pauses in between steps counted
towards the following step. The fraction of time spent paused was
highly correlated with total solve time (r(41) = 0.72, p < 0.00001),
showing conclusively that a faster solver was not merely a slower
solver “sped up.” Solvers who averaged above 20 seconds paused
for a larger fraction of time in the cross and F2L steps as compared
to the last layer.

24 JULY 2022 | VOL 5 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

times pausing. For example, an average 10-second solver
spent 33% of their solve time pausing, while an average
20-second solver spent 46% (Figure 5). This result suggests
that for a typical solver improving from 20 to 10 seconds,
about 6.2 seconds of that time improvement is gained simply
by reducing pause time. This striking result underscores the
critical importance of improved look-ahead and algorithm
recall for solvers in this ability range. For the cross, this
correlation was also caused in part by the sizable number of
solvers faster than 15 seconds who were able to plan all of
their moves for the cross before beginning the solve, allowing
them to complete the cross step with no pauses. In terms of
absolute duration, a majority of every solver’s pauses took
place in F2L (Figure 6). As F2L relies on intuition rather than
algorithms, this result suggests that a solver can greatly
reduce their overall pause times by improving their F2L look-
ahead.
 The results described above suggest to us some crucial
paths to improvement for solvers at different ability levels.
For solvers who average above 15 seconds, key things to
practice include: reducing regrips and cube rotations, working
to reduce pause time, especially in the cross and F2L, using
fewer moves to solve the cross, learning more algorithms
to lower OLL and PLL move counts, and turning faster (i.e.,
increasing TPS). For those who average faster than 15
seconds, the following are important in addition: reducing
the pause in the transition from cross to F2L and improving
OLL and PLL recognition times to reduce last layer pauses.
Regarding learning additional algorithms, there seemed to be
an inverse correlation with average solve time even as far as
200+ algorithms, but we cannot say whether the faster times
were a direct result of learning more algorithms. It may be
that solvers who have spent more time practicing—and thus
have faster solve times—also tend to know more algorithms
because they have had more time to learn them. Regardless,
it is worth noting that nearly all of the fastest solvers knew at
least 100 algorithms.
 These findings may help speedcubers by showing which
specific areas are most important for improving at each skill
level. They also provide benchmarks for determining which

areas a certain speedcuber is strong in and which areas they
need to work on. For example, one can record and analyze
their own solves to see how their statistics compare to an
average solver of their speed. Rather than relying on very
general advice, speedcubers can now see in detail what they
should practice based on their own abilities.
 For future work, there are some areas left untouched by
this study due to a lack of appropriate data. Variables like
hours of practice per week, age when the solver started
speedcubing, physical aspects of the speedcube, and color
neutrality (the ability to solve equally well from any starting
color orientation, as opposed to always starting with the white
cross), for example, would be interesting to consider.

Figure 6: Measured absolute duration of pauses in each CFOP
step and total pause time versus total solve time (11 solvers,
N=43 solves). The F2L step was the largest source of pauses for all
solvers, followed by the last layer.

Figure 8: Average time of 100 solves (Ao100) versus number
of algorithms known (survey of 1385 solvers). For an average of
100, conventionally the fastest 5 and slowest 5 times are removed
and the mean of the remaining 90 times is taken. Nearly all solvers
faster than 10 seconds knew at least 100 algorithms.

Figure 7: Measured number of regrips, cube rotations, cube
tilts, and AUFs versus total solve time (16 solvers, N=69 solves).
Regrip: when the solver moved a thumb to another face of the cube.
Cube rotation: when the solver rotated the entire cube to face another
side (also counted as two regrips, as the solver moved both thumbs
to another face). Cube tilt: when the solver tilted the cube to view
the back or bottom faces. AUF: Adjustment of the Upper Face; one
AUF counted for every time the solver turned the upper layer without
necessity. Faster solvers performed fewer regrips and cube rotations
(r(67) = 0.75, p < 0.00001 and r(67) = 0.48, p = 0.00003 respectively).

24 JULY 2022 | VOL 5 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

MATERIALS AND METHODS
 This study used two separate datasets. All data and
analysis scripts have been made available online (20). The
two datasets were collected from different populations of
speedcubers, so we did not combine them for any of our
analyses. The published Python analysis script generates
Figures 2–8 in this paper from the datasets (20).

Video Analysis of Solves
 The first dataset contains data derived from video of 69
individual solves from 16 solvers of various skill levels. We
obtained the videos from YouTube online and analyzed them
using the Hawkeye software program, which allows video
to be viewed frame by frame with accurate timestamps for
individual frames (21). We recorded the following variables:
solve time; TPS; fraction of solve time spent in each CFOP
step; move count of each CFOP step; fraction of time spent
pausing in each CFOP step and in the overall solve; duration
(in seconds) of pauses in each CFOP step and in transition
between the cross and F2L steps; and number of regrips,
cube rotations, cube tilts, and unnecessary adjustments of
the upper face (AUFs). We provide detailed definitions of
each variable and explanation of recording methods below.
 We defined the start of the solve as the last frame in
which the solver had not yet turned any layers of the cube
and the end of the solve as the frame when all layers of the
cube became stationary in a solved state. The end of each
CFOP step was the frame when the final move of that step
concluded. We derived solve time in seconds and duration
of each CFOP step by taking the duration of the solve or step
in frames and dividing by the video frame rate (30 frames per
second for all videos we used).
 We defined TPS as the total number of moves executed
by the solver divided by total solve time. We counted moves
using the Slice Turn Metric (STM), where a rotation of any
layer by any amount counts as one move (22). If the solver
executed a move as two independent motions with a pause
in between, however, we considered it as two moves despite
being one move in STM; For example, if a solver turned the
top layer clockwise, paused for a moment, and then turned
the top layer clockwise once more, they performed two moves
by our move counting system.
 Pause times were all sequences of frames in which no
layers of the cube moved by any amount. Pauses in between
CFOP steps counted towards the following step. As such,
we included pauses in the transition from cross to F2L in the
total F2L pause time. We summed pause times across each
step and divided by the duration of that step to determine the
fraction of time spent pausing for that step.
 Regrips were when the solver moved either thumb to
another face of the cube. Cube rotations were when the solver
reoriented the cube to face a different side; cube rotations
also counted as two regrips as the solver moved both thumbs
to another face of the cube. Cube tilts were when the solver
tilted the cube, often to view the back or bottom layers.
Unnecessary AUFs were when the solver turned the top layer
without necessity. During the F2L step, for example, some
solvers performed multiple rotations of the upper layer in a
row while trying to find key pieces, resulting in unnecessary
AUFs.

Large-Scale General Survey
 The second dataset contains general information: months
since the respondent learned to solve the Rubik’s Cube,
months of speedcubing experience, best single 3x3 solve
time, best Ao5, Ao12, and Ao100, and a list of the algorithm
sets known by the respondent. AoX refers to an average of
X solves and is calculated as a mean with the fastest and
slowest solves removed. For an Ao5 or Ao12, two solves
are removed—the single fastest and slowest—while for an
Ao100, the five fastest and five slowest times are removed
(23). With permission, we collected this dataset from a 2020
survey with 1,385 responses by the r/cubers Reddit group
(19).
 We then created a Python script for analysis in which the
data is cleaned by removing any data points that: (a) leave
one or more fields blank, (b) have unusual values for best
single, Ao5, Ao12, or Ao100 times (e.g. if the reported Ao100
is faster than the reported Ao5), or (c) report times greater
than 500 seconds or more than 300 algorithms known, as
there are very few responses in these ranges and they hinder
the readability of graphs (20). To convert from lists of known
algorithms to a quantitative number, the script parses each
response’s list of known algorithms, summing the number of
algorithms in each listed set.

Analysis Methods
 All of the data collected was quantitative. For analysis,
our main objective was null-hypothesis testing of correlations
between quantities of interest. We tested Pearson correlations
because linear relationships are simple to model and test, and
we have no prior reason to expect non-linear relationships.
To this end, we calculated a Pearson correlation coefficient
r from our sampled data, and then tested the null hypothesis
H0: ρ = 0 against the alternative hypothesis HA: ρ ≠ 0, where ρ
is the population (true) Pearson correlation coefficient. To test
we H0 used the test statistic:

from which we calculated a two-tailed p-value. The p-value
expresses the probability of measuring a sample Pearson
correlation coefficient r* at least as extreme as r, assuming the
null hypothesis is true (i.e., the populations are uncorrelated
bivariate normal distributions). We adopted a criterion of
rejecting the null hypothesis when the p-value was less than
0.05.

ACKNOWLEDGEMENTS
 We thank the reviewers and editors for their helpful
suggestions. We are grateful for the opportunity provided
by Palo Alto Unified School District’s Advanced Authentic
Research program and the support of Rachael Kaci.

Received: August 4, 2021
Accepted: December 20, 2021
Published: July 24, 2022

REFERENCES
1. Rubik, Ernő. Cubed: The Puzzle of Us All. Flatiron Books,

2020.
2. Reese, Hope. “A Brief History of the Rubik’s Cube.”

Smithsonian Magazine, 25 Sep. 2020, smithsonianmag.
com/innovation/brief-history-rubiks-cube-180975911.

24 JULY 2022 | VOL 5 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

Accessed 11 Nov. 2021.
3. Hofstadter, Douglas R. “METAMAGICAL THEMAS.”

Scientific American, vol. 244, no. 3, Scientific American,
a division of Nature America, Inc., 1981, pp. 20–39, jstor.
org/stable/24964321.

4. “Mathematics of the Rubik’s Cube.” Ruwix, ruwix.com/
the-rubiks-cube/mathematics-of-the-rubiks-cube-
permutation-group. Accessed 11 Nov. 2021.

5. Rokicki, T., et al. “The diameter of the Rubik’s Cube
group is twenty.” SIAM J. Discrete Math. vol. 27, 2013,
pp. 1082–1105. doi.org/10.1137/120867366

6. The Speed Cubers. Directed by Sue Kim, Netflix, 2020.
7. “World Rubik’s Cube Championship 1982.” World Cube

Association, 5 Jun. 1982, worldcubeassociation.org/
competitions/WC1982.

8. “Rankings.” World Cube Association,
worldcubeassociation.org/results/rankings/333/single.
Accessed 11 Nov. 2021.

9. Fridrich, Jessica. “My system for solving Rubik’s cube.”
ws.binghamton.edu/fridrich/system.html. Accessed 11
Nov. 2021.

10. “CFOP method.” Speedsolving Wiki. speedsolving.com/
wiki/index.php/CFOP_method. Accessed 11 Nov 2021.

11. Gonzalez, Robbie. “How to Solve a Rubik’s Cube, Step
by Step.” Wired, 5 Sep 2019. wired.com/story/how-to-
solve-a-rubiks-cube-step-by-step. Accessed 11 Nov
2021.

12. Duberg, D., and Tideström, J. “Comparison of Rubik’s
Cube Solving Methods Made for Humans.” Dissertation,
2015. Retrieved from urn.kb.se/resolve?urn=urn:nbn:se:
kth:diva-166727

13. “Step 3 - Orient last layer - OLL.” Ruwix. ruwix.com/the-
rubiks-cube/advanced-cfop-fridrich/orient-the-last-layer-
oll. Accessed 11 Nov 2021.

14. “Step 4 - Permutate the last layer - PLL.” Ruwix. ruwix.
com/the-rubiks-cube/advanced-cfop-fridrich/permutate-
the-last-layer-pll. Accessed 11 Nov 2021.

15. “COLL.” Speedsolving Wiki. speedsolving.com/wiki/
index.php/COLL. Accessed 2 Apr 2022.

16. “Winter Variation.” Speedsolving Wiki. speedsolving.
com/wiki/index.php/Winter_Variation. Accessed 2 Apr
2022.

17. “ZBLL.” Speedsolving Wiki. speedsolving.com/wiki/
index.php/ZBLL. Accessed 2 Apr 2022.

18. Zemdegs, F. “How To Get Faster?” CubeSkills. cubeskills.
com/blog/how-to-get-faster. Accessed Jul 15, 2021.

19. “Mega-Survey 4 Results.” Cubers Subreddit, Jun
28, 2020. reddit.com/r/Cubers/comments/hhmcmp/
megasurvey_4_results. Accessed Jul 15, 2021.

20. Boyce, K. “Speedcubing data and analysis software.”
Github repository. github.com/KeplerBoyce/
speedcubing-analysis. Accessed Jul 21, 2021.

21. Boyce, J. “Hawkeye video analysis software.” Github
repository. github.com/jkboyce/hawkeye. Accessed Jul
15, 2021.

22. “Metric.” Speedsolving Wiki. speedsolving.com/wiki/
index.php/Metric. Accessed Jul 21, 2021.

23. “Average.” Speedsolving Wiki. speedsolving.com/wiki/
index.php/Average. Accessed Jul 21, 2021.

Copyright: © 2022 Park and Satt. All JEI articles are distributed
under the attribution non-commercial, no derivative license
(http://creativecommons.org/licenses/by-nc-nd/3.0/). This
means that anyone is free to share, copy and distribute an
unaltered article for non-commercial purposes provided the
original author and source is credited.

http://www.ws.binghamton.edu/fridrich/system.html

