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INTRODUCTION
Childhood stunting is a global issue impacting over 154.8 

million children. A child is considered stunted when their 
height or length is two standard deviations or more below the 
World Health Organization Child Growth Standard median (3). 
The critical timeframe where a child is susceptible to stunting 
starts during pregnancy and continues until around 24 
months of age. This is also the timeframe where interventions 
are most effective (4). In addition to a short stature, children 
with stunting also face long-term deterioration of the quality 
of life (5). Stunted women shorter than 145cm impose 
general health difficulties on their children and lower birth 
survival rates. Additionally, stunting is frequently associated 
with delayed cognitive development and even impairment, 
leading to lower academic performance and wages (3-5). 
Expanding the effects of stunting across generations, children 
with stunted parents had lower-performing developmental 
quotients and cognitive scores as well as shorter height 
when compared to those without stunted parents (2, 6). Thus, 
the major challenge now is understanding, predicting, and 
treating stunting at a global scale. 

Of the 154.8 million stunted children, the majority are 
present in Asia (87 million) and Africa (59 million), where 
stunting rates rise above 30% of the population (1). In addition, 
more than 23% of the population in many major cities live in 
impoverished, densely populated urban areas without proper 
access to food, decent housing, sanitation, clean water, and 
essential infrastructure services (2). Although the frequency 
and prevalence of stunting is decreasing on a global scale, 
many low-income regions in West Africa and Southern Asia 
face stunting rates 50% higher than those of other countries 
(1, 3). Therefore, understanding childhood stunting — the 
causes, preventive timeframe, and measurement challenges 
— is vital for preventive action.

Machine learning is a powerful tool to leverage in clinical/
medical applications. Recently, ML (machine learning) 
classifiers have gained traction within risk prediction due to the 
new abundance of publicly available records and studies (7). 
While traditional statistical analysis techniques exponentially 
scale in complexity as the data dimensionality increases, 
ML can be used to process and analyze this complicated 
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information quickly and efficiently. Furthermore, clinical trial 
data compiled over the past decades provide opportunities 
to better understand the relationship between environmental 
factors and stunting, along with advancements in prognostic 
modeling. Recent studies developed predictive ML models 
based on childhood stunting in West Africa and South Asia. A 
study in Bangladesh utilized classic linear regression models 
and yielded varied success with an accuracy below 70% (8). 
Another study using stunting data from Ethiopia developed 
five ML models with accuracy scores between 63.7% and 
67.7% (9). These past studies have produced models with low 
scoring accuracy metrics because the complexity of medical/
clinical data caused a significant predictive challenge for 
these models. Furthermore, there are countless combinations 
of preprocessing and parameter tuning that previous studies 
have not considered. 

AutoML (automated machine learning) is a new solution 
for generating more accurate models in healthcare domains. 
AutoML methodically proceeds through the most challenging 
steps in creating ML models, which include feature 
engineering/processing, model training, and hyperparameter 
optimization, to produce an effective model for any given 
dataset (10). Tree-based Pipeline Optimization Tool (TPOT) 
is a powerful AutoML tool built upon existing ML frameworks 
that generates optimal pipelines for given data using genetic 
programming. Conventionally, a data scientist dedicates 
considerable time processing features, selecting models, 
and optimizing hyperparameters. Proceeding through these 
three phases of the pipeline in a timely manner requires 
substantial background and experience with building ML 
models. TPOT streamlines feature processing, model 
selection, and hyperparameter optimization by the means 
of genetic programming (GP), a computational technique 
used for automatically constructing programs. Feature 
processing includes encoding large numeric data points into 
a smaller range and reducing data dimensionality. Model 
building automatically trains different ML models on the 
provided dataset. Hyperparameter optimization searches 
for each algorithms’ ideal run parameters to maximize 
the score on a specified metric. The GP process enables 
TPOT to explore thousands of pipelines through multiple 
generations (iterations). The best performing pipelines from 
each generation are used to build the next generation until 
the run completes. TPOT has shown promise in previous 
benchmarking biomedical analyses and has tremendous 
possibility when applied to childhood stunting (11, 12).

This study was conducted to: [1] assess the accuracy 
of TPOT’s models, [2] analyze TPOT’s applicability in 
childhood stunting, and [3] understand the subtle correlations 
between socio-economic status, familial conditions, growth/
sanitation interventions, and stunting. We hypothesized that 
predictive models generated by the TPOT AutoML method 
would perform better than those generated by conventional 
methods due to TPOT's ability to consider many different 
models and parameter settings. Additionally, we hypothesized 

that economic prosperity, access to resources, and positive 
familial demographics would negatively correlate to the risk 
of stunting. When compared to ML models from previous 
studies that used traditional techniques, we observed a 
5%-10% increase in the compared scoring metrics which 
proved TPOT’s accuracy and applicability in stunting problem 
domains. Additionally, feature correlation scores of the ML 
models demonstrated how Maternal Education, Maternal 
height, and assets score (an indicator of wealth) were 
universally deterministic of stunting risk while the interventions 
generally had no impact on stunting risk.  

RESULTS
AutoML is a powerful tool for developing predictive models 

and uncovering complex associations present in data. We 
applied AutoML to understand and predict childhood stunting 
using socio-economic, familial, and environmental conditions. 
Once the data was preprocessed and the models built, we 
extracted feature importance, feature correlation, and model 
performance to explain our hypothesis. Each run of the 
AutoML produced a best-performing ML model, which we 
denote by the letter P, and the random state of that pipeline 
yielding that model (e.g., P12). Our data originated from two 
regions, Kenya and Bangladesh. 

Preliminary data analysis
Prior to conducting TPOT runs, we analyzed the 

correlations between the individual features to understand 
how the demographic conditions of a target child related to 
one another. The Kenya clinical trial features did not correlate 
as only one pair of features had an absolute Pearson 
correlation value above 0.2. Conversely, the Bangladesh 
clinical trial recorded over nine absolute correlation values 
above 0.25 (Figure 1). For Kenya and Bangladesh, the 
number of children in the household and the maternal age 
exhibited positive correlations of 0.74 and 0.52, respectively 
(Figure 1). Interestingly, the Assets Score (a metric we 
developed to indicate socioeconomic wealth) for the 
Kenya data had an insignificant relationship to maternal 
education level (Figure 1a). However, parental education 
in Bangladesh was moderately related to the Assets Score 
with a correlation value of 0.39 for Maternal Education and 
0.43 for Paternal Education (Figure 1b). Generally, higher 
parental education in these two studies produced a higher 
wealth indicator for the target child. In addition, parental 
education levels in Bangladesh produced a generally lower 
hunger/food insecurity score when compared to Kenya. The 
Bangladesh heatmap revealed that mothers with a higher 
level of education were less likely to have more children 
as Maternal Education and Birth Order had a correlation 
score of -0.4 (Figure 1b). Similarly, Paternal Education was 
negatively related to the Birth Order with a score of -0.27. 
Maternal and paternal education levels in Bangladesh were 
significantly and positively correlated with a score of 0.62, 
signifying a tendency to marry people with similar education 
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levels (Figure 1b). 

Feature importance and feature correlation
We next used Shapely Additive Explanations (SHAP) to 

determine the impact of individual features on the ML model’s 
output and extract feature importance. The SHAP summary 
plot presents information in four distinct categories. The first 
is feature importance. Variables are placed in descending 
importance starting from the top of the y-axis. The impact of a 
feature’s value on the model’s output is denoted by the location 
of each respective dot (a target child in the training data set) 
on the x-axis. The color of each dot denotes whether the value 
of the feature was high or low. The initial distinction between 
the two plots was observed in the domain of SHAP values 
on the x-axis. Features in the Kenya models recorded many 
absolute SHAP values below 1.5 (Figure 2a). Conversely, 
most stunting features from Bangladesh produced absolute 
SHAP values above 1.5 (Figure 2b). According to this result, 
the features from Bangladesh generated a stronger push on 
the TPOT models’ predictions when compared to the features 
from Kenya. Additionally, a larger domain in the positive 
x-axis for both ML models’ summary plots revealed that the 
features increased stunting risk with a higher magnitude than 
they reduced the risk (Figure 2).

Feature importance rankings – determined by subtracting 
the performance of the models in the absence of the feature 
from the performance of the model in the presence of it – 
stressed similarities between the top four most influential 
features for TPOT models in both countries. Median mother’s 
height universally ranked as the most important feature for 
determining stunting. Similarly, the Assets Score ranked as 

the second most important feature for determining the ML 
output (Figure 2). All parental education features also ranked 
in the top four in importance. According to these rankings, 
maternal height, wealth indicators, and parental education 
levels were strongly indicative of stunting risk across all 
regions. Interestingly, gender/sex ranked third for the Kenya 
data but ninth for Bangladesh’s data. This indicates that 
gender plays a prominent role in stunting in Kenya but not 
in Bangladesh. The intervention arms were ranked at the 
bottom of feature importance and were not very indicative of 
the prediction as they recorded low SHAP values (Figure 2).

By considering the distribution of individual values of each 
feature (denoted by a circle and plotted horizontally along the 
graph) on the SHAP plot, we observed correlations between 
features and stunting. For both models, the clustering of 
higher (red) maternal height readings with large, negative, 
SHAP values emphasized that maternal height is negatively 
correlated with stunting (Figure 2). Therefore, taller mothers 
were less likely to have stunted children. Interestingly, a 
shorter mother in Bangladesh produced a stronger impact on 
stunting than taller mothers as lower height produced higher 
SHAP scores. We also observed negative associations 
between Assets Score, parental education, and Mother’s 
Age on stunting as higher values of these features scored 
negative SHAP values (Figure 2). The separation of values 
based on sex/gender across the x-axis showed that females 
(red) were less likely to be stunted than males (blue). The 
number of children in the household—Birth Order, Persons 
<18 in house, and Multiple Births—had high feature values 
plotted on positive SHAP values. As the number of children 
in a household increased, so did the likelihood of stunting in 

Figure 1. Feature correlation heatmaps for (a) Kenya and (b) Bangladesh. Heatmap showing the correlation value between two features 
generated using Pearson correlation coefficient. The lowest value of -1 denotes a negative linear relationship, 0 denotes no relationship, and 
the highest value of 1 denotes a positive linear relationship. 
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the TPOT models (Figure 2). Similar positive relationships 
between features and stunting were recorded for the 
household hunger/food insecurity scores in both countries. 

According to the TPOT ML model analysis, most 
interventions in Kenya had no correlation with the growth 
outcome as implemented interventions (denoted by the 
red) were symmetrically distributed across a SHAP score 
of 0. Sanitation Arm was the only intervention in Kenya that 
slightly increased stunting risk in the models (Figure 2a). 
The Nutrition and NWaSH (Nutrition, Water, Sanitation, and 
Handwashing) intervention Arm in Bangladesh appeared 
effective at reducing stunting due to the negative SHAP 
values recorded for these interventions. However, the Water 
and Handwashing interventions increased the likelihood of 
stunting as the “hits” produced positive SHAP values (Figure 
2b).

ML model performance metrics
A rigorous analysis of each optimized TPOT pipeline and 

the soft voting ensemble provided greater understanding 
of the model performances. This study accounted for the 
differing metric outputs by measuring each model across 
seven performance statistics: Area Under the Receiver 
Operating Characteristic Curve (ROC AUC), Area Under 
Precision v. Recall Curve (PR AUC), Accuracy Score (AS), 
Balanced Accuracy (BA), Precision Score (PS), Recall 
Score (RS), and F1 Score (F1S). ROC AUC demonstrates 
the tradeoffs between the true positive and false positive 
rates and PR AUC demonstrates how accuracy changes 
as precision changes. AS, BA, and F1S are all variations of 
accuracy metrics using different methods to gauge overall 
performance. Additionally, a confusion matrix was generated 
for each TPOT model and soft voting ensemble to summarize 
performance. Confusion matrices provide greater context into 

the performance of models such as what values are being 
predicted correctly and which ones incorrectly. Using the 
confusion matrix, we specifically further analyzed the RS and 
PS. RS, calculated using the following equation:

which explains how well a model can identify stunting from all 
stunting cases. The PS, determined by: 

shows how many stunting predictions were correct. There 
is a general tradeoff between the PS and RS which helps us 
better gauge a model’s usability and overall performance.

The pipeline for the Kenya clinical trial yielded more 
predictive models than those generated by the Bangladesh 
pipelines (Table 1). The Kenya models outperformed the 
Bangladesh models by a score of ~0.1 on a scale of 0-1 on 
four metrics: ROC AUC, PR AUC, AS and PS. The Kenya 
TPOT pipeline run with a random seed 72 (P72) was the outlier 
as its final model performed comparable to the Bangladesh 
models, differing in metric scores by ~0.05 or less. Kenya’s 
P72 had the greatest RS, BA, and F1S of all models across 
both studies. However, high RS, BA, and F1S scores led to 
underperformance in the other metrics. The BA for both trials 
was comparable, with most scores ranging between 0.60 and 
0.65 (Table 1).

The confusion matrices elaborate on the PS, RS, and the 
type of error made by the models. The recall score measures 
the model’s ability to identify stunting from all stunting cases 
in the data. The Kenya models recorded twice larger false 
negative (FN) counts than true positive (TP) counts, yielding 
lower recall scores (Figure 3a). Conversely, the Bangladesh 

Table 2. SHAP summary plots for the soft voting ensembles for (a) Kenya and (b) Bangladesh. The SHAP summary plots represent 
the feature importance in descending order and the correlation between feature value and stunting. The SHAP library was used to generate 
the summary plot using models, maskers, and feature values. Negative SHAP values denote a reduction in the prediction (non-stunted) and 
positive values increase prediction (stunted). 
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models labeled stunting well as the TP was, on average, 
63 counts greater than the FN which led to a higher recall 
score (Figure 3b). Thus, the Bangladesh models were better 
able to detect stunting compared to the Kenya models. The 
precision score measures how many of the children labeled 
stunted were stunted. The Kenya ML models, except for P72, 
had a TP to false positive (FP) ratio greater than 2 (<66 FP 
count and >138TP count) when compared to the Bangladesh 

models, which led to a higher precision score (Figure 3a). 
The Bangladesh ML models had an average of 0.18 lower 
precision scores, with FP counts over 100 individuals higher 
than the Kenya models (Figure 3b). In context, a stunting 
label by Kenya ML models was considered accurate with high 
confidence, and a stunting prediction by the Bangladesh ML 
models was considered accurate with moderate confidence. 
Overall, the TPOT models worked well for both datasets 

NOTE: To represent the models based on country and the performance succinctly in the table, we used abbreviations for many terms: Kenya 
models (KE), Bangladesh models (BD), Area Under the Receiver Operating Characteristic Curve (ROC AUC), Area Under Precision v. Recall 
Curve (PR AUC), Accuracy Score (AS), Balanced Accuracy (BA), Precision Score (PS), Recall Score (RS), F1 Score (F1S), and Average 
(AVG).

Table 1. Performance Metrics for TPOT models and soft voting (SV) Ensemble.

Figure 3. Confusion matrices for ML models for (a) Kenya and (b) Bangladesh. The true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN) count for each ML model is plotted. The predicted label for given features were compared to the actual label in 
the validation dataset to generate the confusion matrix values.



25 September 2022  |  VOL 5  |  6Journal of Emerging Investigators  •  www.emerginginvestigators.org

in predicting childhood stunting and produced favorable 
performance scores given the complex problem domains. 

DISCUSSION
The ML analysis results supported our hypothesis in the 

emphasis of the negative correlations between demographic 
and socio-economic features on stunting risk and the 
ranking of maternal height, household wealth, and parental 
education as the most prominent features. Additionally, the 
outperformance of previous ML models by TPOT affirmed 
TPOT’s applicability in childhood stunting domains. Our 
analysis first consisted of an initial correlation analysis using 
heat maps to better understand the features and their linear 
relationship with one another. Familial and socio-economic 
conditions in Kenya were not correlated with one another as 
most pairwise correlations had absolute values below 0.15 
(Figure 2a). Therefore, higher maternal education levels did 
not necessarily lead to a higher economic wealth (Assets 
Score) or a higher Assets Score to lower Household Hunger 
Scale. Features for Bangladesh recorded greater correlation 
with one another, as many absolute correlation values were 
greater than or equal to 0.3 (Figure 2b). Interestingly, parental 
education levels were strong indicators of wealth, Household 
Food Insecurity Access Scale values, and the number of 
children of a given family in Bangladesh. These results for 
Bangladesh aligned with results from previous studies that 
related education, wealth, and food access (14-15). The 
difference between the two countries’ results stressed the 
nuance when working with clinical trial data. A generalization 
gathered from Bangladesh about stunting would not 
necessarily hold true for Kenya or another country (16). Thus, 
we did not draw any initial conclusions from the correlation 
heat maps, relying on TPOT’s ML model performance to gain 
greater insight into the data. The data gathered here was then 
used in conjugation with the results from the model analysis 
to explain/interpret performance.

Compared to previously constructed ML models using 
conventional techniques, the TPOT models scored higher 
across multiple metrics. A study in Ethiopia that developed 
predictive ML models for childhood stunting based on 
environmental factors reported accuracy below 70% 
and varying sensitivity (RS) and specificity rates (9). Our 
models for Kenya yielded accuracy scores above 80% 
and consistent specificity (true negatives divided by the 
sum of true negatives and false positives) above 1.5 on a 
smaller dataset. Additionally, our ML models for Bangladesh 
improved on previous studies by increasing the sensitivity 
rate and specificity by over 0.1 while maintaining almost 
identical accuracy scores (8). The improvement over previous 
ML models in this work confirmed that TPOT developed 
more accurate models for predicting childhood stunting. We 
believe that TPOT outperformed traditional, non-automated 
pipelines because of the thorough search it conducts when 
finding the optimized pipeline. In the same timeframe that 
a traditional pipeline builds and compares a small quantity 

of models, TPOT can construct an order of magnitude 
more. This difference in efficiency is because computers 
progress through feature engineering, model selection, and 
hyperparameter optimization at a faster pace than humans 
can. With 100 generations and populations in one TPOT 
run, we tested over 10,000 pipeline models. Ten runs of 
TPOT on a dataset effectively examined 100,000 pipelines. 
While an increased use of AutoML like TPOT in healthcare 
applications is pivotal, manual processes for effective data 
cleaning, model validation, and overall supervision are still 
vital as they require the expertise of a data scientist. The only 
limitation of our conclusion is the subtle variations in data 
used by this study and the Bangladesh and Ethiopia studies 
using traditional methods. Sampling methods and the year in 
which the data was collected can lead to fluctuations in model 
accuracy. Given that all the models compared in this study 
used demographic data collected between 2010 and 2016, 
we assumed that the model performance variation caused by 
variable sampling times was negligible. 

We believe that the pipeline performance for both 
countries can be further improved. Currently, the Kenya ML 
models performed extremely well, with scores near 0.80 
and 0.75 on metrics like AS and the ROC AUC. However, 
the Kenya models underperformed on RS and F1S, with 
scores averaging 0.378 and 0.485, respectively (Table 1). 
The Bangladesh models also performed respectably on all 
seven metrics, with the highest score in ROC AUC and the 
lowest in PS. We believe that the Kenya ML models had a 
higher performance because of the low feature correlation. 
As the correlation begins to approach ±1, the features 
determine each other. Therefore, highly related features do 
not provide new predictive information to the ML model and 
can be substituted by one another. As Bangladesh features 
had higher correlation, the familial and socio-economic 
indicators provided less information about the target child’s 
environment to the models. For example, we could have 
substituted maternal with paternal education in Bangladesh 
without significantly altering the performance of the models. 
In future Bangladesh studies, we could consider substituting 
some of the familial and socio-economic indicators. Viable 
options include replacing Paternal Education and Birth 
Order—two variables having large positive correlations to 
more influential ones—with Union Council (location), parent’s 
employment type, and Caregiver Weight. These new features 
would improve our models and even reveal new relationships 
between the added features and stunting.

According to the confusion matrices for both countries, 
the ML models most accurately identified non-stunted 
children with 400+ TN for Bangladesh and 990+ for Kenya 
(except for P72). While Bangladesh had an equal number of 
FN and FP, Kenya recorded high FN and low FP (Figure 2). 
We believe the high number of FN predictions for Bangladesh 
and Kenya are caused by class imbalances in the data. A 
higher number of non-stunted children in the training data 
caused the ML models to become insensitive to stunted 
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children. We propose two potential solutions that could 
improve the RS and PS in future models. The first solution 
is resampling the dataset by either adding duplicates of 
existing stunted children or deleting non-stunted children. 
The drawback of this solution is propagating biases within the 
data, as important correlations/relationships can be missed 
by the model. The second method to balance the classes is 
synthetically generating samples. Although this will generate 
non-duplicate data points, nonlinear relationships may not 
be preserved. Both techniques can be of interest in further 
studies as they could significantly increase the ML model’s 
accuracy. 

Based on improved performance metrics when compared 
to past studies from Bangladesh and East Africa, we 
believe that the TPOT models are deployable algorithms for 
predictive risk assessments (8, 9). Therefore, they can be 
used by medical professionals in assessing a household’s 
risk of having stunted children. A potential use case is as 
follows: medical professionals would initially record the 
socio-economic and familial features used by the ML model 
for each family. The model would then be run to generate 
predictions where the active intervention feature (e.g., water, 
handwashing, NWaSH, etc.) was altered each time. Risk 
of having a stunted child for a household would range from 
substantial risk, a stunting outcome in each ML prediction, to 
minimal risk, no stunting outcome in each ML prediction. This 
is not the only or best deployment method, but we believe 
that it will produce the most reliable results and help reduce 
stunting through preemptive action in these two countries.

The SHAP correlation plots for the TPOT ML models also 
improved our understanding of various interventions and their 
impact on stunting. We observed that most interventions 
in Kenya were not determinant of stunting. However, in 
Bangladesh, the Water and Handwashing Arms were likely 
to reduce stunting, while the Nutrition and NWaSH Arms 
increased the likelihood of stunting (Figure 3). The varied 
results for intervention success in this study is not necessarily 
indicative of effectiveness. The clinical trials minimized the 
contact between the intervention provider and the target child’s 
family (17). Thus, we speculate that the limited communication 
about proper intervention usage, yearly surveying, and self-
reporting of medical symptoms caused many families to 
insufficiently maximize an intervention’s positive impact. 
Future studies conducting clinical trials with stronger 
interventions are necessary to properly understand how a 
given intervention impacts stunting outcomes. However, we 
determined that intervention success is nuanced and varies 
by region and country. Therefore, no generalized conclusion 
could be reached about the most effective intervention. A 
case-by-case basis should be considered for intervention 
implementation in the future. 

We believe that the negative correlation between median 
mother’s height and stunting has two components. The first 
component is genetics. Taller mothers likely pass forward 
different height alleles to their children, leading to taller 

children (18). The second factor is the birth complication, 
which increases as maternal height decreases, leading to 
children with delayed structural and neurological growth (5). 
Additionally, we observed higher parental education correlating 
with lower stunting. Educated parents are more likely to make 
informed decisions regarding nutrition and sanitation of their 
child, which promotes healthy growth in children (3, 18). The 
negative association between Assets Score and stunting 
demonstrated that material wealth indicators are indicative of 
the overall family’s economic stability. Therefore, a household 
with commodity items like TVs and cars would also likely 
provide a healthy growth environment for a child. However, 
an increased number of children in the household would 
counteract the positive impacts of greater economic wealth 
on stunting. The cost of providing nutritious food and proper 
sanitation would increase, and each member of the family 
would receive a smaller portion of limited resources (17). We 
additionally observed that infant males are at higher risk of 
stunting as the blue values for the Sex feature—representing 
males—scored positive SHAP values while the female 
counterparts—represented by red feature values—scored 
negative SHAP values. Thus, male children face a higher risk 
of stunting and should receive more attention during trials or 
intervention programs. 

Features in this study, and thus the feature importance 
results, do not reflect changes in wealth, access to resources, 
and sanitary conditions from the baseline survey when the 
demographic conditions were recorded to the second study 
timepoint. The presence of the intervention administrator 
could have caused variations in the family’s daily habits such 
as seeking nutritious food or improving overall sanitation. 
To account for these changes in the future, a baseline 
demographic survey could be conducted each year, which 
would further validate our results. 

In future studies we could expand the data used when 
constructing the ML models, along with potential options 
that include adding sanitation features into the dataset or 
considering clinical trials from more countries. Expanding this 
project could help us better understand the regional variance 
between feature-stunting correlation, helping better inform 
policy decisions and underlining effective solutions to stunting 
regionally. Overall, we believe that the results presented here 
shed light into the socio-economic and familial conditions that 
influence stunting. We anticipate our results will guide future 
studies and combative measures taken against childhood 
stunting to reach the United Nations’ goal of a 40% reduction 
in stunting by 2025.

MATERIALS AND METHODS
Data acquisition and feature extraction 

The data used for this study were accessed from 
ClinEpiDB, an open-access online database containing 
various epidemiological clinical trials (20). The specific data 
considered in this study consisted of the WASH Benefits 
Kenya and WASH Benefits Bangladesh Cluster Randomized 
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Trials conducted between 2012 and 2015. These trials 
focused on the individual and combined impacts of water, 
sanitation, hygiene, and nutritional interventions on diarrhea 
and infant growth. Participants for the Bangladesh and Kenya 
region were selected from rural regions associated with 
low sanitation and water quality and equally split into eight 
clusters, each representing a different intervention arm. This 
study focused on the children in utero during the enrollment 
and born within six months of the baseline survey (target 
children). Enrolled target children in Kenya (n = 8000) and 
Bangladesh (n = 5760) were measured for diarrhea and 
growth outcomes at 12 months (timepoint 1) and 24 months 
(timepoint 2) after the baseline enrollment. One-fourth of the 
children were in the control group, while the remaining 3/4 
were equally distributed between 6 different interventions. 
The baseline enrollment survey recorded information on 
the community (e.g., intervention cluster arm), household 
(e.g., sanitation measures, utilities, and wealth indicators), 
participant (parental information, sex, and enrollment/survey 
flags), and observations (disease indicators and growth 
indicators recorded during timepoints 1 and 2). 

The target variable stunting was donated by a yes or 
no, where an infant was considered stunted if the BMI-for-
age z-score was lower than -2. Feature selection for the ML 
models excluded recorded observations from time point 1 and 
2 for two main reasons: a) stunting indicator highly correlates 
with the growth z-scores, which would positively skew the 
models’ accuracy, and b) recorded observations occurred 
during intervention implementation and did not fit this study’s 
goal of predicting stunting and assessing stunting risk before 
birth. Selected features provided insight into the impact of 
socio-economic status, paternal/maternal education level, 
genetics, and other environmental factors on infant stunting 
and intervention effectiveness. Slight variations between the 
Kenya and Bangladesh features occurred due to the different 
demographic settings, but the overall theme and structure 
was identical. 

The open-source Python library pandas was used to 
extract, visualize, and encode the desired data from the 
clinical trials (21). Individuals with missing data values were 
excluded from analysis as some of the ML models used in 
our analysis do not support missing values and standard 
imputation methods cannot always accurately represent the 
missing value. Simple binary features (yes/no or male/female) 
were binary encoded to values of 0 or 1. The intervention 
arm feature with 7 different interventions were one-hot 
encoded into 6 dummy variables with binary values, where 
a 1 represented a use of the given intervention. The assets 
score features combined individual economic indicators by 
multiplying the value of each feature to a weight between 0 
and 2 with a higher weight signifying greater utility and cost. 
The higher the score, the more economically advantaged the 
household.

ML model building
This study used TPOT Classifier and provided a 

configuration dictionary to customize the algorithms, 
transformers, and hyperparameters used. This configuration 
dictionary was tailored to classification problems by narrowing 
the scope of classification models, preprocessors, and 
selectors used during pipeline exploration. We used naive 
Bayes (Gaussian, Bernoulli, and multinomial), decision trees, 
extra tree, random forest, gradient boosting, extreme gradient 
boosting, k-nearest neighbor, logistic regression, and multi-
layer perceptron classifiers considered in the TPOT pipeline 
optimization process. These were used because they are well 
established in biomedical applications and are known to be 
good classifiers.

The Kenya and Bangladesh data were divided into a 
75%/25% training/testing set using a constant randomization 
seed of 44. TPOT was then run 10 times for the datasets with 
10 different random seeds (12, 24, 34, 44, 50, 68, 72, 75 ,100, 
124), each time using 100 generations and 100 populations. 
Given that TPOT uses randomization to generate new 
pipelines through the run, 10 runs of TPOT increased the 
working sample size, reducing the biases of using only one 
randomized run. 

Ensemble voting classifiers combine distinct and similar 
ML models via majority/plurality voting schema. Hard voting 
ensembles use majority voting, where the class label (ŷ) is 
predicted by taking the mode of each individual classifier’s Cj 
prediction:

Soft voting ensembles use the model’s predicted 
probabilities (p) from each respective classifier and apply 
a weight (wj) to reach a prediction. The following equation 
provides the mathematical construct for weighted soft voting 
ensembles:

The soft voting ensemble more accurately combines the 
models produced for each dataset as it leverages individual 
predicted probabilities and applies weightage to each 
prediction. Thus, the 10 optimized models from each TPOT 
run for both datasets were combined using a soft voting 
ensemble from the MLxtend library (22). This study utilized 
weights of 1 for each model with the intent of equalizing the 
influence of each prediction probability on the output.

 
Result and data analysis

A preliminary analysis of the features occurred before 
building the TPOT and soft voting ensembles. The six dummy 
variables representing the intervention arm were excluded 
from the data as the interventions were randomly assigned. 
Correlations were effectively visualized using heatmaps. 
Heatmaps were generated using the built-in functionality in 
the pandas library and seaborn (23). 

The final evaluation conducted on the ML models 
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consisted of extracting feature importance. Feature 
importance is a technique used to understand the importance 
of a given feature over a model’s prediction. This analysis tool 
is particularly useful for providing data understanding and 
model interpretability (globally and locally). SHAP summary 
plots for the soft voting ensembles were generated to gain 
interpretability into the models and understand the impact 
of feature values on the output. Generating SHAP plots is 
computationally demanding; we optimized this process by 
taking the SHAP values for the Soft Voting Ensembles, which 
leverages each TPOT model’s weighted prediction to arrive at 
one final classification. Correlation is interpreted by analyzing 
the distribution of feature values with respect to the SHAP 
value. TPOT models were excluded from feature importance 
extraction as they would yield almost identical results to the 
soft voting ensembles, providing no new insight.
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