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model, which takes the molecular structure as the input and 
returns “molecular energy” as the output (“molecular energy” 
refers to the potential energy of a system of atoms that can 
be calculated using the Force Field method (1). These models 
can be created in a few days with cost-effective cloud-based 
computing resources and prediction can be done in a few 
seconds.
 The Machine Learning (ML) model was trained with known 
input and output values, and the network was able to build the 
function (F) to determine the molecular energy of unknown 
molecules (Figure 1). The molecular energy used for training 
the model was calculated using the Force Field method (1). 
 Once the model is created, the molecular properties 
(e.g., the molecular energy, the reaction rate, etc.) of new 
molecules can be predicted quickly. These models can be 
used in computational design and will assist in the discovery 
of new molecules, compounds, and ultimately, drugs. 
 Feedforward neural networks (FNN) are one of the 
common deep learning models. The goal of a feedforward 
network is to approximate some function F. A feedforward 
network defines a mapping y = F(x;θ) and learns the value 
of the parameters, θ, from the known input and output that 
result in the best function approximation. These models are 
called feedforward because information flows through the 
function being evaluated from x, through the intermediate 
computations used to define f, and finally to the output y. 
There are no feedback connections in which outputs of the 
model are fed back into itself.  
 In this study, FNN models were trained with two different 
representations of the molecule. In Model A, the molecules 
were represented by the Coulomb matrix (the Coulombic force 
between each atom); in Model B, the molecular structure, the 
bonding between atoms (adjacency matrix), and the electron 
configuration of each atom (atom vector) were given as inputs. 
The prediction error of molecular energy from two models 
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INTRODUCTION
 Molecular energy is useful in understanding the properties 
of molecules and the behavior of chemical systems (1). 
Molecular properties can tell us which isomer is favored at 
equilibrium and what the rate of reaction is (2). Molecular 
energy can be measured either directly from the chemical 
reaction or indirectly from other known molecules. However, 
both direct and indirect methods require the chemical reaction 
to take place and are also time-consuming and expensive (3). 
The reaction requires varying lengths of time for completion 
depending on the chemical kinetics and involves expensive 
reagents. Molecular energy has also been investigated 
computationally. There are several methods currently in use: 
1) Ab Initio Calculations; 2) Semi-Empirical Calculations; and 
3) Density Functional Theory (DFT). Yet, these calculations 
demand the use of limited computer resources, such as 
memory and disk space (2).
 The purpose of this study is to design a machine learning 
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Figure 1: Schematic diagram of the ML model: molecular energy 
as a function of molecular structure. A) ML model represented by 
function F is trained with molecular structure as input and known 
molecular energy as output. B) Function F is used to estimate the 
molecular energy for a new molecule with unknown molecular 
energy.

SUMMARY
Molecular energy is used to estimate the overall 
favorability of the formation of a molecule, which can 
be measured either directly or indirectly. However, 
both methods require a chemical reaction. Molecular 
energy has also been investigated computationally. 
Yet, these calculations require a lot of expensive 
computer resources. The purpose of this project is 
to apply machine learning (ML) techniques to create 
models from known molecular properties. Once the 
model is created, the molecular properties of new 
molecules can be predicted quickly. Feedforward 
Neural Network (FNN) models were trained with two 
different representations of the molecules. In the 
first model, the molecules were represented by the 
Coulombic force between each atom; in the second 
model, the molecular structure, the bonding between 
atoms, and the electron configuration of each atom 
were provided as inputs. Prediction errors of the two 
models were compared statistically to determine 
the better representation of the molecule. The FNN 
network was able to predict the molecular energy with 
low errors in both models. Though, the model with 
the Coulomb matrix performed better for molecules 
that do not contain high electronegative atoms 
and performed poorly for molecules with three or 
more fluorine atoms. The effect of fluorine (or other 
electronegative atoms) on the Coulomb matrix needs 
to be further investigated.
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was compared statistically. 
 We hypothesized that Model B would predict the 
molecular properties more accurately than Model A, as the 
input to Model B (valence electron occupancies in atomic 
orbital) retained the properties of each constituent atom. 
The Coulomb matrix, as used in Model A, does not consider 
the individual bonds or type of bonds, but instead assumed 
electrostatic interactions of each atom in the molecule. With 
proper design of the network, the model can learn about 
features like sigma and pi bonding, which is possible in Model 
B given that our inputs discriminate the presence of electrons 
in orbitals that are available for sigma (σ) and pi (π) bonding. 
 We also compared the results of Model B with Graph 
Neural Network (GNN), which is more suitable for inputs such 
as the molecular structure of each atom. We hypothesized 
that Model B and GNN performance will be comparable 
for predicting molecular energy as both use the electronic 
configuration but GNN will be more useful for predicting 
molecular structure as the spatial position of each atom is 
maintained in the GNN as a connected graph.

RESULTS
 In our experiment, Molecular energy is being predicted 
using the ML technique using FNN and GNN network. For 
the FNN network, we used two types of input to represent the 
molecule: Coulomb matrix and atom vector. The error of each 
prediction was calculated from the known output. Root Mean 
Square (RMSE) and Mean Absolute Percent Error (MAPE) 
were calculated for both models (Table 1).
The FNN network was able to predict the molecular energy 
with low errors for both types of inputs: Coulomb matrices 
and atom vectors. The FNN with atom vector (Model B) 
performed better than the FNN with Coulomb matrix (Model 
A), as we hypothesized. For Model A, the absolute value of 
the prediction error varies from 0.03 KJ/mol to 30.31 KJ/mol, 
while the percentage error varies from 0.01% to 29.28%.  But 
the majority of the error lies between +10% to -10% (Figure 
2A). For Model B, the absolute value of the prediction error 
varies from 0.03 KJ/mol to 43.08 KJ/mol, while the percentage 
error varies from 0.01% to 37.22%.  But the majority of the 
error lies between +10% to -10% (Figure 2B). The prediction 
errors using Model A and B for a few sample molecules are 
given in Tables S1 and S2 (see appendix). 
 When we compared two different networks for the same 
set of inputs, the FNN performed better than the GNN. Both 
RMSE and MAPE are low for the FNN compared to the GNN 
(Table 2). For GNN, the highest prediction error (absolute 
value) was 90.93 KJ/mol, while the percentage error was as 
high as 113.9%. But the majority of the error lies between 
+40% to -40% (Figure 3, Table S3).

Figure 2: Scatter plot of %Error with FNN. A) FNN with Coulomb 
matrix (Model A). The scatter plot is symmetric along the x-axis 
indicating an equal number of positive (actual > predicted) and 
negative (actual < predicted) errors. Absolute errors are within the 
10% range. B) Scatter plot of %Error for ML test data: FNN with atom 
vector (Model B). The number of predictions with positive errors 
(actual > predicted) is more than the number of predictions with 
negative errors (actual < predicted). Absolute errors are within the 
10% range.

Table 1: Comparison of prediction error with FNN with different 
inputs. RMSE = Root Mean Square Error, MAPE = Mean Absolute 
Percent Error.

Table 2: Comparison of prediction error (FNN vs. GNN) with 
adjacency matrix and atom vector input. RMSE = Root Mean 
Square Error, MAPE = Mean Absolute Percent Error.

Figure 3: Scatter plot of %Error with GNN. The scatter plot is 
symmetric along the x-axis indicating an equal number of positive 
(actual > predicted) and negative (actual < predicted) errors. Absolute 
errors are within the 40% range.
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DISCUSSION
 Overall, the FNN network performed better with the atom 
vector and adjacency matrix compared to the Coulomb 
matrix. Though, for certain molecules, the Coulomb matrix 
performed better. For example, FNN with atom vector had 
higher errors compared to FNN with Coulomb matrix when 
molecules do not contain fluorine (F) atoms, but we saw 
large errors with the Coulomb matrix for molecules with three 
or more fluorine atoms, and the model underestimated the 
molecular energy (Figures 4-5). The top five out of ten atoms 
with the highest errors are for molecules with three or more 
fluorine atoms (Figure 5). The effect of fluorine (or other 
electronegative atoms) on the Coulomb matrix needs to be 
further investigated.
 There is another limitation of the Coulomb matrix. One 
of the premises of using the Coulomb matrix is that no two 
molecules will have the same Coulomb matrix unless they 
are identical. But enantiomers will have the same Coulomb 
matrix, even though the molecules are not chemically 
identical, can exhibit very different chemical reactivity, and 
can have different underlying structures. Thus, the model will 
predict the same energy for the enantiomers, whereas they 
are not the same (4). 
 While the GNN results were less accurate than those from 
the FNN, the GNN is useful to predict the geometry of the 
molecule. Valence-shell electron-pair repulsion (VSEPR) 
theory can predict the geometry of the molecule. Yet, this 
approach fails for systems with lone pairs that have some other factors, particularly heavy, electronegative atoms. 

Instead, the exact bond angle and bond length are determined 
experimentally. Still, this is expensive and time-consuming. 
We would like to expand our GNN model to predict the 
molecular geometry – specifically the bond length and bond 
angle of heavy, electronegative molecules. The GNN will be 
a good fit for this study as the spatial position of each atom 
is maintained in the GNN as a connected graph. Looking at 
the scatter plot for the % error in the GNN (Figure 3), it is 
apparent that non-Gaussian noise is present, which can be 
improved further by tuning the ML model. 
 Knowing the molecular energy is essential for the drug 
discovery method and the traditional methods are time-
consuming and computationally intensive. As the prediction 
error is small (RMSE=1.78 and MAPE=0.07) for the FNN 
network (Model B), we anticipate this model can be used 
to predict molecular energy for unknown molecules, which 
will be important to researchers for drug discovery. Once 
the model is created with training data, the prediction of an 
unknown molecule can be done in a few seconds as it was 
done in this experiment.

MATERIALS AND METHODS 
 The molecule structure and potential energy of each 
molecule were downloaded from the Kaggle project, which 
was originally obtained by scraping the PubChem Database 
(5,7). Each file contains the properties of molecules, which 
were made up of hydrogen, carbon, nitrogen, oxygen, 
fluorine, silicon, phosphorous, sulfur, chlorine, bromine, and 
iodine. The potential energy obtained from the database was 
calculated using the Force Field method (1).

FNN: 
 There are three interconnected hidden layers and one 
single node as the output layer that represents the molecular 

Figure 4: Molecules with highest prediction error for FNN 
with atom vector (Model B). Molecules are sorted by absolute 
prediction error and top 13 molecules are presented in this figure. 
The molecules with the highest prediction errors did not necessarily 
contain fluorine atoms.

Figure 5: Molecules with highest prediction error for FNN with 
Coulomb Matrix (Model A). Molecules are sorted by absolute 
prediction error and top 10 molecules are presented in this figure. 
Most of the molecules with the highest prediction errors contain 
fluorine atoms.
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energy (Figure S1). The Input layer is fully connected to the 
first hidden layer.  

Model A: Coulomb matrix as the input
 The Coulomb matrix describes the features of each 
molecule. As every molecule has a different number of atoms 
and the position of each atom is unique in every molecule, 
each molecule should have a unique Coulomb matrix. The 
Coulomb matrix for a given molecule is defined by

where ZI,ZJ are the electronic charge, and |RI - RJ| is the 
distance between two atoms I and J (6). The input layer has 
an array of 1024 descriptors of the molecule. 900 of these 
descriptors are from the Coulomb matrix (30x30). 

Model B: Adjacency matrix and atom vector as the input
 Model B uses the adjacency matrix and atom vector as 
the input (Figure S2). Let us take C4H4N2 as an example: The 
molecular structure is represented as the adjacency matrix 
in the GNN (1=> Nodes are connected; 0=> Nodes are not 
connected). The suffix after the atomic symbol (C, N, H) 
represents the specific atom in the molecule (Table 3). The 
atom vector represents the atomic number of each atom and 
the number of electrons in each atomic orbital (Table 4).

GNN: Predict molecular energy using adjacency matrix 
and atom vector as the input
 In GNN, each edge is represented by a Neural Network 
Function (f) (Figure S3) (6). All nodes get messages from 
their neighbors passing through the edge (NN function f). At 
time t + 1, all nodes get messages from neighbors at time t. 
The message at time t + 1 is given by a function F of node 
messages at time t and the sum of all the messages received 
from neighbors. This process was repeated for multiple time 
instances and stopped after a fixed number of iterations. After 
this, the results converged. Our network was iterated 10 times 

(t = 0, 1,…,9), which is based on the maximum distance (in 
terms of the number of atoms) between any two atoms. The 
information stored at each node was used to determine the 
target attribute (molecular energy). 
 Nodes represent atoms and edges represent bonds. 
Each blue oval shape represents an atom, and the suffix 
represents the position of the specific atom in the molecule as 
represented in the adjacency matrix (e.g., C, H, N represents 
carbon, hydrogen, and nitrogen atoms, respectively, and C2 
represents the specific carbon atom which is connected to a 
nitrogen atom and another carbon atom). 
 Each edge on the graph contains a function f, which was 
generated by the ML model. Each node sent information 
to the neighboring node through this function, which varies 
from edge to edge. v-hat represents the transformation of 
the information by function f. v at time t+1 represents the 
information at each node, which is the function F of all the 
information transformed from the neighboring nodes and that 
node at time t.
 Each node in the molecular structure was represented 
as a recurrent node in the GNN. Each node was initialized 
with the atom vector, which has the features of the atom it 
represents (atomic number and electron configuration).

Machine Learning Training
 The models were trained with 80% of the 85,000 molecules 
(randomly selected) downloaded from the Kaggle Project, and 
the network was evaluated with the remaining molecules to 
determine the accuracy of the model using MAPE and RMSE 
metrics (7). During the training phase, atom vector, adjacency 
matrix, and molecular energy were used as the input. Once 
the model was trained, the molecular energy was predicted 
and the accuracy of different models was compared.
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Table 3: Adjacency matrix of C4H4N2.

Table 4: Atom vector of C4H4N2.
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APPENDIX

Figure S3: GNN representation of the molecule C4H4N2. Each 
node in the molecular structure is represented as a recurrent node 
in the GNN. Each recurrent node is initialized with the features of the 
atom it represents (atom vector).

Figure S1: Feedforward Neural Network (FNN). In this network, 
there are three interconnected hidden layers and one single node 
as the output layer that represents the molecular energy. The Input 
layer is fully connected to the first hidden layer.

Figure S3: GNN representation of the molecule C4H4N2. Each 
node in the molecular structure is represented as a recurrent node 
in the GNN. Each recurrent node is initialized with the features of the 
atom it represents (atom vector).

Table S1: Predicted molecular energy and associated errors for 
few sample molecules: FNN with Coulomb matrix - Model A.

Table S2: Predicted molecular energy and associated errors for 
a few sample molecules: FNN with atom vector – Model B.
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Table S3: Predicted molecular energy and associated errors for 
a few sample molecules: GNN with atom vector.


