INTRODUCTION

Cancer is a disease characterized by the uncontrollable growth and division of cells (1). Breast cancer is the most diagnosed cancer worldwide and the second most common in the U.S. (2). Breast cancer mortality has significantly increased worldwide over the past 25 years. Also, breast cancer is one of the most frequent causes of cancer death for women worldwide (3). Although conventional chemotherapy has helped many breast cancer patients, one of the main drawbacks of chemotherapy is the low penetration of drugs into three-dimensional (3D) tumor tissue limits the drug delivery. Increasing the dosage of drugs is an unacceptable solution, as patients may have a toxic reaction. Therefore, efficient drug delivery is crucial. We hypothesized that the addition of phospholipase A2 (PLA2), an enzyme found in bee venom that hydrolyzes the bond connecting fatty acid and glycerol, would increase the permeability of the drug for efficient drug penetration. We designed a 3D spheroid tumor model because it mimics an actual tumor environment better than the monolayer two-dimensional (2D) cell culture. We performed dye permeability assay using 5-chloromethylfluorescein diacetate (CMFDA), a green fluorescent probe, on 3D spheroid cells with concentration-dependent PLA2 treatment. We found that 1 mM PLA2 had the highest percentage of green fluorescence cells, indicating the highest permeability. Subsequently, we hypothesized that co-treatment of PLA2 and doxorubicin may increase drug sensitivity of doxorubicin. After analyzing the half-maximal inhibitory concentration, IC_{50} (639.8 nM) of doxorubicin on the MDA-MB-231 3D spheroid, the co-treatment of PLA2 and doxorubicin exhibited lower 3D spheroid cell viability compared to doxorubicin treatment alone. This indicates that PLA2 may be a useful drug to assist in more effective doxorubicin treatment for breast cancer. Increased efficiency in drug delivery would allow lower concentrations of drugs to be used, minimizing damage to normal cells.

SUMMARY

Doxorubicin is a common drug used for various cancer treatments including breast, ovarian, bladder, and lung cancer. However, inefficient penetration of cancer drugs into the interior of the three-dimensional (3D) tumor tissue limits the drug delivery. Increasing the dosage of drugs is an unacceptable solution, as patients may have a toxic reaction. Therefore, efficient drug delivery is crucial. We hypothesized that the addition of phospholipase A2 (PLA2), an enzyme found in bee venom that hydrolyzes the bond connecting fatty acid and glycerol, would increase the permeability of the drug for efficient drug penetration. We designed a 3D spheroid tumor model because it mimics an actual tumor environment better than the monolayer two-dimensional (2D) cell culture. We performed dye permeability assay using 5-chloromethylfluorescein diacetate (CMFDA), a green fluorescent probe, on 3D spheroid cells with concentration-dependent PLA2 treatment. We found that 1 mM PLA2 had the highest percentage of green fluorescence cells, indicating the highest permeability. Subsequently, we hypothesized that co-treatment of PLA2 and doxorubicin may increase drug sensitivity of doxorubicin. After analyzing the half-maximal inhibitory concentration, IC_{50} (639.8 nM) of doxorubicin on the MDA-MB-231 3D spheroid, the co-treatment of PLA2 and doxorubicin exhibited lower 3D spheroid cell viability compared to doxorubicin treatment alone. This indicates that PLA2 may be a useful drug to assist in more effective doxorubicin treatment for breast cancer. Increased efficiency in drug delivery would allow lower concentrations of drugs to be used, minimizing damage to normal cells.
study indicated that overuse of doxorubicin due to poor drug penetration may cause multidrug resistance in tumors as well as serious side effects such as congestive heart failure (11). Doxorubicin alone or in combination with other drugs is a common method used for many different types of cancers including breast, ovarian, bladder, and lung (12). However, a high dosage of drug usage may be harmful to the patients, as the drugs also harm normal cells (13). In addition, this drug may not penetrate to the core of tumors. Therefore, the efficiency of drug delivery is highly important (14). We hypothesize that the addition of PLA2 will increase the permeability of the cells for efficient drug delivery. This increased permeability would allow lower concentrations of drugs to be used, which would minimize damage to normal cells.

To test our hypothesis, we used a 3D spheroid cell culture to mimic the 3D structure of breast cancer tumors. In addition, a dye permeability assay was performed on concentration dependent PLA2 treatment to find the optimal PLA2 concentration. Lastly, the co-treatment of PLA2 and doxorubicin showed greater drug penetration, leading to a higher rate of cell death.

RESULTS

To find the optimized cell number for 3D cell culture, we tested different initial cell concentrations and analyzed the morphology of the cells. 2D cell culture of MDA-MB-231 showed a monolayer growth (Figure 1A). 3D culture of MDA-MB-231 cells aggregated and formed 3D spheroids (Figure 1B–E). One visible pattern was that as the concentration of cells increased, the size of the cell cluster also increased (Figure 1). We concluded that 3 x 10⁴ cells/ml would be the optimal concentration for 3D cell formation. With the hanging droplets of 1 x 10⁴ cells/ml and 2 x 10⁴ cells/ml, the microscope could not focus on the cell formation, so it was difficult to interpret the results. For concentrations of 4 x 10⁴ cells/ml and above, the hanging droplet was unstable and difficult to control. Therefore, we used 3 x 10⁴ cells/ml as the fixed concentration for downstream experiments.

To test whether PLA2 can be applied to increase the permeability of the 3D breast cancer cell membrane, 5-chloromethylfluorescein diacetate (CMFDA) dye, a green fluorescence dye that stains live cells, was used for the dye-permeability assay. As a result, even though 1 μM CMFDA dye can stain almost 100% of the breast cancer cells in 2D culture conditions, 3D culturing conditions showed a relatively low level of green fluorescent cells (Figure 2). The negative control (3D) was a spheroid sample without treatment of 1 μM CMFDA dye and showed that no cells were stained (Figure 2). Without PLA2, only about 60% of the cells were stained (Figure 2). The remaining 40% of the 3D spheroid cells, especially those that are in the interior, may not be stained well because of the limitation of CMFDA in penetrating the 3D structure of the breast cancer cells. We further analyzed three different treatment concentrations of PLA2: 1 mM, 2
mM, 5 mM on spheroids. Even though 1 mM PLA2 showed the highest percentage of green fluorescent cells compared to control ($p = 0.0003$), 2 mM and 5mM PLA2 did not further improve CMFDA penetration (Figure 2). Overall, this result indicates that PLA2 may disrupt the cell membrane thus increasing the cell permeability of CMFDA dye.

Next, we identified the IC$_{50}$ of doxorubicin, which is the dosage that results in 50% cell death. IC$_{50}$ is most often used as a measurement of antagonist, or inhibitory drug potency, as well as a quantification of the toxicological effects of inhibitory compounds. We treated the 3D spheroid with increasing concentrations of doxorubicin and measured cell viability. As the concentration of doxorubicin increased, the percentage of cell death also increased. The doxorubicin IC$_{50}$ of a 3D spheroid MDA-MB-231 was found to be 639.8 nM (Figure 3).

We then hypothesized that co-treatment of doxorubicin with PLA2 on 3D spheroid MDA-MB-231 would decrease the cancer cell viability, leading to efficient drug penetration. Four
different conditions of treatment were tested: Negative control (no PLA2 or doxorubicin treatment), 1 mM PLA2, 639.8 nM doxorubicin, and 1 mM PLA2 with 639.8 nM doxorubicin (Figure 4). The treatment of 1 mM PLA2 showed near 100% cell viability, indicating that membrane disruption by PLA2 did not affect cell viability (Figure 4). The 639.8 nM (IC\textsubscript{50}) doxorubicin treatment decreased the cell viability to around 45%, which was consistent with our previous experiment (p = 0.00009) (Figure 4). During the co-treatment of PLA2 and doxorubicin, cell viability significantly decreased compared to treatment of doxorubicin alone (p = 0.0002) (Figure 4). In conclusion, the co-treatment of PLA2 and doxorubicin was more effective in increasing drug sensitivity than the individual treatment of PLA2 and doxorubicin.

DISCUSSION

We concluded that PLA2 may be a useful drug to assist in more effective doxorubicin treatment for breast cancer. Also, we designed this experiment to include a 3D cell culture because it mimics an actual tumor condition better than the monolayer cell morphology of 2D cell cultures. A 3D cell culture can model interactions between cellular and extracellular models. It also more accurately depicts cell morphology, polarity, and division (15).

Conventional chemotherapy for cancer treatment in clinical practice has many limitations (16). One of the critical problems is the lack of targeting the delivery of anticancer compounds selectively into solid tumor tissue to execute anticancer activities (17). The lack of permeability of chemotherapy drugs requires a high concentration of drug treatment, which often induces serious side effects (18). Our result agrees with the previous study that doxorubicin alone did not effectively induce cell death in 3D spheroid cancer cells than 2D cultured cells. Also, we discovered that PLA2 can increase the doxorubicin permeability in 3D cancer cell model. PLA2 may disrupt the cancer cell membrane and allow the drugs to enter the tumor tissue easily. Therefore, many different combination treatments of chemotherapy drugs with PLA2 should be tested in the future.

A recent study targeted membrane integrity of cancer cells to increase the efficacy of anticancer drugs (19). A previous study also found that the presence of 200 kHz tumor-treating fields (TTFields), which are high-frequency electric fields, increased cellular membrane permeability in glioblastoma (20). Also, treatment of TTFields has been shown to improve the median survival of glioblastoma patients with temozolomide treatment (21). These results indicate that targeting the cancer cell membrane can be an excellent strategy to increase drug efficacy.

This study found that PLA2 co-treatment with doxorubicin can be used for greater drug penetration, leading to a higher rate of cell death due to targeted drug delivery. We used the enzymatic activity of PLA2 disrupting the integrity of the cancer cell membrane to increase the drug penetration. However, since PLA2 can also disrupt the normal cell’s membrane, the controlled-release capsule method may be best for this PLA2 co-treatment with doxorubicin. PLA2 co-treatment with doxorubicin must be specifically released near solid tumors; otherwise, it may disrupt the membrane of normal cells and eventually induce cell death.

There are several limitations to this study. First, the concentration of PLA2 used in this study does not represent the reality for actual in vivo use. The tumor’s microenvironment in vivo contains complex interaction between different cells such as endothelial cells from blood vessels, immune cells, and normal fibroblast cells near the cancer cells (22). Since we only tested in vitro conditions, in which only cancer cells were present in the samples, a higher concentration of PLA2 may be needed for actual in vivo use. Using a higher concentration of PLA2 may also cause severe side effects disrupting the membrane of normal cells around the tumor tissue. Therefore, optimized dosage of PLA2 for in vivo use must be identified.

Also, we only tested one type of breast cancer cell line in vitro. Therefore, an in vivo experiment would be necessary to assess the actual anti-cancer effect. Most importantly, we did not analyze the effect of PLA2 on normal cells. PLA2 might also destroy the membranes of normal cells, leading to cell death. In the future, we plan to extend our research by using the co-treatment of PLA2 with various cancer drugs. We also plan to evaluate the effect PLA2 has on normal cells. Ultimately, we are looking for a novel drug treatment method that will specifically target cancer cells.

MATERIALS AND METHODS

Cell culture maintenance

MDA-MB-231 cells were purchased from Korea Cell Line Bank (KCLB). Cells were maintained in RPMI 1640 media (Gibco) supplemented with 10% Fetal Bovine Serum (FBS) and 1% penicillin and streptomycin antibiotics (Gibco). The cells were stored inside a 37°C, 5% CO\textsubscript{2} incubator (Eppendorf).

Hanging drop 3D spheroid culture

After the cells were detached from the cell culture plate surface with 0.05% Trypsin-EDTA buffer (Gibco), the complete medium was added to stop trypsinization. The cells were counted with the Luna Fluorescence Cell Counter (Logos), the cells were seeded on the cover lid of 100 mm tissue culture dish by adding a 30 μL drop. Then, 10 mL of cell medium was placed in the bottom of the dish to act as a hydration chamber. Then the lid was inverted onto the medium-filled bottom chamber and incubated in the 37°C, 5% CO\textsubscript{2} cell incubator. The 3D spheroid cultures were maintained for five days before the downstream experiments.

Cell imaging

After the lid containing the 3D spheroid cells was placed on the inverted imaging microscope (Nikon), the brightfield image of the cells was captured by imaging software provided by Nikon. The scale bar was added on the image based on the...
magnification of the microscope.

Dye permeability assay

The CMFDA (5-chloromethyl fluorescein diacetate) fluorescent probe was used to check cell membrane permeability. After the spheroids were collected from the hanging drop, the cells were incubated with 1 µM CMFDA for 10 min, the cells were washed with the PBS to remove the remaining CMFDA from the cell media. The cells were then dissociated into single cells with Trypsin-EDTA buffer. A 40 µm cell strainer (SPL) was further used to remove the clumps from the prepared samples. All experiments were performed with three replicates for each experimental group. Dye permeability assay was conducted at 37°C.

Fluorescent cell quantification

Luna-FL (Logos Bio), an automated fluorescence cell counter, was used to quantify the green fluorescent cells from each sample. After the cells were injected on the sample loading slide (Logos Bio), the integrated analysis software provided the percentage of green fluorescent positive cells.

Cell viability assay

Prestoblue (Invitrogen) was used to quantify cell cytotoxicity (dead cells) and cell viability (live cells). The final concentrations of doxorubicin (Sigma) (0, 10, 100, 200, 300, 600, 639.8, 800, 1000, 1500, 2000, and 3000 nM) were used to treat on the hanging droplets for 24 hr. For PLA2 co-treatment with doxorubicin, 1mM PLA2 and 639.8 nM doxorubicin was treated for 24 hr. Then, the cells were placed into 96 well plates for the cell viability assay. After measuring 570 nm absorbance using a microplate reader (Biotek), the cell cytotoxicity was calculated. IC50 value was calculated by the Prism 8 program. All experiments were performed with three replicates for each experimental group. Cell viability assay was conducted at 37°C.

Statistical test

All statistical tests were performed using the GraphPad Prism 8 program. Two-way ANOVA and Tukey’s multiple comparison post hoc test were used. A p value less than 0.05 was considered statistically significant.

ACKNOWLEDGMENTS

CL would like to thank her parents, who have helped and given her feedback.

REFERENCES

Copyright: © 2022 C. Lee and W.L. Lee. All JEI articles are distributed under the attribution non-commercial, no derivative license (http://creativecommons.org/licenses/by-nc-nd/3.0/). This means that anyone is free to share, copy and distribute an unaltered article for non-commercial purposes provided the original author and source is credited.