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Introduction
Humanity’s fascination with space predates recorded 

history, long before Johannes Kepler proposed his 
famous laws of planetary motion in the 17th century. 
The period following Kepler saw numerous advances 
in mathematics and physics, beginning with Newton’s 
laws of mechanics and the Universal Law of Gravitation 
until the dawn of the 20th century when Einstein 
presented his theory of special relativity. The advances 
in mathematics and physics during this period made 
possible efforts to send people to outer space and to 

discover the mysteries of the universe. Some of the 
major milestones during this period include the first 
human in space, the first spacewalk, the first Moon 
landing, the Apollo program, the space station, reusable 
spaceships, and the launching of space probes such as 
Cassini into interstellar space. Cassini’s historic mission 
ended only a few months ago in September 2017 with its 
fiery plunge into Saturn (1).

The scientific and engineering communities have 
become increasingly interested in space travel (2-6), 
specifically in colonizing other planets such as Mars. 
Two main reasons often suggested for space exploration 
are finding an alternative habitat for humans in the event 
of a catastrophic disaster (7) and the potential for new 
resources such as minerals in extraterrestrial space (8).

Motivated by the ongoing curiosity of the scientific 
community as well as the general public’s desire to travel 
to outer space and to possibly colonize other planets 
one day (3-6), in the current work, we investigated 
an approach to efficiently travel between planets. 
Specifically, we propose to use a genetic algorithm to 
find the shortest path to travel between planets in a 
solar system. This problem is analogous to the well-
known Traveling Salesman Problem (TSP), which has 
been intensely studied by mathematicians and computer 
scientists during the last few decades. However, unlike 
the stationary cities in the classic TSP, the planets in 
our problem are in constant motion, each with a different 
angular velocity, making our problem significantly 
harder to solve. We hope that the results of our work 
could be used to program space probes such as Cassini 
(1) to efficiently travel between the planets of a newly 
discovered solar system. This would allow us to collect 
scientific data and uncover new knowledge, to mine 
asteroids for natural resources that are rare on Earth, 
and to eliminate space junk orbiting our planet, which 
poses imminent danger to space travel.

The Traveling Salesman Problem (TSP) is one of the 
most widely investigated problems in computer science. 
The problem appears quite simple when stated as 
follows: Given a set of N cities, find the shortest route 
that visits each of the cities exactly once and returning 
to the starting city. The problem can be solved relatively 
easily when the number of cities is small. However, as 
the number of cities increases, one quickly discovers that 
the simplicity of the problem statement is quite deceptive. 
The problem is often presented in computational 
mathematics as a graph-theory problem, where one 
has to determine the most efficient Hamiltonian cycle (9) 
through N cities. This is an optimization problem, which 
is NP-hard. This can be proved by showing that the well-
known NP-complete Hamiltonian cycle problem can be 
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Summary
Humanity has long been fascinated with celestial 

bodies and space travel. In the current work, we 
investigate a novel approach to efficiently travel 
between planets. Specifically, we use a genetic algorithm 
to find a near optimal path between planets that are 
in a circular motion with different angular velocities 
under the gravitational attraction of a star. We develop 
mathematical expressions to find both the travel 
distance and the trajectory angle of the spaceship for the 
orbiting planets. Using derived analytical expressions  
and a carefully chosen bimodal fitness function, 
we demonstrate that our genetic algorithm rapidly 
converges to a near optimal solution for the shortest 
path between the planets. The experimental results 
show that our genetic algorithm converges consistently 
faster than an algorithm based on a unimodal fitness 
function. Furthermore, the experimental results indicate 
that our algorithm is many orders of magnitude faster 
than an enumeration-based technique, while providing 
nearly as accurate results. We envision that, in the future, 
the results of our work could be used to program a space 
probe to efficiently travel between the faraway planets of 
a newly discovered solar system, and to collect scientific 
data from deep space that could provide answers to 
profound questions about our universe. In addition, 
our results can be put into use immediately for mining 
asteroids for natural resources that are rare on Earth, 
and to eliminate space junk that poses a danger to space 
travel.
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reduced to TSP. The terms NP-hard and NP-complete 
are used in the field of algorithmic complexity theory 
to discuss the difficulty of solving various problems. A 
decision problem p is said to be NP-complete if p is in 
the complexity class of NP, and every problem in NP is 
reducible to p in polynomial time. A problem that satisfies 
the latter condition is known to be NP-hard.

In the Moving-Target TSP, suggested by Helvig (10), 
and its variants (11-13), the cities are all given a constant 
initial linear velocity and therefore are no longer stationary. 
The goal of the Moving-Target TSP and its variants is the 
same as that of the standard TSP, which is to find the 
shortest-possible route visiting every city. However, our 
current problem, called the traveling spaceship problem 
(TSSP), involves planets in circular orbits with different 
angular velocities, making it significantly harder than 
these previous works.  We provide a novel near-optimal 
solution for TSSP by employing a genetic algorithm that 
uses a carefully chosen bimodal fitness function. Even 
though genetic algorithms have been used in space 
technology for various applications, including the design 
of the famous NASA antenna (14), there has been no 
work so far that would solve the problem of finding a 
near-optimal travel path for efficient interplanetary travel.

Our experiments confirm the hypothesis that the 
bimodal fitness function, which forms the heart of our 

genetic algorithm, outperforms an algorithm based on 
a traditional unimodal fitness function in identifying 
a near-optimal solution for the shortest path, both in 
terms of speed and accuracy. The experiments further 
confirm the hypothesis that the convergence rate of our 
algorithm is many orders of magnitude faster than an 
algorithm based on enumeration, while providing nearly 
accurate results.

Results
In order to test our hypothesis, we compared the 

results of the Java implementations of our genetic 
algorithm, TSSP-GA, and an enumeration-based 
brute-force algorithm, TSSP-BF. We further compared 
the convergence rate of our genetic algorithm to an 
otherwise-identical algorithm based on a unimodal 
fitness function. Our experiments can be divided into 
four broad categories as follows.

Time Taken to Find the Shortest Path 
By varying the number of planets in the solar system 

from N = 5 to N = 12, we found the times to obtain the 
shortest path for TSSP-GA (t1) and TSSP-BF (t2). We 
also found the shortest distances from both TSSP-GA 
(d1) and TSSP-BF (d2). We computed the percentage 
run-time performance improvement of TSSP-GA over 

Figure 1: Number of planets versus time taken for best path and the shortest path distance. Left: We varied the number 
of planets and measured the time to find the shortest path using TSSP-BF and the near-optimal path using TSSP-GA. Right: 
We varied the number of planets and found the best distance returned by TSSP-BF and the near-optimal distance returned by 
TSSP-GA.

N t1 t2 (t2 / t1) × 100% d1 (AU) d2 (AU) (d1 − d2)/(d1) × 100%
5 16 ms 4 ms 25 269 269 0.00

6 25 ms 26 ms 104 291 291 0.00
7 33 ms 71 ms 215 302 302 0.00
8 43 ms 614 ms 1,428 317 317 0.00
9 48 ms 9.145 s 19,052 322 322 0.00
10 50 ms 1 m 52 s 224,828 358 358 0.00
11 278 ms 21 m 19 s 460,072 399 396 0.75
12 553 ms 12 h 14 m 40 s 7,971,067 408 405 0.74

Table 1: Comparison of Results - TSSP-GA versus TSSP-BF Algorithms
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that of TSSP-BF as well as the percentage difference 
of the path distance obtained from TSSP-GA to the true 
shortest distance obtained from TSSP-BF, obtained by 
enumerating all N! paths (Table 1). 

The time to obtain the shortest path from TSSP-
GA increases only slightly as the number of planets 
in the solar system increases (Figure 1, left). In other 
words, the time to identify a near-optimal interplanetary 
path using our genetic algorithm is growing slowly with 
the number of planets. However, TSSP-BF shows an 
exponential increase in run time with the number of 
planets in the solar system (Figure 1). This is expected 
as there are N! possibilities to be analyzed. The optimal 
path produced by TSSP-GA is only marginally longer 
than the shortest possible path when N = 12, while the 
shortest paths identified by both techniques are identical 
for N ≤ 10 (Figure 1, right). We could not obtain the 
shortest distance using the brute force algorithm for N 
> 12, as extrapolation shows that the program will run 
at least 30 days for N = 13 on our machine. However, 
even with a hypothetical solar system with N = 100, 
our genetic algorithm was able to return its best path 
in approximately 2 seconds. The power of our TSSP 
algorithm is obvious.

Longest Common Substring Match
A higher mutation rate is associated with a decrease 

in the percent of longest common substring (LCS) match 
(Figure 2, left). The LCS indicates the longest common 
segment of the paths returned by TSSP-GA and TSSP-
BF. Our experiments therefore show that selecting an 
appropriate mutation rate is essential for increasing 
the percentage of LCS match between TSSP-GA and 
TSSP-BF. By varying the mutation rate from µ = 0.005 
to µ = 0.100 at an increment of 0.001, we found that our 
algorithm performs optimally at µ = 0.030.

The Initial Population Size and the Number of 
Generations to Converge

In the next set of experiments using TSSP-GA, using 
N = 25, we varied the size of the initial population P and 

recorded the number of generations required to find the 
shortest path. We found that as the size of the initial 
population is increased, the rate of convergence of the 
algorithm also increased. Figure 2 (right) shows the 
relationship between the initial population size and the 
number of generations required to identify the shortest 
path distance. For example, when the population size 
was P = 50, TSSP-GA needed at least 8 generations to 
identify the shortest path distance. On the other hand, 
with a population size of 500, even though the program 
took longer to finish, it only needed 4 generations to 
identify the shortest path distance. This demonstrates 
that an optimal initial population size containing sufficient 
genetic diversity is essential for convergence in fewer 
generations.

Bimodal Fitness Function
In the final set of experiments, we sought to test 

the hypothesis that our bimodal fitness function would 
outperform an algorithm employing a unimodal fitness 
function. This is done by computing a fitness score 
based on the inverse of the total segment distances. 
The average fitness score always increases between 
successive generations. We consider the population 
to be converged when the difference between two 
consecutive fitness scores is less than a predetermined 
tolerance value. Using an initial population size of 200, 
we demonstrated that convergence was achieved in a 
mere 8 generations using our bimodal fitness function, 
whereas it took 22 generations to obtain similar results 
with the unimodal fitness function (Figure 3, left). 
Finally, we plotted the fitness scores returned at the end 
of the eighth generation as we varied the size of initial 
population from 50 to 500 (Figure 3, right). This showed 
us that our bimodal fitness function was able to achieve 
convergence with an initial population size of only 200, 
whereas the use of the unimodal fitness function required 
an initial population size of 500 to achieve convergence 
for an identical solar system. 

The power of our bimodal fitness function is self-
evident. In addition, the results support the hypothesis 

Figure 2: Percentage of LCS matching at different mutation rates and Number of generations to achieve near-optimal 
distance. Left: We varied the number of planets and measured the percent of LCS matching at two different mutation rates (m= 
0.03 and m = 0.06). Right: We plotted the near-optimal distance returned by TSSP-GA against the number of generations for the 
initial population sizes of 50, 100, 200 and 500.
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that our genetic algorithm is able to identify a near-
optimal path for interplanetary travel significantly faster 
than an enumeration-based technique. The results are 
many orders of magnitude faster for a solar system with 
more than nine planets. In addition, the optimal path 
found by our genetic algorithm is identical to the best 
possible route for N ≤ 10 and is only marginally different 
than the best possible route for larger N found by TSSP-
BF. Therefore, we hope that our work will form the basis 
for finding an optimal interplanetary travel path of a 
newly discovered solar system in a futuristic world.

Discussion
Let S be a solar system with N planets in circular orbits 

around a star. The traveling spaceship problem is to find 
the shortest path at any random point in time, starting 
from any one of the N planets, visiting each planet only 
once, and returning to the initial planet. The spaceship is 
assumed to be moving at constant velocity and cannot 
“wait” on a planet. 

For a solar system with three planets, there are only 
6 possible paths. Figure 4 shows two possible paths 
for such a solar system. However, as in the case of the 

classic TSP, the number of possible paths in TSSP 
quickly explodes as the number of planets increases. 
For example, for our own solar system, there are 9! = 
362,880 possible paths, and for a hypothetical solar 
system with 20 planets, the number of possibilities is 
indeed an “astronomical” 20!, which is larger than 2.43 
× 1018.  In addition, even though the classic TSP is NP-
hard, it only deals with stationary cities. The Moving-
Target TSP introduced by Helvig et. al. (10), determines 
the minimum time required to reach a small set of moving 
targets, all moving with a constant velocity, but confined 
to a straight line. It is not difficult to see that our problem 
is significantly more difficult than both the classic TSP 
and the Moving-Target TSP, as the planets are all in 
motion with different angular velocities, which requires 
that the trajectory angle of the spaceship be determined 
dynamically based on the origin and the target planet.

Space Travel Equations: Change in Angle of the 
Destination Planet

In this and the following sections, we derive two 
important equations that will help us to plan the trajectory 
of the spaceship for interplanetary travel. Our genetic 
algorithm, implemented in Java, depends on the results 
of these equations in order to determine the coordinates 
of the planets at different points in time during the 
journey of the spaceship, as well as the trajectory angles 
for the journeys. 

Two of our principal simplifying assumptions are that 
the spaceship travels at a constant speed, and that the 
spaceship travels in a straight line between planets. In 
addition, we assume that all of the objects 
underconsideration are found on the same plane and the 
planets are in circular motion. The first two assumptions 
are most realistic when the spaceship travels faster than 
the fastest planet, for then the central star has a relatively 
small effect on the spaceship’s velocity vector. We will 
therefore focus on this case, which will have an additional 
benefit described at the end of this section. Therefore, 
given that the initial coordinates of planet A and planet B 

Figure 3: Bimodal and unimodal fitness function comparison. Left: Bimodal fitness function resulted in a faster 
convergence than the unimodal fitness function. Right: Fitness score after eight generations is higher with the bimodal 
fitness function than with the unimodal fitness function with small initial population sizes. As the initial population size is 
increased, the difference in fitness score between the two types of fitness function decreases.

Figure 4: Two possible travel paths in a three-planet solar 
system. Left: The spaceship departs from planet P1 and meets 
planet P2 at P2’, continues toward planet P3, and meets it at 
P3’. Finally, it returns to planet P1 and meets it at P1’, making a 
connected path,P1P2’P3’P1’. Right: The spaceship departs from 
planet P1 and meets planet P3 at P3’, continues toward planet 
P2, and meets it at P2’. Finally, it returns to planet P1 and meets 
it at P1’, making another connected path, P1P3’P2’P1’.
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are (rA, θA) and (rB, θB) respectively, we would like to 
determine how to launch our spaceship from planet A so 
that it would meet planet B as the spaceship arrives at 
the orbit of planet B. This can be done by finding the 
angle D  through which planet B moves from the time 
when the spaceship leaves planet A to when the 
spaceship arrives at planet B (Figure 5).
Let us consider a planet in a circular orbit of radius r 
around a star of mass M. From Newton’s law of universal 
gravitation, ignoring the gravitational effect of other 
celestial bodies, the gravitational acceleration of the 
planet is,  where w is the angular velocity of

the planet. Therefore, we find,   Hence, the polar 

coordinates of the planet at time t can be given as,   

where w is the initial angle of the 

planet at t = 0. Representing the positions of the planets 
using the polar coordinates given by the above equation, 
we will now find the angle  D through which the destination
planet moves from the time when the spaceship leaves 
the first planet to when the spaceship arrives at the 
destination planet. Let us consider the journey of our 
spaceship from planet A = (rA, FB) to planet B = (rB, FB). 
Let D be the change in planet B’s angle from when the 
spaceship leaves planet A to when the spaceship arrives 
at planet B. Let B’ be planet B’s new location when the 
spaceship arrives. Then, using the cosine rule, the 
distance from A to B’ is,

Since the time for the spaceship to travel the above 
distance, dAB’ is equal to the time for planet B to orbit 
through the angle D, letting the speed of the spaceship 
be u, we find that   

Substituting for dAB’ into the above equation and 
simplifying, we obtain,

 
The above equation has both a D2 and a cos(D) term, 
and consequently does not have a clear closed-form 
solution. We use the Newton-Raphson method to 
obtain a numerical solution to the change in angle using 
the above equation. In general, the above equation 
has multiple solutions for D. When the spaceship is 
significantly slower than the target planet, the target 
planet can orbit the star multiple times. Adjusting the 
launch angle of the spaceship can alter the number 
of times the target planet orbits the star before the 
spaceship reaches it. However, since we impose the 
condition that the spaceship always travels faster than 
the fastest planet (which is the one closest to the star), 
the spaceship will intercept the target planet in a unique 
orbit, and therefore, assuming rB > rA, we guarantee a 
single unique solution to the above equation.

Space Travel Equations: Trajectory Angle of the 
Spaceship

Now that we have derived an expression for the 
change in angle D of planet B during the time the 
spaceship travels from planet A to meet planet B at 
location B’, we will proceed to find the trajectory angle θ 
of the spaceship when it is launched from planet A. The 
trajectory angle depends on the velocity of the spaceship 
as well as the angular velocity of the destination planet. 
It does not depend on the angular velocity of the origin 
planet. Using polar coordinates, the following proposition 
gives the launch angle θ for the spaceship when it 
departs from planet A to meet planet B at B’.

Proposition 1. Given two planets A and B with 
coordinates (rA, 0) and (rB, FB) respectively at time t =0, 
and rB > rA, the launch angle θ of the spaceship with 
respect to the positive x-axis is given by,

Figure 6: Fitness function f1. The segment MN is tangent 
to the path of planet B. The distance |MN| is approximately 
proportional to the distance that the spaceship needs to travel 
in the direction vertical to line AM.

Figure 5: Computation of travel distance and launch 
angle. Left: The spaceship travels from planet A and arrives 
at the destination planet at B’. The distance traveled by the 
spaceship is dAB’. Right: The spaceship needs to be launched 
at angle Q as shown in the diagram in order to meet the 
destination planet at B’. 
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Figure 7: Overview of the TSSP-GA algorithm. The top 
two diagrams show that gene segment P2P7P10P4, is randomly 
selected from parent 1, and the remaining genes from parent 2 
are used in place of the remaining genes of parent 1. The third 
diagram shows the resulting offspring from this crossover. The 
bottom two diagrams illustrate a single point mutation, where 
genes P11 and P5 swap their positions in the chromosome.

of each individual is determined, and the fittest individuals 
or the “most optimal solutions”, are selected for amongst 
the population. The process thereby produces offspring 
that are even further improved from the original selection 
using chromosomal crossovers. Splices of the fittest 
individuals (chromosomes) are recombined, creating a 
more “evolved” offspring. Finally, a small percentage of 
random mutations are introduced in the genes, which 
entails flipping bits of some individuals in order to add 
more diversity to the gene pool and to prevent premature 
convergence of the algorithm. Two prerequisites must be 
met in order for a genetic algorithm to succeed. The first 
is that there must be a method to encode viable solutions 
to the problem. The second is that there must be a 
method to determine the degree of validity of such a 
solution. In other words, one must not only be able to 
determine a solution, but also must be able to determine 
the level of correctness of this solution. The gene pool of 
our initial population is assumed to contain sufficient 
genetic diversity. 

Using the mathematical derivations from the 
Discussion section, we implemented a genetic algorithm 
to solve TSSP using Java. Given that the classic TSP is 
an NP-complete problem (17), our intuition tells us that the 
Traveling Spaceship Problem is likely to be NP-complete. 
We omitted the proof of this statement as it is beyond the 
scope of this paper. We then provided an overview of the 
major components of our genetic algorithm solving the 
Traveling Spaceship Problem. A number of experimental 
results from the Java implementation of our algorithm 
(TSSP-GA) in comparison to an enumeration-based 
brute-force algorithm (TSSP-BF) were discussed earlier. 
We note that the TSSP-BF algorithm compares the travel 
distances of every possible N! paths in an N-planet solar 
system in order to identify the best path.

 
where D is the angle through which planet B rotated 

from B to B’ during its journey.

Proof. Using the Law of Sine on triangle AOB’ in 
Figure 5 (right),

,   or

     

Simplifying, we find,  

Future Work
Our work provides a near-optimal solution to 

the traveling spaceship problem in a hypothetical 
mathematical model of a solar system. However, it did 
not factor in the gravitational influence of the star and 
the planets on the spaceship. Our model also assumed 
that all the planets are in perfect circular orbits around 
the star. Therefore, it will be important in a future work 
to account for both the gravitational force of the various 
celestial bodies on the spaceship and the elliptical orbits 
of the planets. As an alternative to our TSSP-GA, we 
also plan to investigate the use of Covariance Matrix 
Adaptation Evolution Strategy (CMA-ES) (15, 16), which 
employs stochastic searches to more rapidly converge 
to the global optimum. In an unfinished related work, 
we investigated how to employ genetic algorithms to 
optimize the timing and direction of the fuel firing in order 
to efficiently navigate the spaceship. This investigation 
led us to believe that there may exist an optimal route 
that may not be the shortest but is likely to cost the 
least amount of fuel, as such a route would minimize 
the change of spaceship trajectories. This is a much 
harder problem to solve, but could be very important for 
optimizing space travel. 

Methods
Genetic algorithms are used in computer science to 

iteratively improve the solution, by using a combination of 
randomization, selection, recombination and mutation in 
tandem with an appropriately designed fitness function. 
These algorithms mimic the process of evolution - a 
process of biological wonder, elegance and beauty - that 
has proven itself by giving rise to millions of successful 
distinct species on our planet.  

A genetic algorithm typically begins with an initial 
population consisting of a set of a few individuals. The 
population evolves via a series of three major steps, 
namely selection, crossover, and mutation. The fitness  
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Overview of the Implementation
The major modules of our algorithm are (1) 

initialization, (2) selection, (3) crossover, and (4) 
mutation. During initialization, we create a “small” 
population consisting of random paths connecting every 
planet exactly once. The individuals in our populations 
are distinct paths connecting the planets. For example, 
in a solar system with 12 planets, there are 12! = 
479,001,600 unique individuals, but our population only 
contains a tiny fraction of these.

Bimodal Fitness Function 
The key to the success of our genetic algorithm is a 

novel bi-modal fitness function that forms the heart of 
our algorithm. This fitness function allows us to rapidly 
determine the suitability of an individual (path) to be 
selected for reproduction. Unlike the traditional genetic 
algorithms in the literature, our fitness function consists 
of two functions, where the first function, f1, is used to 
rapidly converge to a population with superior 
characteristics, and the second function, f2, is used to 
further iteratively refine the population. In Figure 6, 
consider the planets A and B at coordinates (rA, FA) and 
(rB, FB) at an arbitrary time t. We note that the distance 
MN = (rB - rA)tan(FB-FA) is proportional to the distance 
the spaceship needs to travel in the tangential direction 
in order to arrive at planet B, assuming that the planets 
are stationary. Therefore, we use the fitness function in 
the first step to be  and aim to 

maximize it. The first function,  f1, described above, which 
is much easier to compute than the true travel distance, 
enables us to achieve partial convergence rapidly. When 
successive populations are no longer evolving, we use 
the inverse of the path distance as the second fitness 
function,     to further evolve and refine the 

individuals. The higher the fitness value, the better 
the probability for an individual to be selected for 
reproduction. 

Crossover 
Crossover is the mechanism that enables a 

population to increase its genetic diversity and 
consequently is a very important component of our 
algorithm. Our implementation of crossover is as follows: 
one of the two parents is selected with equal probability, 
and then a segment of consecutive connected planets 
is selected randomly. We form the offspring using this 
segment of the selected parent. Then we go through 
the second parent’s path (chromosome) and copy its 
genes to the offspring, making sure that the genes 
forming the segment from the first parent are not copied 
again. For example, Figure 7 (top) shows two paths 
selected as parents in a solar system with 13 planets. 
Assume that a random contiguous segment (highlighted 
in blue in Figure 7 (top)) of the first parent is selected 
for crossover. Now the remaining genes (highlighted in 

green in Figure 7 (top)) are identified from the second 
parent and are selected for crossover with those genes 
previously selected from the first parent. The offspring 
is then formed by first applying the selected segment 
(highlighted in blue) from the first parent and then filling 
up the remaining slots using the other genes (highlighted 
in green) from the second parent in order (Figure 7  
middle). 

Mutation
Mutations in nature are generally detrimental to 

organisms. However, mutations occasionally help a 
population by adding some much-needed genetic 
variation, thereby producing a more successful offspring. 
Our algorithm implements a single-point mutation by 
swapping two planets in the path. In the example shown 
in Figure 7 (bottom), planet P11 is swapped with planet 
P5.

Both the crossover and the mutation modules operate 
on those individuals returned by the selection module, 
which makes its decision based on our bimodal fitness 
function. The process is repeated until the shortest path 
length between successive generations is no longer 
changing.
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