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generating a hit, drug development, safety and efficacy 
trials, and treatment approval (Figure 1) (2). Today, the drugs 
approved by the United States Food and Drug Administration 
only make up 13.8% of the drugs that were originally tested 
in clinical trials for diseases and medical conditions. Also, 
according to a recent study by Harvard University, developing 
one FDA-approved drug costs about 2.6 billion USD and takes 
about 12 years (3-4). Thus, the drug development process is 
extremely costly and time-consuming, raising the need for a 
more efficient approach.

One reason for the high cost of drug development is 
the progressive difficulty in creating treatments for more 
challenging diseases. Typical methods of creating and 
testing candidate treatments in the lab are difficult due to the 
quantity and complexity of possible candidates. In addition, 
the medical research and development process is extremely 
risky, so pharmaceutical companies incur high R&D costs (5). 
To alleviate such expenses, computational methods can be 
used to speed up the process of drug discovery. Companies 
can build complex molecules and execute chemical 
reactions using chemistry simulations. Depending on the 
type of simulator used, one can set certain specifications 
after considering functional groups, molecular symmetries, 
polarity, conductivity, and atomic charges. Other simulations 
allow scientists to determine electronic structures, make 
geometry optimizations, calculate electron and charge 
distributions, etc. Computational chemistry methods enable 
scientists to experiment with a wide variety of combinations 
of materials that are difficult to obtain and gives them more 
insight into molecular behavior without doing a physical 
laboratory experiment (6). 

The input to these models would be the bounded chemical 
space, which refers to the property space consisting of all 
possible molecules and chemical compounds having specific 
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SUMMARY
Current drug discovery processes can cost billions 
of dollars and usually take five to ten years. People 
have been researching and implementing various 
computational approaches to search for molecules 
and compounds from the chemical space, which 
can be on the order of 1060 molecules. One solution 
involves deep generative models, which are artificial 
intelligence models that learn from nonlinear data 
by modeling the probability distribution of chemical 
structures and creating similar data points from 
the trends it identifies. These generative models 
can extract salient features that characterize the 
molecules. However, they often suffer from increased 
time complexity. Aiming for faster runtime and greater 
robustness when analyzing high-dimensional data, 
we designed and implemented a Hybrid Quantum-
Classical Generative Adversarial Network (QGAN) to 
synthesize molecules. There are two parts in the QGAN: 
a quantum generator that creates molecules based 
on the probability distributions of likely combinations 
and a classical discriminator that differentiates real 
molecules from the generated ones. We hypothesized 
that a quantum generator would be more impactful, 
offering a runtime speedup and increasing generated 
molecule possibilities, because we could use 
quantum mechanical phenomena superposition, 
entanglement, and interference to analyze more 
atom-bond combinations than a classical generator. 
The PyTorch-PennyLane implementation of the QGAN 
generated seven chemically stable molecules out of 
300, a 2.3% success rate. Although the QGAN is a work 
in progress, it has demonstrated a path towards more 
efficient drug development, which would accelerate 
the development of medicines and reduce costs for 
the whole R&D process.

INTRODUCTION
Drug discovery is the process of identifying potential 

chemical entities to serve as therapeutic agents (1). The 
general drug discovery pipeline for an Unknown Human 
Disease (UHD) consists of several steps: finding a target, 
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Figure 1: Drug Discovery Pipeline. Diagram showing the complete 
process of drug discovery that pharmaceutical companies use when 
creating new drugs.
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sets of construction principles and boundary conditions (7). 
For example, MAYGEN, a chemical structure generator, takes 
a molecular formula as input and generates all constitutional 
isomers of the formula (8).

Researchers have also started to investigate 
computational methods other than chemistry simulations. In 
2018, Nicola De Cao and Thomas Kipf published a paper on 
MolGAN, an implicit generative model for small molecular 
graphs with nine or fewer heavy atoms (9). They developed 
a generative, machine learning-based approach to create 
chemically buildable compounds. The MolGAN was then 
improved upon by Tsujimoto et. al. with their L-MolGAN which 
generates molecular graphs with up to 20 heavy atoms by 
penalizing generation of disconnected graphs (10). In 2021, 
Andrew Blanchard used a generative adversarial network 
with adaptive training data for drug discovery (11). Similarly, 
Junde Li et. al discussed the advantages and disadvantages 
of a hybrid generator (utilizing both quantum and classical 
systems) and experimented with a quantum generative 
adversarial network with a hybrid generator for drug discovery 
(12-13). 

The Generative Adversarial Network (GAN) is a machine 
learning algorithm with a unique internal architecture which 
consists of two neural networks that compete against 
each other. These networks are called the Generator 
and Discriminator, and each has a different purpose. The 
Generator is a network that generates fake data and attempts 
to make it as real as possible. On the other hand, the 
Discriminator is a network that distinguishes the input data as 
real or fake (14-15).

The Generator’s weights are first initialized by random 
values drawn from a uniform Gaussian distribution. The 
network has trainable parameters which transform the input 
noise into the desired output, such as a molecule. This output 
goes into the Discriminator, which is essentially a binary 
classifier that distinguishes between real and fake objects. 
Because the Discriminator needs to know what constitutes 
“real”, it should first see several real samples, then see some 
fake samples, and then keep alternating between real and 
fake.

After the Discriminator has classified the Generator 
output, the loss functions (a method that evaluates how 
well an algorithm models a dataset) for the Generator and 
Discriminator are evaluated, determining the accuracy of the 
object and its classification (16). Then, the losses are supplied 
to both networks as feedback to update their weights through 
a process known as backpropagation. The Discriminator is 
trained to maximize the probability of correctly differentiating 
fake data from real data. Conversely, the Generator is trained 
to maximize the probability of making the Discriminator fail 
by making the fake data as real as possible (17). This training 
process repeats, with the Generator and Discriminator each 
simultaneously trying to outsmart each other, until a balance 
is reached when neither network can outperform the other. 
Reaching this balanced state is equivalent to finding the Nash 

equilibrium of a non-cooperative, two-player game.
Currently, most GANs are implemented solely with 

classical computing and referred to as the classical model, 
although some hybrid quantum-classical variants do exist. 
Quantum models of the GAN are implemented using 
quantum computing, which utilizes mechanical concepts like 
superposition, interference, and entanglement to enhance its 
capabilities. There are several primary differences between 
classical computing and quantum computing. While bits in 
classical computers represent either a ‘0’ or a ‘1’, quantum 
bits, also known as qubits, can represent a linear combination 
of the ‘0’ and ‘1’ states, formally known as superposition 
(Figure 2). This allows qubits to hold exponentially more 
information than the same number of bits. As a result, 
a quantum computer can achieve much higher levels of 
parallelization than classical computers. Furthermore, the 
entanglement and interference properties provide quantum 
computers a significant advantage in terms of computational 
speed since they allow quantum computers to operate on 
many states at once.

 Thus, for drug development, we preferred a quantum 
model over a classical model, as quantum models are able to 
search through a large chemical space exponentially quicker 
than classical models, resulting in a tremendous speedup 
and memory usage improvement.  In addition, both drug 
development and quantum mechanics ultimately deal with 
the behavior of atoms, particles, and molecules, so it would 
be more efficient to simulate the performance of drugs with a 
quantum computer (18).

Building upon these ideas, the goal of this project was 
to generate candidate molecules efficiently by leveraging 
aforementioned quantum mechanical phenomena for efficient 
parallel computation. Hence, we hypothesized that a GAN with 
a quantum generator (hence QGAN) would be more impactful 
by offering a runtime speedup and increasing generated 
molecule possibilities because increased computing power 
allows the quantum generator to analyze more atom-bond 
combinations than a classical generator. Thus, we developed 
a Quantum Generative Adversarial Network, a quantum 
unsupervised machine learning model, that can create new, 
buildable molecules given a dataset of existing molecules 

Figure 2: Classical Bit versus Quantum Bit. Self-drawn diagram 
that shows a visual representation of a classical bit and a quantum 
bit (qubit). A qubit’s state is a linear combination of the basis states (0 
and 1); however, a bit’s state is either 0 or 1, but not both. 
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with similar properties. The model that we built is a proof-of-
concept prototype that created 7 valid candidates out of 300 
total molecules generated. In the future, the Quantum GAN 
may be able to accelerate drug discovery as well as other 
uses for chemically feasible molecule generation, saving 
pharmaceutical companies time and resources to make a 
potentially life-saving drug available. 

RESULTS
We first trained the Quantum GAN (QGAN) on molecules 

from QM9, a dataset with 134,000 stable, small organic 
molecules. Next, we tested it by generating an arbitrary list 
of 300 molecules, and 7 of the molecules were considered 
chemically feasible. It is important to note that we only 
considered the atoms, not their x, y, z coordinates when we 
checked for a valid molecule because we had to sacrifice the 
precision of the x, y, z coordinates due to the limited number 
of qubits, 20, available on the quantum simulator.

Generated molecules that could be found in a large, 
well-known dataset provided by PubChem, such as C4H3 
and CHNO4, were deemed chemically feasible (Figure 
3). Generated molecules that do not exist in the PubChem 
database, such as NH4O2 and N3H4, were not considered 
feasible (Figure 4).

To determine if the QGAN was more efficient than a 
classical GAN at molecule synthesis, we measured the 
execution times and computational resources. The QGAN 
was run on a quantum simulator because we did not have 
access to a quantum computer with more than 5 qubits. 
The simulation only utilized a CPU, and no GPU hardware 
acceleration was necessary. The total runtime for training 
the QGAN varied between 15 and 20 minutes for 200 
epochs, or equivalently, about 4.5 to 6.0 seconds per epoch. 
When running the competitor, MolGAN, with the CPU, the 
total runtime for 2000 epochs was more than two days, or 
equivalently, about 86.4 seconds per epoch. Therefore, the 
QGAN was on average about 14 times faster. 

We also ran the QGAN with GPU acceleration. It took 

about 20 minutes to train for 500 epochs, or equivalently, 
about 2.4 seconds per epoch. When MolGAN was run with 
GPU acceleration, the total runtime varied between 90 and 
105 minutes for 2000 epochs, or equivalently, about 2.7 to 
3.2 seconds per epoch. Thus, QGAN with GPU was about 1.2 
times faster than MolGAN with GPU. However, it is important 
to note that all quantum computations were run in a simulator 
on a classical computer, and thus does not accurately reflect 
the results if we were to run QGAN on a real quantum 
computer.

As for RAM, it was found that using 30 qubits in the 
Generator exceeded 16 GB of memory, while MolGAN used 
under 1 GB. Because the discriminator is a simple neural 
network that doesn't require many computational resources, 
we did not take its effect on the overall statistics into account.

DISCUSSION
In summary, the QGAN successfully generated 7 existing 

molecules out of 300 total molecules, achieving about 2.3% 
success rate. Comparing this performance to the MolGAN, 
which achieved 98.1% success rate, shows that the QGAN 
is still a major work-in-progress. However, the way by which 
results are recorded also has room for improvement, and it may 
be neglecting many molecules that the QGAN generated. In 
addition, the QGAN was much more computationally efficient, 
but not as memory efficient. However, the high RAM usage 
of QGAN was not a concern because the Quantum GAN was 
simulated on a classical computer and did not accurately 
represent the RAM usage of a real quantum computer.

Based on Qiskit Aer’s built-in memory usage estimation 
function (19-20), a simulation of 32 qubits would require 
68.72GB of RAM, so accounting for the exponential scaling 
nature of memory storage in qubits, where n qubits can 
store 2^n times as much information as n bits, it would still 
use about 17.18 GB. However, the simulator cannot clear its 

Figure 4: Chemically Unfeasible Molecules Generated by QGAN. 
Figure 4a) shows the XYZ file for NH4O2 and figure 4b) shows the 
XYZ file for N3H4; included are the atoms and their coordinate 
values. Both are chemically unfeasible molecules generated by the 
QGAN.

Figure 3: Chemically Feasible Molecules Generated by QGAN. 
Figure 3a) shows the XYZ file for C4H3 and figure 3b) shows the XYZ 
file for CHNO4; included are the atoms and their coordinate values. 
Both are chemically feasible molecules generated by the QGAN.
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memory at every epoch because we have to keep track of 
Generator and Discriminator loss, which results in increased 
memory usage as we train for more epochs. Furthermore, 
the simulation keeps copies of the quantum states and the 
mechanisms to simulate quantum operations, such as matrix 
multiplications, on these states is very expensive, resulting 
in even more memory usage. Every time we apply a gate to 
our qubits, we are performing a matrix multiplication between 
two 30x30 matrices that may contain both floating-point and 
complex numbers. Finally, we also store our QM9 dataset 
of 11,000 molecules in a gigantic 3D array containing many 
floating-point numbers which consumes a great deal of 
memory.

When using the intended QGAN algorithm and molecule 
verification system, generated molecules were converted 
from the XYZ representation into the Simplified Molecular-
Input Line-Entry System (SMILES) representation — a 
string representation of molecules that can encode 
several molecule’s spatial features and is often known as 
a 2.5-dimensional representation of molecules — and the 
validity of each molecule was determined by the validity of 
the SMILES string (21). However, because the generated 
XYZ files lacked precision due to the decimal interval steps 
of 0.125, the files could not be converted into SMILES strings. 
The other issue with this molecule verification method was 
that the novel SMILES strings may not be considered valid 
due to invalid SMILES string conversion and the molecule 
not existing on the database. To more accurately determine 
the validity, the molecules should be synthesized in a lab and 
tested for chemical stability.

Drug discovery is typically a process that takes many 
years but can be made more efficient with the flexibility 
of our QGAN. The dataset used to train our model can 
be varied to generate molecules with certain chemical 
properties such as polarity, conductivity, and the functional 
groups deemed necessary for the potential drug candidates 
targeting a disease. In doing so, our QGAN would produce 
the most viable drug candidates specific to the target disease, 
reducing the number of potential molecules to be screened 
and making the molecules generated by the QGAN more 
likely to be feasible. In addition to drug discovery, our QGAN 
is applicable to a variety of fields, including material science, 
where new molecules can be used to develop novel materials, 
solar energy production to develop low-cost organic solar 
cells, and agricultural production to discover new methods of 
pathogen control (22-24).

In the future, the QGAN can be improved by reducing the 
complexity and depth of the quantum circuit to reduce the noise 
during execution. The discriminator can be also implemented 
in the quantum domain to avoid any superfluous pre- or post-
processing algorithms. In addition, the molecule verification 
tool can be linked with the QGAN directly during the training 
phase to penalize the generator in case of an invalid molecule. 
This would force the generator to generate valid molecules 
from the beginning. Furthermore, the generated molecules 

will be simulated and evaluated for their potential success 
using drug likeness analysis techniques like Lipinski's Rule of 
Five — which determines whether a chemical compound has 
the physical and chemical properties to be an orally active 
drug — and their molecular properties will be calculated with 
methods like Hartree Fock (25-28). Ultimately, while there 
are several avenues for improvement, the QGAN’s ability to 
quickly and efficiently search the large chemical space for 
chemically feasible molecules proves it to be a practical and 
promising addition to drug development.

MATERIALS AND METHODS
Software platforms 

All the code was written and executed using the free 
version of Google Colab with limited access to RAM — 13 to 
16 GB depending on availability. The QGAN is programmed 
using Python (3.7.15). PyTorch (1.12.1+cu113) was used to 
implement the neural network for the discriminator, while the 
quantum circuits and parameter-shift optimization algorithm 
were implemented with PennyLane (0.26.0), an open-source 
software for programming quantum computers (29-30). In 
order to train and test the QGAN, IBM’s Aer quantum simulator 
was used; a plug-in provided by PennyLane helped pair the 
Aer simulator fromIBM's quantum programming library Qiskit 
(0.22.0) with the QGAN's quantum circuit (31). Various other 
modules such as NumPy (1.21.6) and PyBEL (0.15.5) were 
imported to help the QGAN perform mathematical operations 
and check if generated molecules were realistic, respectively 
(32-33).

Model Training
For the research, we trained the QGAN using the QM9 

dataset, which consists of 134,000 small stable, organic 
molecules made up of carbon, hydrogen, nitrogen, oxygen, 
and fluorine (34, 35). Though the original QM9 dataset is 
represented using the SMILES representation, we found a 
version of the dataset that had the molecules converted to 
use the XYZ file representation (36). The XYZ files were later 
converted into CSV files to be easier to work with.

Detailed Quantum GAN Workflow
The internal architecture of the QGAN is quite different 

from that of a regular GAN mainly due to the quantum 
portion. A hybrid quantum-classical approach with a quantum 
generator and a classical discriminator was implemented. 
There are four main components: Dataset Loader, Quantum 
Generator, Classical Discriminator, and Classical Post-
Processor (Figure 5).

The QM9 molecular dataset provides the Discriminator with 
real examples of valid, buildable molecules, which are stored 
inside the Dataset Loader. Since the molecules from the QM9 
dataset are represented in the XYZ file representation, the 
Dataset Loader acts as a helper “algorithm” and converts the 
XYZ files into CSV files for ease of use. The dataset provides 
the real molecules.
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In our QGAN, the generator G is a model that generates 
fake molecules. Thus, it does more of the “heavy-lifting” in 
the training process — generating molecules from scratch 
as opposed to simply classifying between two classes — 
requiring more computational resources (e.g., memory, CPU, 
GPU, etc.) than the discriminator. To decrease the training 
time of the QGAN, we leveraged quantum computation 
in our generator implementation. Superposition enables 
the model to evaluate many possible instances based on 
the probabilities of success; entanglement offers extreme 
parallelization, increasing overall efficiency. 

The input to the generator is random noise from a normal 
Gaussian distribution (Figure 5). The Quantum Generator 
consists of a series of Parameterized Quantum Circuits 
(PQCs), which are quantum circuits with parameters that 
control how the input is transformed into the output. These 
parameters are the angles by which the quantum state vector 
rotates. Changing these parameters causes the rotation gates 
to transform the qubits’ states from state 0 to their final state. 
The parameters can be adjusted via a feedback loop and an 
optimization function. The PQC employs superposition by 
performing the Walsh-Hadamard Transform and achieves 
linear quantum entanglement via controlled rotation gates. 
The repeating layers of superposition and entanglement allow 
the generator to be more accurate. Finally, the final quantum 

state is measured on the Z basis via Pauli-Z measurement 
gates. The resulting measurement is a bitstring/string of 0s 
and 1s; the challenge lies in converting this bitstring into a 
meaningful vector that will represent a molecule.

To solve this problem, a Quantum Analog-to-Digital 
Converter (QADC) was implemented (Figure 6). The QADC 
outputs numbers to a resolution of 3 decimal points, or steps 
of 0.125. Note that the resolution indicates the number of 
possible, discrete values over a certain range and that a 
greater resolution requires more qubits. Once the QADC 
processes the output of the quantum circuit, an XYZ file, used 
in further classical post-processing, is created and exported 
to the discriminator as a Comma Separated Value (CSV) file. 
It is the only input to the discriminator. 

The discriminator D performs the task of two-class 
classification compared to the generator. Because the 
classification task is NOT computation-intensive, we utilized 
a classical computer for this. In fact, to help build the 
discriminator, we used the classical discriminator template 
from PennyLane’s Patch QGAN — however, theirs generated 
2D images, not molecules, so the Discriminator was initially 
unable to run on sample input due to matrix dimension 
mismatches in matrix multiplication; this problem was resolved 
by adjusting the layer dimensions in the Discriminator (37). 
Though QGANs with quantum discriminators also exist, we 
realized that implementing a quantum discriminator to test the 
validity of molecules would be difficult. From a data encoding 
standpoint, the decision could be viewed as suboptimal since 
classical post-processing would still be needed to interpret 
the measurement data out of the quantum circuit. Despite 
the processing algorithm being relatively light (in terms of 
computational workload), having a quantum discriminator 
would eliminate the need for such algorithms entirely. Our 
classical discriminator is a vanilla neural network with three 
convolutional layers separated by two ReLU activation 
functions. The final activation function is a sigmoid function 
in order to classify the input CSV file as 1 (real — from the 
dataset) or 0 (fake — from the generator).

To train the QGAN, the training loop alternates between 
the generator and discriminator. The Discriminator first takes 
in a few examples of real molecules and trains itself on these 

Figure 5: The Overall Architecture of the Quantum Generative 
Adversarial Network (QGAN). Diagram shows the architecture 
of each major component (Quantum Generator, Classical 
Discriminator, Molecule Dataset, Post-processing Algorithms) 
of the QGAN and how they interact with each other. The dark-
orange colored box is the Quantum Generator. Random Gaussian 
Noise with Initialization of qubits, using quantum gates to apply 
superposition and entanglement on the qubits, and ending with the 
Pauli-Z Measurement gates. The pink and purple boxes represent 
the QM9 Molecule Dataset and the data processing that is done to 
input the molecules into the discriminator (gray box). The molecules 
are converted from SMILES to XYZ file (2D array) which is passed to 
the discriminator as a vector (‘Real’ molecule vector). The classical 
discriminator is a binary classifier that determines whether the input 
molecule is generated from the generator (fake) or accessed from the 
dataset (real). The blue arrow indicates the feedback loop between 
the discriminator and the generator, and the orange arrow highlights 
the backpropagation process of the discriminator.

Figure 6: Quantum Analog-to-Digital Converter (QADC). 
Diagram showing the process of converting the bitstring output of the 
quantum generator into an XYZ file representing a molecule. QADC 
converts the bit string into a binary number (Big Endian notation—top 
to bottom), and it divides the resultant decimal number by a constant 
to get a floating-point number as the coordinate value.
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to get a better idea of what the “ground truth” looks like. 
Next, the Generator is run to get a molecule generated by 
feeding Gaussian noise through the parameterized quantum 
circuits. The quantum circuit is then measured, and a long 
bitstring is returned. Then using the QADC algorithm, this 
bitstring is decoded into an XYZ file, which is inputted into 
the Discriminator. The Discriminator then decides whether 
the generated molecule is realistic enough, and returns its 
verdict, from which the loss is calculated. The Discriminator 
determines how accurate its prediction was, and the 
Generator learns how realistic its generated molecule was. 
Using this information, the Generator uses a quantum 
optimization method called the Parameter-Shift method 
and the discriminator uses the Adaptive Moment Estimation 
(ADAM) optimization algorithm to update themselves to 
become more robust (38). The training loop repeats until 
an equilibrium where neither network can gain a significant 
advantage over the other is reached.
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