
10 JANUARY 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

generating a hit, drug development, safety and efficacy
trials, and treatment approval (Figure 1) (2). Today, the drugs
approved by the United States Food and Drug Administration
only make up 13.8% of the drugs that were originally tested
in clinical trials for diseases and medical conditions. Also,
according to a recent study by Harvard University, developing
one FDA-approved drug costs about 2.6 billion USD and takes
about 12 years (3-4). Thus, the drug development process is
extremely costly and time-consuming, raising the need for a
more efficient approach.

One reason for the high cost of drug development is
the progressive difficulty in creating treatments for more
challenging diseases. Typical methods of creating and
testing candidate treatments in the lab are difficult due to the
quantity and complexity of possible candidates. In addition,
the medical research and development process is extremely
risky, so pharmaceutical companies incur high R&D costs (5).
To alleviate such expenses, computational methods can be
used to speed up the process of drug discovery. Companies
can build complex molecules and execute chemical
reactions using chemistry simulations. Depending on the
type of simulator used, one can set certain specifications
after considering functional groups, molecular symmetries,
polarity, conductivity, and atomic charges. Other simulations
allow scientists to determine electronic structures, make
geometry optimizations, calculate electron and charge
distributions, etc. Computational chemistry methods enable
scientists to experiment with a wide variety of combinations
of materials that are difficult to obtain and gives them more
insight into molecular behavior without doing a physical
laboratory experiment (6).

The input to these models would be the bounded chemical
space, which refers to the property space consisting of all
possible molecules and chemical compounds having specific

Hybrid Quantum-Classical Generative Adversarial
Network for synthesizing chemically feasible molecules

SUMMARY
Current drug discovery processes can cost billions
of dollars and usually take five to ten years. People
have been researching and implementing various
computational approaches to search for molecules
and compounds from the chemical space, which
can be on the order of 1060 molecules. One solution
involves deep generative models, which are artificial
intelligence models that learn from nonlinear data
by modeling the probability distribution of chemical
structures and creating similar data points from
the trends it identifies. These generative models
can extract salient features that characterize the
molecules. However, they often suffer from increased
time complexity. Aiming for faster runtime and greater
robustness when analyzing high-dimensional data,
we designed and implemented a Hybrid Quantum-
Classical Generative Adversarial Network (QGAN) to
synthesize molecules. There are two parts in the QGAN:
a quantum generator that creates molecules based
on the probability distributions of likely combinations
and a classical discriminator that differentiates real
molecules from the generated ones. We hypothesized
that a quantum generator would be more impactful,
offering a runtime speedup and increasing generated
molecule possibilities, because we could use
quantum mechanical phenomena superposition,
entanglement, and interference to analyze more
atom-bond combinations than a classical generator.
The PyTorch-PennyLane implementation of the QGAN
generated seven chemically stable molecules out of
300, a 2.3% success rate. Although the QGAN is a work
in progress, it has demonstrated a path towards more
efficient drug development, which would accelerate
the development of medicines and reduce costs for
the whole R&D process.

INTRODUCTION
Drug discovery is the process of identifying potential

chemical entities to serve as therapeutic agents (1). The
general drug discovery pipeline for an Unknown Human
Disease (UHD) consists of several steps: finding a target,

Diptanshu Sikdar1,6*, Max Cui2,6*, Adelina Chau3,6*, Arjun Bhamra4,6, Sathvik Prasanna5,6, Larry McMahan6

1BASIS Independent Silicon Valley, San Jose, CA
2Sir Winston Churchill Secondary School, Vancouver, British Columbia
3Archbishop Mitty High School, San Jose, CA
4The Episcopal Academy, Newton Square, PA
5Monta Vista High School, Cupertino, CA
6Department of Computer Science and Engineering, Aspiring Scholars Directed Research Program, Fremont, CA
*These authors equally contributed to the research.

Article

Figure 1: Drug Discovery Pipeline. Diagram showing the complete
process of drug discovery that pharmaceutical companies use when
creating new drugs.

10 JANUARY 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

sets of construction principles and boundary conditions (7).
For example, MAYGEN, a chemical structure generator, takes
a molecular formula as input and generates all constitutional
isomers of the formula (8).

Researchers have also started to investigate
computational methods other than chemistry simulations. In
2018, Nicola De Cao and Thomas Kipf published a paper on
MolGAN, an implicit generative model for small molecular
graphs with nine or fewer heavy atoms (9). They developed
a generative, machine learning-based approach to create
chemically buildable compounds. The MolGAN was then
improved upon by Tsujimoto et. al. with their L-MolGAN which
generates molecular graphs with up to 20 heavy atoms by
penalizing generation of disconnected graphs (10). In 2021,
Andrew Blanchard used a generative adversarial network
with adaptive training data for drug discovery (11). Similarly,
Junde Li et. al discussed the advantages and disadvantages
of a hybrid generator (utilizing both quantum and classical
systems) and experimented with a quantum generative
adversarial network with a hybrid generator for drug discovery
(12-13).

The Generative Adversarial Network (GAN) is a machine
learning algorithm with a unique internal architecture which
consists of two neural networks that compete against
each other. These networks are called the Generator
and Discriminator, and each has a different purpose. The
Generator is a network that generates fake data and attempts
to make it as real as possible. On the other hand, the
Discriminator is a network that distinguishes the input data as
real or fake (14-15).

The Generator’s weights are first initialized by random
values drawn from a uniform Gaussian distribution. The
network has trainable parameters which transform the input
noise into the desired output, such as a molecule. This output
goes into the Discriminator, which is essentially a binary
classifier that distinguishes between real and fake objects.
Because the Discriminator needs to know what constitutes
“real”, it should first see several real samples, then see some
fake samples, and then keep alternating between real and
fake.

After the Discriminator has classified the Generator
output, the loss functions (a method that evaluates how
well an algorithm models a dataset) for the Generator and
Discriminator are evaluated, determining the accuracy of the
object and its classification (16). Then, the losses are supplied
to both networks as feedback to update their weights through
a process known as backpropagation. The Discriminator is
trained to maximize the probability of correctly differentiating
fake data from real data. Conversely, the Generator is trained
to maximize the probability of making the Discriminator fail
by making the fake data as real as possible (17). This training
process repeats, with the Generator and Discriminator each
simultaneously trying to outsmart each other, until a balance
is reached when neither network can outperform the other.
Reaching this balanced state is equivalent to finding the Nash

equilibrium of a non-cooperative, two-player game.
Currently, most GANs are implemented solely with

classical computing and referred to as the classical model,
although some hybrid quantum-classical variants do exist.
Quantum models of the GAN are implemented using
quantum computing, which utilizes mechanical concepts like
superposition, interference, and entanglement to enhance its
capabilities. There are several primary differences between
classical computing and quantum computing. While bits in
classical computers represent either a ‘0’ or a ‘1’, quantum
bits, also known as qubits, can represent a linear combination
of the ‘0’ and ‘1’ states, formally known as superposition
(Figure 2). This allows qubits to hold exponentially more
information than the same number of bits. As a result,
a quantum computer can achieve much higher levels of
parallelization than classical computers. Furthermore, the
entanglement and interference properties provide quantum
computers a significant advantage in terms of computational
speed since they allow quantum computers to operate on
many states at once.

 Thus, for drug development, we preferred a quantum
model over a classical model, as quantum models are able to
search through a large chemical space exponentially quicker
than classical models, resulting in a tremendous speedup
and memory usage improvement. In addition, both drug
development and quantum mechanics ultimately deal with
the behavior of atoms, particles, and molecules, so it would
be more efficient to simulate the performance of drugs with a
quantum computer (18).

Building upon these ideas, the goal of this project was
to generate candidate molecules efficiently by leveraging
aforementioned quantum mechanical phenomena for efficient
parallel computation. Hence, we hypothesized that a GAN with
a quantum generator (hence QGAN) would be more impactful
by offering a runtime speedup and increasing generated
molecule possibilities because increased computing power
allows the quantum generator to analyze more atom-bond
combinations than a classical generator. Thus, we developed
a Quantum Generative Adversarial Network, a quantum
unsupervised machine learning model, that can create new,
buildable molecules given a dataset of existing molecules

Figure 2: Classical Bit versus Quantum Bit. Self-drawn diagram
that shows a visual representation of a classical bit and a quantum
bit (qubit). A qubit’s state is a linear combination of the basis states (0
and 1); however, a bit’s state is either 0 or 1, but not both.

10 JANUARY 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

with similar properties. The model that we built is a proof-of-
concept prototype that created 7 valid candidates out of 300
total molecules generated. In the future, the Quantum GAN
may be able to accelerate drug discovery as well as other
uses for chemically feasible molecule generation, saving
pharmaceutical companies time and resources to make a
potentially life-saving drug available.

RESULTS
We first trained the Quantum GAN (QGAN) on molecules

from QM9, a dataset with 134,000 stable, small organic
molecules. Next, we tested it by generating an arbitrary list
of 300 molecules, and 7 of the molecules were considered
chemically feasible. It is important to note that we only
considered the atoms, not their x, y, z coordinates when we
checked for a valid molecule because we had to sacrifice the
precision of the x, y, z coordinates due to the limited number
of qubits, 20, available on the quantum simulator.

Generated molecules that could be found in a large,
well-known dataset provided by PubChem, such as C4H3
and CHNO4, were deemed chemically feasible (Figure
3). Generated molecules that do not exist in the PubChem
database, such as NH4O2 and N3H4, were not considered
feasible (Figure 4).

To determine if the QGAN was more efficient than a
classical GAN at molecule synthesis, we measured the
execution times and computational resources. The QGAN
was run on a quantum simulator because we did not have
access to a quantum computer with more than 5 qubits.
The simulation only utilized a CPU, and no GPU hardware
acceleration was necessary. The total runtime for training
the QGAN varied between 15 and 20 minutes for 200
epochs, or equivalently, about 4.5 to 6.0 seconds per epoch.
When running the competitor, MolGAN, with the CPU, the
total runtime for 2000 epochs was more than two days, or
equivalently, about 86.4 seconds per epoch. Therefore, the
QGAN was on average about 14 times faster.

We also ran the QGAN with GPU acceleration. It took

about 20 minutes to train for 500 epochs, or equivalently,
about 2.4 seconds per epoch. When MolGAN was run with
GPU acceleration, the total runtime varied between 90 and
105 minutes for 2000 epochs, or equivalently, about 2.7 to
3.2 seconds per epoch. Thus, QGAN with GPU was about 1.2
times faster than MolGAN with GPU. However, it is important
to note that all quantum computations were run in a simulator
on a classical computer, and thus does not accurately reflect
the results if we were to run QGAN on a real quantum
computer.

As for RAM, it was found that using 30 qubits in the
Generator exceeded 16 GB of memory, while MolGAN used
under 1 GB. Because the discriminator is a simple neural
network that doesn't require many computational resources,
we did not take its effect on the overall statistics into account.

DISCUSSION
In summary, the QGAN successfully generated 7 existing

molecules out of 300 total molecules, achieving about 2.3%
success rate. Comparing this performance to the MolGAN,
which achieved 98.1% success rate, shows that the QGAN
is still a major work-in-progress. However, the way by which
results are recorded also has room for improvement, and it may
be neglecting many molecules that the QGAN generated. In
addition, the QGAN was much more computationally efficient,
but not as memory efficient. However, the high RAM usage
of QGAN was not a concern because the Quantum GAN was
simulated on a classical computer and did not accurately
represent the RAM usage of a real quantum computer.

Based on Qiskit Aer’s built-in memory usage estimation
function (19-20), a simulation of 32 qubits would require
68.72GB of RAM, so accounting for the exponential scaling
nature of memory storage in qubits, where n qubits can
store 2^n times as much information as n bits, it would still
use about 17.18 GB. However, the simulator cannot clear its

Figure 4: Chemically Unfeasible Molecules Generated by QGAN.
Figure 4a) shows the XYZ file for NH4O2 and figure 4b) shows the
XYZ file for N3H4; included are the atoms and their coordinate
values. Both are chemically unfeasible molecules generated by the
QGAN.

Figure 3: Chemically Feasible Molecules Generated by QGAN.
Figure 3a) shows the XYZ file for C4H3 and figure 3b) shows the XYZ
file for CHNO4; included are the atoms and their coordinate values.
Both are chemically feasible molecules generated by the QGAN.

10 JANUARY 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

memory at every epoch because we have to keep track of
Generator and Discriminator loss, which results in increased
memory usage as we train for more epochs. Furthermore,
the simulation keeps copies of the quantum states and the
mechanisms to simulate quantum operations, such as matrix
multiplications, on these states is very expensive, resulting
in even more memory usage. Every time we apply a gate to
our qubits, we are performing a matrix multiplication between
two 30x30 matrices that may contain both floating-point and
complex numbers. Finally, we also store our QM9 dataset
of 11,000 molecules in a gigantic 3D array containing many
floating-point numbers which consumes a great deal of
memory.

When using the intended QGAN algorithm and molecule
verification system, generated molecules were converted
from the XYZ representation into the Simplified Molecular-
Input Line-Entry System (SMILES) representation — a
string representation of molecules that can encode
several molecule’s spatial features and is often known as
a 2.5-dimensional representation of molecules — and the
validity of each molecule was determined by the validity of
the SMILES string (21). However, because the generated
XYZ files lacked precision due to the decimal interval steps
of 0.125, the files could not be converted into SMILES strings.
The other issue with this molecule verification method was
that the novel SMILES strings may not be considered valid
due to invalid SMILES string conversion and the molecule
not existing on the database. To more accurately determine
the validity, the molecules should be synthesized in a lab and
tested for chemical stability.

Drug discovery is typically a process that takes many
years but can be made more efficient with the flexibility
of our QGAN. The dataset used to train our model can
be varied to generate molecules with certain chemical
properties such as polarity, conductivity, and the functional
groups deemed necessary for the potential drug candidates
targeting a disease. In doing so, our QGAN would produce
the most viable drug candidates specific to the target disease,
reducing the number of potential molecules to be screened
and making the molecules generated by the QGAN more
likely to be feasible. In addition to drug discovery, our QGAN
is applicable to a variety of fields, including material science,
where new molecules can be used to develop novel materials,
solar energy production to develop low-cost organic solar
cells, and agricultural production to discover new methods of
pathogen control (22-24).

In the future, the QGAN can be improved by reducing the
complexity and depth of the quantum circuit to reduce the noise
during execution. The discriminator can be also implemented
in the quantum domain to avoid any superfluous pre- or post-
processing algorithms. In addition, the molecule verification
tool can be linked with the QGAN directly during the training
phase to penalize the generator in case of an invalid molecule.
This would force the generator to generate valid molecules
from the beginning. Furthermore, the generated molecules

will be simulated and evaluated for their potential success
using drug likeness analysis techniques like Lipinski's Rule of
Five — which determines whether a chemical compound has
the physical and chemical properties to be an orally active
drug — and their molecular properties will be calculated with
methods like Hartree Fock (25-28). Ultimately, while there
are several avenues for improvement, the QGAN’s ability to
quickly and efficiently search the large chemical space for
chemically feasible molecules proves it to be a practical and
promising addition to drug development.

MATERIALS AND METHODS
Software platforms

All the code was written and executed using the free
version of Google Colab with limited access to RAM — 13 to
16 GB depending on availability. The QGAN is programmed
using Python (3.7.15). PyTorch (1.12.1+cu113) was used to
implement the neural network for the discriminator, while the
quantum circuits and parameter-shift optimization algorithm
were implemented with PennyLane (0.26.0), an open-source
software for programming quantum computers (29-30). In
order to train and test the QGAN, IBM’s Aer quantum simulator
was used; a plug-in provided by PennyLane helped pair the
Aer simulator fromIBM's quantum programming library Qiskit
(0.22.0) with the QGAN's quantum circuit (31). Various other
modules such as NumPy (1.21.6) and PyBEL (0.15.5) were
imported to help the QGAN perform mathematical operations
and check if generated molecules were realistic, respectively
(32-33).

Model Training
For the research, we trained the QGAN using the QM9

dataset, which consists of 134,000 small stable, organic
molecules made up of carbon, hydrogen, nitrogen, oxygen,
and fluorine (34, 35). Though the original QM9 dataset is
represented using the SMILES representation, we found a
version of the dataset that had the molecules converted to
use the XYZ file representation (36). The XYZ files were later
converted into CSV files to be easier to work with.

Detailed Quantum GAN Workflow
The internal architecture of the QGAN is quite different

from that of a regular GAN mainly due to the quantum
portion. A hybrid quantum-classical approach with a quantum
generator and a classical discriminator was implemented.
There are four main components: Dataset Loader, Quantum
Generator, Classical Discriminator, and Classical Post-
Processor (Figure 5).

The QM9 molecular dataset provides the Discriminator with
real examples of valid, buildable molecules, which are stored
inside the Dataset Loader. Since the molecules from the QM9
dataset are represented in the XYZ file representation, the
Dataset Loader acts as a helper “algorithm” and converts the
XYZ files into CSV files for ease of use. The dataset provides
the real molecules.

10 JANUARY 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

In our QGAN, the generator G is a model that generates
fake molecules. Thus, it does more of the “heavy-lifting” in
the training process — generating molecules from scratch
as opposed to simply classifying between two classes —
requiring more computational resources (e.g., memory, CPU,
GPU, etc.) than the discriminator. To decrease the training
time of the QGAN, we leveraged quantum computation
in our generator implementation. Superposition enables
the model to evaluate many possible instances based on
the probabilities of success; entanglement offers extreme
parallelization, increasing overall efficiency.

The input to the generator is random noise from a normal
Gaussian distribution (Figure 5). The Quantum Generator
consists of a series of Parameterized Quantum Circuits
(PQCs), which are quantum circuits with parameters that
control how the input is transformed into the output. These
parameters are the angles by which the quantum state vector
rotates. Changing these parameters causes the rotation gates
to transform the qubits’ states from state 0 to their final state.
The parameters can be adjusted via a feedback loop and an
optimization function. The PQC employs superposition by
performing the Walsh-Hadamard Transform and achieves
linear quantum entanglement via controlled rotation gates.
The repeating layers of superposition and entanglement allow
the generator to be more accurate. Finally, the final quantum

state is measured on the Z basis via Pauli-Z measurement
gates. The resulting measurement is a bitstring/string of 0s
and 1s; the challenge lies in converting this bitstring into a
meaningful vector that will represent a molecule.

To solve this problem, a Quantum Analog-to-Digital
Converter (QADC) was implemented (Figure 6). The QADC
outputs numbers to a resolution of 3 decimal points, or steps
of 0.125. Note that the resolution indicates the number of
possible, discrete values over a certain range and that a
greater resolution requires more qubits. Once the QADC
processes the output of the quantum circuit, an XYZ file, used
in further classical post-processing, is created and exported
to the discriminator as a Comma Separated Value (CSV) file.
It is the only input to the discriminator.

The discriminator D performs the task of two-class
classification compared to the generator. Because the
classification task is NOT computation-intensive, we utilized
a classical computer for this. In fact, to help build the
discriminator, we used the classical discriminator template
from PennyLane’s Patch QGAN — however, theirs generated
2D images, not molecules, so the Discriminator was initially
unable to run on sample input due to matrix dimension
mismatches in matrix multiplication; this problem was resolved
by adjusting the layer dimensions in the Discriminator (37).
Though QGANs with quantum discriminators also exist, we
realized that implementing a quantum discriminator to test the
validity of molecules would be difficult. From a data encoding
standpoint, the decision could be viewed as suboptimal since
classical post-processing would still be needed to interpret
the measurement data out of the quantum circuit. Despite
the processing algorithm being relatively light (in terms of
computational workload), having a quantum discriminator
would eliminate the need for such algorithms entirely. Our
classical discriminator is a vanilla neural network with three
convolutional layers separated by two ReLU activation
functions. The final activation function is a sigmoid function
in order to classify the input CSV file as 1 (real — from the
dataset) or 0 (fake — from the generator).

To train the QGAN, the training loop alternates between
the generator and discriminator. The Discriminator first takes
in a few examples of real molecules and trains itself on these

Figure 5: The Overall Architecture of the Quantum Generative
Adversarial Network (QGAN). Diagram shows the architecture
of each major component (Quantum Generator, Classical
Discriminator, Molecule Dataset, Post-processing Algorithms)
of the QGAN and how they interact with each other. The dark-
orange colored box is the Quantum Generator. Random Gaussian
Noise with Initialization of qubits, using quantum gates to apply
superposition and entanglement on the qubits, and ending with the
Pauli-Z Measurement gates. The pink and purple boxes represent
the QM9 Molecule Dataset and the data processing that is done to
input the molecules into the discriminator (gray box). The molecules
are converted from SMILES to XYZ file (2D array) which is passed to
the discriminator as a vector (‘Real’ molecule vector). The classical
discriminator is a binary classifier that determines whether the input
molecule is generated from the generator (fake) or accessed from the
dataset (real). The blue arrow indicates the feedback loop between
the discriminator and the generator, and the orange arrow highlights
the backpropagation process of the discriminator.

Figure 6: Quantum Analog-to-Digital Converter (QADC).
Diagram showing the process of converting the bitstring output of the
quantum generator into an XYZ file representing a molecule. QADC
converts the bit string into a binary number (Big Endian notation—top
to bottom), and it divides the resultant decimal number by a constant
to get a floating-point number as the coordinate value.

10 JANUARY 2023 | VOL 6 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

to get a better idea of what the “ground truth” looks like.
Next, the Generator is run to get a molecule generated by
feeding Gaussian noise through the parameterized quantum
circuits. The quantum circuit is then measured, and a long
bitstring is returned. Then using the QADC algorithm, this
bitstring is decoded into an XYZ file, which is inputted into
the Discriminator. The Discriminator then decides whether
the generated molecule is realistic enough, and returns its
verdict, from which the loss is calculated. The Discriminator
determines how accurate its prediction was, and the
Generator learns how realistic its generated molecule was.
Using this information, the Generator uses a quantum
optimization method called the Parameter-Shift method
and the discriminator uses the Adaptive Moment Estimation
(ADAM) optimization algorithm to update themselves to
become more robust (38). The training loop repeats until
an equilibrium where neither network can gain a significant
advantage over the other is reached.

ACKNOWLEDGEMENTS
 We would like to acknowledge the previous members of
our research group, Joey Huang and Kanthi Makineedi, for
contributing their team working abilities and knowledge. We’d
also like to acknowledge our ASDRP advisors Mr. Edward
Njoo and Mr. Robert Downing for sharing their expertise
and giving us guidance on using ASDRP’s computational
resources. Finally, we would like to thank ASDRP themselves
for giving us the opportunity to conduct this high-level and
groundbreaking research.

Received: June 21, 2022
Accepted: September 21, 2022
Published: January 10, 2023

REFERENCES
1. Atkinson, Arthur J. Principles of Clinical Pharmacology.

Elsevier Acad. Press, 2012.
2. Van Norman, Gail A. “Drugs, Devices, and the FDA: Part

1: An Overview of Approval Processes for Drugs.” JACC.
Basic to translational science vol. 1,3 170-179. 25 Apr.
2016, doi:10.1016/j.jacbts.2016.03.002

3. Wong, Chi Heem et al. “Estimation of clinical trial
success rates and related parameters.” Biostatistics
(Oxford, England) vol. 20,2 (2019): 273-286. doi:10.1093/
biostatistics/kxx069

4. Rowe, Sebastian. “Modern Drug Discovery: Why Is the
Drug Development Pipeline Full of Expensive Failures?”
Science in the News, 21 Apr. 2020, sitn.hms.harvard.
edu/flash/2020/modern-drug-discovery-why-is-the-drug-
development-pipeline-full-of-expensive-failures/.

5. Burke, Hannah. “Why Does It Cost so Much to Develop
New Drugs?” Proclinical.com, 22 Sept. 2020, www.
proclinical.com/blogs/2020-9/why-does-it-cost-so-much-
to-develop-new-drugs.

6. Eliav, Ephraim. “Introduction to Computational Chemistry

Laboratory.” Tel Aviv University, www.tau.ac.il/~ephraim/
intro2comp.pdf.

7. “Chemical Space.” Wikipedia, Wikimedia Foundation,
en.wikipedia.org/wiki/Chemical_space.

8. “Mehmetazizyirik/Maygen: Maygen Is an Open Source
Chemical Structure Generator Based on the Orderly
Graph Generation Method.” GitHub, github.com/
MehmetAzizYirik/MAYGEN.

9. De Cao, Nicola, and Thomas Kipf. "MolGAN: An implicit
generative model for small molecular graphs." arXiv
preprint, 30 May 2018, arXiv:1805.11973

10. Tsujimoto, Yutaka, Satoru Hiwa, Yushi Nakamura, Yohei
Oe, and Tomoyuki Hiroyasu. "L-MolGAN: An Improved
Implicit Generative Model for Large Molecular Graphs."
ChemRxiv, 16 May 2021

11. Blanchard, Andrew E, et al. “Using Gans with Adaptive
Training Data to Search for New Molecules.” Journal of
Cheminformatics, Springer International Publishing, 23
Feb. 2021. https://doi.org/10.1186/s13321-021-00494-3

12. Li, Junde, et al. “Quantum Generative Models for Small
Molecule Drug Discovery.” ArXiv.org, 23 Aug. 2021, arxiv.
org/abs/2101.03438.

13. J. Li, M. Alam, C. M. Sha, J. Wang, N. V. Dokholyan and
S. Ghosh, "Invited: Drug Discovery Approaches using
Quantum Machine Learning," 2021 58th ACM/IEEE
Design Automation Conference (DAC), 8 Nov 2021, pp.
1356-1359, doi: 10.1109/DAC18074.2021.9586268.

14. “Generative Adversarial Network.” Wikipedia, Wikimedia
Foundation, en.wikipedia.org/wiki/Generative_
adversarial_network

15. Goodfellow, Ian. "Nips 2016 tutorial: Generative adversarial
networks." arXiv preprint 31 Dec 2016. arXiv:1701.00160.

16. “Introduction to Loss Functions.” DataRobot AI Cloud,
30 June 2022, www.datarobot.com/blog/introduction-to-
loss-functions/.

17. Islam, J., Zhang, Y. GAN-based synthetic brain PET
image generation. Brain Inf. 7, 3 30 March 2020. https://
doi.org/10.1186/s40708-020-00104-2

18. Y. Cao, J. Romero and A. Aspuru-Guzik, "Potential of
quantum computing for drug discovery," in IBM Journal of
Research and Development, vol. 62, no. 6, pp. 6:1-6:20, 1
Nov.-Dec. 2018, doi: 10.1147/JRD.2018.2888987.

19. Qiskit. “Qiskit-AER/Qubitvector.hpp at 1a6d5df89a2e0
16afbb33a2d7088e6100348a7c4 · Qiskit/Qiskit-AER.”
GitHub, 18 Feb. 2021, github.com/Qiskit/qiskit-aer/blob
/1a6d5df89a2e016afbb33a2d7088e6100348a7c4/src/
simulators/statevector/qubitvector.hpp#L813-L819.

20. jolene. “Memory Requirements for Qiskit Aer Simulator.”
Quantum Computing Stack Exchange, 9 Mar. 2021,
quantumcomputing.stackexchange.com/questions/16419/
memory-requirements-for-qiskit-aer-simulator.

21. Krenn, M., Häse, F., Nigam, A., Friederich, P., & Aspuru-
Guzik, A. (2020). Self-referencing embedded strings
(SELFIES): A 100% robust molecular string representation.
Machine Learning: Science and Technology, 1(4), 045024.

10 JANUARY 2023 | VOL 6 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

22. Lambert, J. (2021, Oct 6). An easier, greener way to build
molecules wins the chemistry Nobel Prize. ScienceNews.
www.sciencenews.org/article/chemistry-nobel-prize-
2021-molecule-build-tool-list-macmillan

23. Iglinski, P., & Iglinski, P. (2016 March 28). Q&A: New ways
to make molecules. www.rochester.edu/newscenter/qa-
new-ways-to-make-molecules/

24. James Ives, M. (2020, Jul 23). New biomolecules can
benefit agricultural and pharmaceutical sectors. News-
Medical. www.news-medical.net/news/20200723/
New-biomolecules-can-benef i t -agr icul tural -and-
pharmaceutical-sectors.aspx

25. Blanchard, Andrew E, et al. “Using Gans with Adaptive
Training Data to Search for New Molecules.” Journal of
Cheminformatics, Springer International Publishing, 23
Feb. 2021

26. Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins
AL (2012) Quantifying the chemical beauty of drugs. Nat
Chem 4(2):90–98. doi.org/10.1038/nchem.1243

27. OMx Personal Health Analytics Staff. “Lipinski's Rule of
Five.” Lipinski's Rule of Five | DrugBank Help Center, dev.
drugbank.com/guides/terms/lipinski-s-rule-of-five.

28. Hajiabadi, Hossein. “Hartree Fock Method: A Simple
Explanation.” In Silico Sciences, 3 Sept. 2022, insilicosci.
com/hartree-fock-method-a-simple-explanation/.

29. “Pytorch.” PyTorch, 2022, pytorch.org/.
30. “Pennylane.” PennyLane, 2022, pennylane.ai/.
31. “Qiskit 0.39.1 Documentation.” Qiskit 0.39.1

Documentation - Qiskit 0.39.1 Documentation, 2022,
qiskit.org/documentation/.

32. “NumPy.” NumPy Documentation, 2022, numpy.org/doc/.
33. “Pybel.” Pybel - Open Babel v2.3.1 Documentation, 2022,

openbabel.org/docs/dev/UseTheLibrary/Python_Pybel.
html.

34. L. Ruddigkeit, R. van Deursen, L. C. Blum, J.-L. Reymond,
Enumeration of 166 billion organic small molecules in the
chemical universe database GDB-17, J. Chem. Inf. Model.
52, 2864–2875, 2012.

35. R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld,
Quantum chemistry structures and properties of 134 kilo
molecules, Scientific Data 1, 140022, 2014.Anderson,
Scott. “Visualizing Molecules with GOpenMol.” Tutorial -
Department of Chemistry - The University of Utah, n.d.

36. “PPQM/Dataset-QM9.” GitHub, 2022, github.com/ppqm/
dataset-qm9.

37. Ellis, J. “Quantum Gans.” Quantum GANs - PennyLane
Documentation, 27 Jan. 2022, pennylane.ai/qml/demos/
tutorial_quantum_gans.html.

38. Kingma, Diederik P., and Jimmy Ba. “Adam: A Method for
Stochastic Optimization.” ArXiv.org, 30 Jan. 2017, arxiv.
org/abs/1412.6980.

Copyright: © 2023 Sikdar, Cui, Chau, Bhamra, Prasanna,
and McMahan All JEI articles are distributed under the
attribution non-commercial, no derivative license (http://

creativecommons.org/licenses/by-nc-nd/3.0/). This means
that anyone is free to share, copy and distribute an unaltered
article for non-commercial purposes provided the original
author and source is credited.

