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	 Cancer-associated	 fibroblasts	 (CAFs)	 are	 the	 most	
potent	 and	 aggressive	 cells	 present	 in	 the	 TME	 and	 lead	
to	metastasis	 and	 tumor	 proliferation	 through	 the	 secretion	
of	 soluble	 factors	 and	 remodeling	 of	 the	 ECM.	 They	 are	
formed	from	previously	healthy	cells	present	in	the	TME	and	
surrounding	organs,	such	as	epithelial	cells,	endothelial	cells,	
MSCs,	BM-MSCs,	resident	fibroblasts,	adipocytes,	pericytes,	
and	fibrocytes.	
	 The	significance	of	CAF	and	Transforming	growth	factor	
beta	 (TGF-β)	 crosstalk	 underscores	 the	 importance	 of	
further	study	into	elucidating	TME	mechanisms.	TGF-β	acts	
as	a	 tumor	 promoter	 in	 late-stage	 cancer	 cells	 by	 inducing	
invasion	 of	 cancer	 cells	 through	 the	 basement	 membrane,	
thus	 allowing	 them	 to	 invade	 the	 circulatory	 system,	 and	
promoting	epithelial	to	mesenchymal	transition	(EMT).	TGF-β	
also	plays	a	significant	 role	 in	 the	 interaction	of	cells	 in	 the	
TME,	promoting	the	conversion	of	fibroblasts	and	MSCs	into	
CAFs	(5).	TGF-β	has	historically	proven	to	contribute	hugely	
to	 the	 development	 of	 CAFs	 through	 the	 MiR-21/Smad	 7	
pathway	(6,7,8).	
	 CAFs,	in	turn,	secrete	an	increased	number	of	cytokines,	
such	 as	 Vascular	 Endothelial	 Growth	 Factor	 (VEGF)	 (9).	
VEGF	 is	 a	 critical	 mediator	 in	 angiogenesis,	 resulting	 in	
an	 increased	 supply	 of	 nutrients	 and	 oxygen	 to	 the	 tumor,	
stimulating	tumor	cell	proliferation	(10).	
	 BM-MSCs	 are	 multipotent	 stromal	 cells.	 They	 have	
been	 studied	 in	 the	 context	 of	 immunoregulation,	 tissue	
regeneration	and	more	recently,	specifically	in	the	TME.	BM-
MSCs	move	towards	tumor	cells	in	the	TME	in	response	to	the	
expression	of	cytokines	secreted	by	stromal	cells,	particularly	
CAFs.	They	then	help	to	create	a	favorable	microenvironment	
for	metastasis	through	differentiation.	It	has	been	established	
that	these	BM-MSCs	support	the	growth	of	cancer	cells,	and	
thus	promote	tumorigenesis	(11).	
	 Tumors	 are	 made	 up	 of	 both	 tumor	 and	 stromal	 cells,	
which	 both,	 along	 with	 extracellular	 factors,	 make	 up	 the	
TME.	CAFs	are	 fundamental	part	of	 tumor	progression	and	
invasion,	and	promote,	either	directly	or	indirectly,	oncogenic	
processes	 such	 as	 angiogenesis	 and	 immunosuppression.	
They	also	have	an	altered	gene	expression	as	compared	to	
normal	fibroblasts	(12,	13).	While	there	have	been	numerous	
studies	 attempting	 to	 differentiate	 normal	 fibroblasts	 from	
CAFs,	the	distinction	remains	largely	unclear	due	to	the	lack	
of	exact	means	to	distinguish	between	the	two	cell	types	(14).	
While	it	can	be	argued	that	CAFs	are	theoretically	fibroblasts	
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INTRODUCTION
	 Cancer	is	one	of	the	leading	causes	of	death,	particularly	
in	 the	 current	 global	 context	 with	 breast	 cancer	 being	 the	
leading	 cause	 of	 death	 in	 women	 (1).	 The	 rising	 danger	
cancer	 poses	 to	 the	 human	 population,	 threatening	 to	
upstage	 heart	 disease	 as	 the	 primary	 cause	 of	 death	 by	
2050,	 mandates	 extensive	 study	 into	 its	 pathophysiology	
and	 development.	 The	 “seed	 and	 soil”	 hypothesis	 states	
that	 tumor	 cell	 proliferation	 and	 cancer	 progression	 occur	
due	to	the	complex	interactions	between	the	tumor	cells	and	
the	 tumor	 microenvironment	 (TME).	 Tumor	 cells	 can	 only	
metastasize	 under	 favorable	 conditions,	 underscoring	 the	
role	TME	plays	in	cancer	progression.	Consequently,	cancer	
therapy	targeting	the	TME	is	an	area	of	extensive	study	(2).	
The	TME	is	heterogeneous	in	nature,	comprising	both	cellular	
and	non-cellular	components.	Stromal	cells,	such	as	immune	
cells,	 adipocytes,	 pericytes,	macrophages,	 fibroblasts/bone	
marrow	mesenchymal	stem	cells	(BM-MSCs),	mesenchymal	
stromal	 cells	 (MSCs),	 the	 extracellular	 matrix	 (ECM),	 the	
surrounding	 blood	 vessels,	 and	 the	 soluble	 factors,	 like	
cytokines	and	growth	factors,	combined	make	up	the	TME	(3,	
4).
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interacting	with	a	TME	to	form	CAFs	by	Notch	signaling,	this	
mechanism	is	yet	to	be	confirmed	by	consistent	testing	(15).	
This	 said,	 it	 is	 possible	 that	 CAFs	 and	 fibroblasts	 possess	
similar	 transcription	 regulatory	mechanisms	by	virtue	of	 the	
former	stemming	from	the	latter.	CAF	formation	could	also	be	
triggered	by	high	 Interleukin-1	(IL-1)	signaling,	via	 the	STAT	
pathway	(16).	Nonetheless,	CAFs	have	consistently	proven	to	
possess	a	spindle	shaped	morphology	(17).	
	 In	 the	 TME,	 there	 exists	 a	 pool	 of	 growth	 and	 soluble	
factors,	secreted	by	the	tumor,	which	aid	in	cancer	progression	
and	tumor	 invasion.	One	of	 these	factors,	TGF-β,	has	been	
shown	to	promote	the	differentiation	of	progenitor	cells	such	
as	BM-MSCs	into	CAFs,	and	directly	regulate	the	expression	
of	VEGF	by	CAFs	in	the	ECM,	promoting	angiogenesis	and	
lymph-angiogenesis	 (17).	 TGF-β	also	 plays	 an	 integral	 role	
in	 EMT	 and	 thus,	 aids	 in	 the	 creation	 of	 more	 CAFs	 (18).	
Moreover,	CAFs	have	been	found	to	secrete	such	cytokines	
and	 growth	 factors,	 creating	 a	 positive	 feedback	 loop	 of	
cytokine	 expression	 (19).	 Thus,	 increased	 expression	 of	
cytokines	stimulates	and	is	a	characteristic	of	CAF	formation.	
Research	has	shown	that	metastatic	 tumors	manipulate	the	
regenerative	 function	of	progenitor	cells	such	as	BM-MSCs	
and	 recruit	 them	 into	 the	 TME,	 where	 a	 significant	 portion	
proliferate	 and	 differentiate	 stromal	 cells.	 Inflammatory	
reactions	 in	 cancer	 cause	 the	 recruitment	 of	 BM-MSCs,	
as	 they	 are	 often	 associated	 with	 tissue	 remodeling	 (16,	
20).	 The	 response	 of	 the	 BM-MSCs	 to	 the	 TME	 is	 guided	
by	 inflammatory	 cytokines.	 CAFs	 can	 be	 targets	 of	 these	
cytokines,	 as	 well	 as	 induce	 tumor	 promoting	 activation	
signals	 and	 secrete	 soluble	 factors	 which	 in	 turn	 aid	 in	
remodeling	of	the	TME	(21).	CM	from	malignant	tumor	cells	
can	be	used	to	mimic	the	cytokine	saturated	environment	of	
the	TME,	which	attracts	BM-MSCs.	The	CM	also	induces	a	
change	in	morphology	of	the	BM-MSCs.	The	BM-MSCs	also	
acquire	a	similar	morphology	to	that	of	a	CAF	(22).	
	 Conditioned	 media	 (CM)	 is	 broadly	 defined	 as	 the	 cell	

secretome,	rich	in	intracellular	proteins	and	those	stemming	
from	 the	 cell	 surface.	 The	 significant	 concentrations	 of	
growth	 factors	 and	 cytokines	 present	 in	 CM	 deem	 it	 an	
increasingly	viable	resource	for	wound-healing	studies	(23).	
CM	can	be	applied	in	countering	degeneration	and	promoting	
regenerative	pathways	(24).	Considering	this,	CM	was	used	
in	this	study	to	determine	if	it,	in	any	way	or	form,	contributed	
to	angiogenesis	and	abetted	the	amelioration	of	the	TME.	
MCF-7	 is	 the	 breast	 cancer	 cell	 line,	 originating	 from	 a	
69-year-old	with	 the	disease	 in	1970	and	 is	 the	first	cancer	
cell	line	to	respond	to	hormones	(12).	BM-MSCs	and	MCF-7	
were	 co-cultured	 in	 this	 study	 due	 to	 the	 propensity	 of	 the	
latter	cell	line	to	undergo	revascularization	pathways,	thereby	
contributing	 to	 cancer	 metastasis	 (25).	 Additionally,	 given	
that	MCF-7	is	a	highly	regulated	by	growth	factors	present	in	
plasma,	the	co-culture	of	MCF-7	and	BM-MSCs	would	serve	
as	a	secondary	metric	 for	 the	 increased	secretion	of	VEGF	
and	TGF-β	(26).	This	provided	us	with	the	rationale	to	utilize	
MCF-7	in	this	study.	
We	 hypothesized	 that	 MCF-7	 interactions	 which	 BM-MSC	
have	contributed	to	a	potential	enhancement	of	 tumorigenic	
properties	 in	 vitro	 e.g.,	 increasing	 vascular	 permeability	
via	VEGF	and	 contributing	 to	 chemotaxis	 via	 TGF-	 β.	 This	
was	performed	 to	 imitate	–	 in	part	–	 the	 true	complexity	of	
oncogenesis	and	TME	in	vivo.	Further	studies	in	consideration	
of	more	parameters	are	surely	mandated,	 this	 investigation	
aimed	to	observe	cell-cytokine	interactions.	In	testing	herbal	
formulation	(HF-1)	with	relation	to	cancer	cell	proliferation	and	
the	widely	 hypothesized	BM-MSC	 differentiation	 into	CAFs	
in	 the	 TME,	 we	were	 interested	 in	 considering	 if	 cell-MSC	
interactions	 could	 be	 curbed	 by	 HF-1	 alongside	 studying	
the	extent	to	which	the	aforementioned	hypothesis	could	be	
validated	in	parallel	(27).	
	 Given	 that	 the	 formulation	 comprises	 Epigallocatechin-
3-gallate	 (EGCG)	 and	 curcumin,	 substances	 which	 are	
currently	being	studied	extensively	 for	 their	potential	potent	

Figure 1. Bar	graph	showing	VEGF	concentration	in	different	groups	
and	the	modulatory	effect	of	HF-1	(n	=	3,	mean	±	SEM).	BM-MSC	
+	 MCF-7-CM	 and	 BM-MSC	 +	 MCF-7	 groups	 showed	 significant	
increase	(p	<	0.001),	shown	as	‘***’	with	respect	to	BMMSC	control	
and	was	significantly	lowered	(p	<	0.001)	by	HF-1,	shown	as	‘###’.	
(n	=	3)

Figure 2: 	Bar	graph	showing	the	fold	difference	in	VEGF	expression	
across	 different	 groups	 and	 the	 modulatory	 effect	 of	 HF1	 (N=3,	
mean±SEM).	BMSC+MCF-CM	and	BMSC+MCF-7	 groups	 showed	
significant	increase	(p<0.001),	shown	as	‘***’	with	respect	to	BMSC	
control	and	was	significantly	 lowered	(p<0.001)	by	HF-1,	shown	as	
‘###’.
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anti-cancer	properties,	we	were	interested	in	determining	the	
extent	to	which	it	inhibited	the	TME	(28).	EGCG	and	curcumin	
have	 proven	 potent	 antioxidant,	 immunomodulatory,	 and	
anticancer	properties	which	makes	them	particularly	relevant	
in	 the	 field	 of	 integrative	 oncology	 (29,	 30).	 Curcumin	 has	
previously	 inhibited	 tumor	 progression	 and	 angiogenesis	
in	 ovarian	 cancer	 via	 the	 nuclear	 facto-	 κB	 pathway,	 while	
EGCG	has	been	indicated	to	be	the	most	potent	anticancer	
compound	 present	 in	 green	 tea	 (31,	 32).	 While	 the	 full	
molecular	characterization	of	these	compounds	with	regards	
to	 cancer	 remains	 to	 be	 explored,	 our	 results	 are	 affirmed	
considerably	by	the	existing	literature	on	the	subject.
Our	studies	reflected	a	decrease	in	both	cytokine	expressions	
due	 to	HF-1	addition.	 It	 is	 to	 be	noted	 that	 this	 finding	 can	
be	 extended	 to	 further	 studies	 conducted	 in	 a	 similar	 vein.	
These	can	 include	 the	consideration	of	varied	experimental	
coordinates:	gene	expression	studies,	other	cytokine	studies	
involved	 in	 cancer	 processes,	 and	 delving	 into	 cancer’s	
immunosuppressive	properties.

RESULTS
	 This	 experiment	 aimed	 to	 investigate	 whether	 MCF-7	
and	BM-MSC	interactions	corresponded	to	high		TGF-β	and	
VEGF	expression	and	if	HF-1	lowered	the	TGF-β	and	VEGF	
expression	
	 VEGF	concentration	across	groups	while	Figure 2 shows	
the	fold	difference	in	VEGF	expression	between	the	groups.	
VEGF	 was	 doubled	 in	 the	 groups	 where	 BM-MSCs	 were	
co-cultured	 with	 MCF-7	 and	 were	 treated	 with	 MCF-7-CM	
(Figure 1).	 VEGF	was	 95.6	 times	 higher	 in	 BM-MSCs	 co-
cultured	with	MCF-7	(Figure 2).		
	 However,	 there	 was	 a	 marked	 difference	 in	 the	 overall	
expression	 in	 the	 two	 cytokines,	 reflected	 by	 Figure 3,	
exhibiting	TGF-β	concentrations.	TGF-β	was	significantly	less	

(p	value	<	0.001)	in	BM-MSCs	but	was	in	abundance	in	the	
BM-MSCs	cultured	in	MCF-7	CM	(Figure 3).	From	Figure 4, 
displaying	the	fold	differences	between	the	groups	in	TGF-β	
expression,	the	value	of	BM-MSCs	treated	with	MCF-7	was	
146	times	higher	than	in	the	control	group	(Figure 4).		
	 For	 both	 cytokines,	 expression	 in	MCF-7	 and	 BM-MSC	
control	 groups	 were	 minimal.	 Moreover,	 TGF-β	 and	 VEGF	
production	was	much	higher	in	the	groups	where	MCF-7	cells	
were	co-cultured	with	BM-MSCs	(p	value	<	0.001),	indicating	
that	 the	soluble	 factors	secreted	by	MCF-7	cells	stimulated	
differentiation	of	BM-MSCs	into	CAFs.	
	 Our	 results	 demonstrated	 an	 increased	 production	 of	
VEGF	and	TGF-β	from	BM-MSC	grown	in	MCF-7	CM,	thereby	
supporting	the	hypothesis	of	CAF	formation.	The	use	of	HF-1	
diminished	concentrations	of	both	TGF-	β	and	VEGF,	as	seen	
by	significantly	 lower	concentrations	of	both	cytokines	post-
treatment.	 The	 p	 value	 <	 0.001	 mirrors	 extreme	 statistical	
significance	of	 the	obtained	findings.	This	substantiated	our	
second	hypothesis	significantly.	

DISCUSSION
	 In	 this	study,	 the	Marquis	 reagent	 tested	with	 the	poppy	
seThis	study	was	conducted	to	determine	the	effects	of	co-
culture	between	MCF-7	and	BM-MSCs	by	quantifying	TGF-β	
and	VEGF	concentrations.	Similar	results	were	found	in	the	
group	treated	with	HF1.
Our	 results	 demonstrated	 substantial	 backing	 for	 both	
hypotheses.	For	the	purposes	of	clarity,	we	will	be	discussing	
the	 implications	 of	 the	 obtained	 results	 for	 each	 individual	
cytokine.	
	 We	demonstrated	that	the	highest	concentration	of	TGF-β	
was	 obtained	 in	 BM-MSCs	 grown	with	 the	MCF-7,	 thereby	
promoting	 tumorigenesis	 (33-35).	Our	 research	 shows	 that	

Figure 4: Bar	graph	showing	the	fold	difference	in	TGF-β	expression	
across	 different	 groups	 and	 the	modulatory	 effect	 of	HF-1	 (n	 =	 3,	
mean	±	SEM).	BM-MSC	+	MCF-7-CM	and	BM-MSC	+	MCF-7	groups	
showed	significant	increase	(p	<	0.001),	shown	as	‘***’	with	respect	
to	BM-MSC	control	and	was	significantly	lowered	(p	<	0.001)	by	HF-
1,	shown	as	‘###’.	(n	=	3)

Figure 3: Bar	 graph	 showing	 TGF-β	 concentration	 in	 different	
groups	 and	 the	 modulatory	 effect	 of	 HF1	 (N=3,	 mean±SEM).	
BMSC+MCF-CM	 and	 BMSC+MCF-7	 groups	 showed	 significant	
increase	(p<0.001),	shown	as	‘***’	with	respect	to	BMSC	control	and	
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it	 is	 potentially	 possible	 that	 the	 cytokines	 expressed	 by	
malignant	 MCF-7	 cells	 can	 be	 linked	 to	 the	 differentiation	
over	 time	of	BM-MSCs	 into	CAFs,	as	marked	by	 increased	
expression	 of	 TGF-β	 and	 VEGF	 cytokines.	 This	 strongly	
supports	 the	 hypothesis	 that	 soluble	 factors	 and	 signaling	
molecules	 facilitate	 BM-MSC	 differentiation	 into	 tumor	
progressor	phenotypes.
	 The	 low	 amounts	 of	 TGF-β	 found	 in	 BM-MSCs	 can	 be	
attributed	to	the	amelioration	of	their	regenerative	properties	
including	 their	 characteristic	 maintenance	 of	 the	 ECM	
alongside	 their	 increased	 self-proliferation,	 evident	 in	 a	 rat	
model	of	lipopolysaccharide-induced	acute	lung	injury	(36).	In	
this	manner,	the	diminished	concentrations	of	TGF-β	allows	
for	 the	 rejuvenation	 of	 the	 defining	 BM-MSC	 regenerative	
capacity	(37).	The	difference	between	expression	of	TGF-β	in	
MSC	and	MCF-7	can	potentially	be	attributed	to	the	difference	
between	 the	 rates	 of	 division	 of	 both	 cells,	 apart	 from	 the	
general	higher	TGF-β	by	growing	cancer	cells	(38).
	 These	 results	 were	 echoed	 in	 the	 case	 of	 our	 tests	
for	 VEGF	 expression	 in	 the	 cells,	 with	 the	 CM	 group	
demonstrating	the	highest	concentrations	of	VEGF.	According	
to	 literature,	 this	 finding	 is	 justified	 on	 the	 basis	 that	 in	 the	
presence	of	migrating	BM-MSCs	in	the	TME,	the	MCF-7	cells	
morph	 into	 a	 significantly	more	aggressive	phenotype	 (39).	
Cancer	has	proven	to	recruit	MSCs	into	the	TME	to	facilitate	
vasculogenesis,	 thereby	 accelerating	 the	 spread	 of	 cancer	
and	 the	 further	amelioration	of	 the	TME	(40,	41).	Given	 the	
considerable	regenerative	properties	of	BM-MSCs,	the	VEGF	
concentration	observed	in	this	case	is	justified.	However,	the	
VEGF	 concentration	 in	MCF-7	 alone	 is	 lower	 than	 the	 co-
culture	group,	albeit	significant,	which	can	be	attributed	to	the	
intrinsic	migratory	properties	of	cancer.
	 Our	 results	 conclusively	 support	 our	 hypotheses	 via	
showing	that	HF-1	inhibits	VEGF	and	TGF-β	concentrations	
across	all	applied	groups.	HF-1	predominantly	is	comprised	of	
EGCG	and	turmeric,	potent	phytochemicals	which	are	under	
study	 for	 their	 future	 employment	 in	 integrative	 oncology	
studies	(42).	A	study	by	Wang	et	al.	demonstrated	that	EGCG	
and	turmeric	co-interactions	ameliorated	the	other’s	intrinsic	
anticancer	 properties,	 as	 observed	 (43).	 Both	 compounds	
possess	benzyl	rings	and	hydrophobic	groups	(-CH3)	which	
are	 key	 facets	 of	 their	 anti-proliferative	 capacities	 (44,	 45).	
The	 high	 electrophilicity	 thus	 conferred	 to	 each	 molecule	
independently	has	been	speculated	 to	aid	 in	prompting	 the	
apoptotic	 cascade	 in	 tumor	 cells	 by	 chelating	 with	 DNA	
via	 ions	 such	as	Cu2+,	Ni2+,	 and	Fe2+	 (46,	 47).	While	 the	
efficacy	 of	 HF-1	 can	 be	 attributed	 to	 these	 properties	 to	 a	
large	extent,	further	investigations	are	necessary	to	truly	map	
out	the	interactions	between	EGCG,	turmeric,	and	the	TME	
(48).	
	 Insofar	 as	 our	 study	 has	 demonstrated	 that	 addition	 of	
HF-1	 has	 a	 positive	 counter	 effect	 against	MCF-7	 cell	 and	
mesenchymal	 interactions	based	on	 two	cytokines,	multiple	
other	elements	have	yet	 to	be	 included	 to	 truly	emulate	 the	
complexity	of	TME	interactions.	Further	studies	can	 include	

exploring	 not	 only	 cytokine	 but	 also	 gene	 expressions	 to	
arrive	at	a	more	 realistic	portrayal	of	 the	 true	complexity	of	
cancer	 interactions	 in	 vivo.	 Furthermore,	 experimentation	
with	different	cancer	cell	types	would	allow	for	an	enhanced	
scope	of	the	current	study.

MATERIALS AND METHODS
Cell lines
	 The	MCF-7	breast	cancer	cell	 lines	used	were	obtained	
from	 the	National	Centre	 of	Cell	 Science	 (NCCS)	 in	Pune,	
Maharashtra,	and	were	cultured	in	Dulbecco's	Modified	Eagle	
Medium	(DMEM)	(Invitrogen)	with	10%	Fetal	Bovine	Serum	
(FBS)	 (Invitrogen).	 We	 maintained	 cells	 in	 an	 incubator	 at	
37oC	and	5%	CO2	saturation.	Cells	used	were	in	the	range	of	
passage	5-9	for	conducting	the	experiments.	
The	BM-MSCs	were	grown	in	house	on	3D	collagen	scaffolds	
(in-house),	which	mimics	a	3D	environment.	The	environment	
that	the	scaffold	provided	was	similar	to	the	TME.

IC50 Calculation
	 The	 IC50	 value	 for	 HF-1	 was	 arrived	 at	 using	 IC50.tk	
software	(49).	
	 IC50	 value	 for	 HF-1	 was	 1.2mg/mL.	 Half	 the	 IC50 
concentration	 was	 utilized	 for	 the	 experiment	 to	 observe	
cytokine	 expressions	 as	 higher	 concentrations	 would	 have	
led	to	cell	cytotoxicity.

Preparation of MCF-7 Conditioned Media (MCF-7-CM) 
and BM-MSC Conditioned Media
	 (BM-MSC-CM)	 and	 MCF-7	 with	 herbal	 formulation	
conditioned	 medium	 (MCF-7-HF-1-CM)	 MCF-7	 cells	 were	
grown	 in	 10%	 FBS	 (FBS;	 Invitrogen)	 in	 DMEM	 (DMEM;	
Invitrogen)	 until	 they	 achieved	a	 high	 degree	 of	 confluency	
(~75%).	The	media	was	not	changed	for	a	period	of	18h,	 to	
induce	enhanced	cytokine	expressions,	prior	to	the	formation	
and	 collection	 of	 the	 MCF-7-CM.	 The	 supernatant	 was	
collected,	centrifuged	for	10	minutes	at	1500	rpm,	and	stored	
at	-80oC.	BM-MSC-CM	was	prepared	in	the	same	manner.
	 For	 the	 preparation	 of	 MCF-7-HF-1-CM,	 80%	 confluent	
MCF-7	cells	were	cultured	with	HF-1	(0.6	mg/mL;	half	of	IC50	
value	on	MCF-7)	for	48h	in	10%	FBS	containing	DMEM.	The	
cells	were	washed	and	fresh	DMEM	without	FBS	was	added	
for	18h.	The	medium	was	collected,	centrifuged	at	1500	rpm	
for	10	min.	The	supernatant	was	stored	at	-80oC	until	use.

Herbal Compound (HF-1) Preparation 
	 We	placed	0.2	g	of	HF-1	powder	mixed	with	1	mL	of	water	
at	50˚C	for	30	minutes,	vortexed,	and	centrifuged	at	3000	rpm	
for	20	min.	After	 syringe	filtration,	 the	extract	was	used	 for	
experimentation.	

Cell Treatment 
The	following	groups	were	formed	and	cultured	for	48h.	
	 The	MCF-7	control	group	had	MCF-7	cells	cultured	in	10%	
FBS	containing	DMEM	while	the	BM-MSC	control	group	had	
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BM-MSCs	cultured	in	10%	FBS	containing	DMEM.	
MCF-7	 cells	 were	 co-cultured	 with	 BM-MSCs	 in	 10%	 FBS	
containing	 DMEM.	 The	 condition	 media	 group	 comprised	
MCF-7	 cells	 cultured	 in	 50%	 BM-MSC-CM	 and	 50%	 of	
10%	FBS	 containing	DMEM.	Furthermore,	BM-MSCs	were	
cultured	in	50%	MCF-7-CM	and	50%	of	10%	FBS	containing	
DMEM
	 Lastly,	 the	 HF-1	 group	 consisted	 of	 MCF-7	 cells	 co-
cultured	with	BM-MSCs	in	10%	FBS	containing	DMEM	with	
HF-1:	 BM-MSCs	 cultured	 with	 50%	 MCF-7-HF-1-CM	 and	
50%	of	10%	FBS	containing	DMEM.	MCF-7	cells	were	also	
grown	in	HF-1	media.

Cytokine determination 
	 The	supernatants	were	thawed	and	used	for	determining	
cytokine	levels.	Not	more	than	two	freeze	thaw	cycles	were	
performed	 for	 each	 sample.	 Levels	 of	 VEGF	 and	 TGF-β	
was	 analyzed	 using	 Enzyme	 Linked	 Immunosorbant	 assay	
(ELISA)	(RayBio).	
	 To	 the	 precoated	 wells,	 100	 µL	 of	 standards,	 samples	
and	blank	were	added	and	kept	for	incubation	at	37°C	for	90	
minutes.	The	liquid	was	removed	and	100	µL	of	Biotinylated	
Detection	Antibody	was	added	 to	all	 the	wells	 and	 kept	 for	
incubation	at	37°C	for	1	hour.	
	 Post	washing	 thrice,	100	µL	of	HRP	Conjugate	Solution	
was	added	to	the	wells	and	kept	for	incubation	at	37°C	for	30	
minutes.	The	plate	was	washed	five	times,	post	which	90	µL	
of	substrate	was	added	and	kept	at	37°C	for	15-30	minutes.	
Finally,	50	µL	of	stop	solution	was	added	to	all	the	wells	and	
determined	the	Optical	Density	values	of	the	samples	at	450	
nm	using	Lisa	Quant	ELISA	Plate	Reader.	
	 The	 concentration	 of	 each	 growth	 factor	 in	 pg/mL	 was	
estimated	using	the	equation	y	=	mx	+	c	obtained	after	plotting	
the	standard	and	blank	values	in	MS	Excel.	We	used	sample	
diluent	as	negative	control,	standards	as	positive	control,	and	
the	 OD	 values	 of	 the	 samples	 were	 subtracted	 with	 blank	
values.	

Statistical analysis
	 GraphPad	Prism	software	was	used	to	analyze	the	data.	
A	one-way	ANOVA	followed	by	Tukey’s	 test	was	performed	
to	 find	 the	 statistical	 difference	 between	 the	 groups.	 The	
experiment	was	performed	at	 three	 independent	times.	The	
data	were	represented	as	mean	±	SEM.
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