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Classifying and mapping tree species provides an efficient 
and effective way to construct carbon budget models, manage 
forest inventories, and protect forest resources (2). Accurate 
maps and classification are also necessary for effectively 
monitoring drought and fire conditions, which could pose a 
severe threat to a forest ecosystem (2, 3). These maps could 
potentially help firefighters grasp a better understanding of 
a forest’s vegetation and characteristics, which are essential 
variables to consider when attempting to predict and assess 
the behavior of an active fire.

Remote sensing is a perfect technique for such tasks, as 
it provides synoptic views and information over large areas 
at very high resolutions (4). Specifically for tree species 
classification, remote sensing through high spectral bands 
of imagery provides the highest resolution and detail for tree 
species classification. As a result, airborne hyperspectral 
light detection and ranging (LiDAR) imagery satisfies the 
optimal conditions for sensors best suited for tree species 
classification (5). However, airborne LiDAR is not a practical 
source of imagery due to its high costs and limited availability. 
As a result, alternative sources of remotely sensed imagery 
must be considered. Multispectral satellite imagery, which 
is widely available, stands as a possible alternative to 
hyperspectral LiDAR imagery, despite its inability to reach 
the detail and spectral band variety of hyperspectral LiDAR 
imagery (4, 6). The terms hyperspectral and multispectral refer 
to the electromagnetic spectral band variety of the image (6). 
Hyperspectral imagery encompasses more spectral bands, 
making it more sophisticated than multispectral imagery (6).

Both LiDAR and multispectral satellite imagery are among 
the most widely used data sources in remote sensing, which 
occasionally involves the use of machine learning. The 
application of machine learning in classification algorithms 
used in remote sensing has been increasing in popularity 
because of its processing power and ability to automate the 
classification processes (2). The algorithms used have been 
divided into two subcategories: supervised and unsupervised 
techniques (2). Unsupervised learning algorithms train by 
making predictions based on the data and actively adjusting 
for the correct answer, while supervised learning algorithms 
train from labeled inputs and outputs (2).

These algorithms have become increasingly important for 
general object classification through hyperspectral imagery 
and multispectral satellite imagery. For example, the random 
forest (RF) supervised machine learning algorithm has 
been used to classify land cover, map ecological zones and 
landslides, create forest canopy fuel maps for fire forecasting, 
and analyze urban tree species inventories (2, 3). In these 
applications, RF has been used with both hyperspectral data 
and multispectral satellite imagery because of the large number 
of input variables provided for the algorithm and RF being 
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SUMMARY
Recent events indicate an uptick in forest fires in 
the western United States, prompting cities and 
organizations to develop a better understanding 
of forests and how to manage them. Tree species 
classification is important for forest management 
and carbon sequestration analysis. Currently, 
remote sensing stands as the prevalent method for 
the classification of tree species, land cover, etc. 
Researchers often use machine learning techniques 
for classification and general remote sensing. We 
hypothesized that it is possible to classify forest tree 
species with high classification accuracy using solely 
RGB values as the inputs for the machine learning 
models. We experimented with different machine 
learning algorithms such as Random Forest (RF), 
k-Nearest Neighbors (kNN), Gradient Boosting (GB), 
and Linear Discriminant Analysis (LDA) to classify 
forest tree species, specifically through multispectral 
Landsat 8 satellite imagery. Each algorithm was 
trained and validated using the same dataset and 
satellite imagery of the same region. Our findings 
indicated RF had the highest classification accuracy 
of 95.4% for validation on the same general region 
it trained on. kNN, GB, and LDA had classification 
accuracies of 81.6%, 76.4%, and 64.6%, respectively. 
Based on these results, we concluded that RF is the 
more accurate algorithm for classifying tree species 
through RGB satellite imagery. Our findings also 
indicate that model training and inference on the 
same general region result in higher classification 
accuracy. However, as the inference region changes, 
the classification accuracy reduces. In such cases, 
additional predictor variables, including trunk 
diameter, crown shape, and vegetation indices, could 
be introduced to improve classification accuracy.

INTRODUCTION
Recent increases in the prevalence and frequency of 

forest fires in the western United States cause reductions 
in forest cover and the release of sequestered carbon (1). 
Cities across the United States are implementing climate 
action plans that call to establish a baseline and periodically 
update their greenhouse gas inventories (2). City officials 
and researchers are also looking to better understand forest 
structure and forest changes over time for various mitigations, 
such as reducing high-intensity burns during forest fire events 
(3).
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relatively insensitive when faced with small sample sizes (i.e., 
the amount of training samples for each class is dramatically 
smaller than the dimension of the feature space) (4, 7, 8). 
Nevertheless, there have been numerous studies where RF 
has performed successfully with LiDAR and spectral data (3, 
7–9). As for the other algorithms, k-nearest neighbors (kNN), 
gradient boosting (GB), and linear discriminant analysis (LDA) 
have all been used for classification through hyperspectral 
imagery and multispectral satellite imagery to perform similar 
tasks (10–12).

While researchers in the past have used machine learning 
algorithms to classify forest tree species through satellite 
imagery, there lacks a simpler approach, using only red, 
green, and blue (RGB) strength values and a comparison 
of performance between these algorithms. In this study, 
we compared the RF, kNN, GB, and LDA machine learning 
algorithms for the classification of forest tree species through 
multispectral satellite imagery and determined if this is 
possible with high classification accuracy. The algorithms 
categorized as supervised are RF, kNN, and GB, while 
LDA is the only unsupervised machine learning algorithm. 
Generally, supervised learning is more efficient with labeled 
data, which is why RF, kNN, and GB could potentially prevail 
as better methods for our type of classification. We also 
believed that our machine learning models would yield a 
high classification accuracy because of their performance in 

similar classifications in past research (2–9). While object-
based classification approaches have proven to be more 
successful than pixel-based classification approaches, our 
work examined a more practical pixel-based classification 
approach with various algorithms to determine the best 
classification algorithm for this scenario. We trained each 
model to classify the forest tree species of a certain plot 
based on the strength of the red, green, and blue bands of 
the plot’s respective satellite imagery pixel. The results of our 
study show RF exhibited the highest classification accuracy 
when training and validating on the same general region and 
the highest mean classification accuracy when training and 
validating across regions. kNN, GB, and LDA exhibited mean 
classification accuracies definitively lower than RF when 
training and validating across regions. Potential reasons why 
our models did not perform better include the large scale of 
our data, complex forest structure, or lack of specific tree 
data.

RESULTS
We conducted our study on the Greater Lake Tahoe region/

El Dorado National Forest, California. Our machine learning 
analysis was conducted on this region using tree species 
data from the U.S. Department of Agriculture (USDA) Forest 
Service and satellite imagery from the Landsat 8 Operational 
Land Imager (OLI). The bounds of the satellite image were 

Figure 1: Confusion matrix results for Random Forest (Training Region, Testing Region). The y-axis represents the true instances 
of the tree species designated in Table 2, and the x-axis represents the instances of the same tree species predicted by the algorithm. 
The overall classification accuracies for train-test pairs (R1, R1), (R2, R2), (R1, R2), and (R2, R1) were 95.4%, 94.7%, 73.5%, and 59.3% 
respectively. The mean classification accuracy was 80.7%.
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very large, encompassing cities, dry grasslands, and desert 
environments, which could confound our machine-learning 
models into a wrongful or needless classification. To avoid 
this, we cropped the dataset to the two further subregions 
within the larger image, with each region containing a very 
similar forest structure and dynamics. Not only was the 
region split necessary for reducing the processing load on 
our models and increasing performance, but it also allowed 
us to see if the model was scalable on a different, yet similar, 
region, even though the model was trained on a separate 
region that was not included in the inference. Region 1 (R1) 
was in the Northern Greater Lake Tahoe region, while Region 
2 (R2) was in the El Dorado National Forest. 

We defined the mean-classification accuracy as the 
average of the classification accuracy between training on 
Region 1 and validating on Region 1 (train-test pair of R1, 
R1), training on Region 2 and validating on Region 2 (R2, R2), 
training on Region 1 and validating on Region 2 (R1, R2), and 
training on Region 2 and validating on Region 1 (R2, R1). For 
training and testing on the same region, a random sample of 
data points was subset for solely testing and excluded from 
training to avoid overfitting. We trained our models to classify 
the forest tree species of a certain plot based on the strength 
of the red, green, and blue bands of the plot’s respective 
pixel from the satellite image. For each model, we calculated 
the mean-classification accuracies. We then constructed a 

confusion matrix for each train-test pair validation of each 
model to determine the tree species with the highest mean 
classification accuracies among all algorithms.

Our findings show RF had the highest mean classification 
accuracy of 80.7%. For training and validation on the (R1, 
R1) and (R2, R2) train-test pairs, RF had classification 
accuracies of 95.4% and 94.7%, respectively. For training and 
validation on the R1, R2 and R2, R1 train-test pairs, RF had 
classification accuracies of 73.5% and 59.3%, respectively. 
The classification accuracies for all four train-test pairs were 
the highest out of the three other algorithms (Figure 1).

kNN had a mean classification accuracy of 61.5%, lower 
than RF. kNN had classification accuracies of 81.6% and 
62.7% for training and validation on the (R1, R1) and (R2, R2) 
train-test pairs, respectively. For training and validation on the 
(R1, R2) and (R2, R1) train-test pairs, kNN had classification 
accuracies of 56.2% and 45.3%, respectively (Figure 2).

GB performed slightly worse than kNN, having a mean 
classification accuracy of 58.9%. For training and validation 
on the (R1, R1) and (R2, R2) train-test pairs, GB had 
classification accuracies of 76.4% and 77.9%, respectively. 
GB classification accuracies were 39.8% and 41.3% for 
training and validation on the (R1, R2) and (R2, R1) train-test 
pairs, respectively (Figure 3).

LDA performed the worst out of the three other algorithms, 
with the lowest mean classification accuracy of 49.4%. LDA 

Figure 2: Confusion matrix results for k-Nearest Neighbor (Training Region, Testing Region). The y-axis represents the true instances 
of the tree species designated in Table 2, and the x-axis represents the instances of the same tree species predicted by the algorithm. 
The overall classification accuracies for train-test pairs (R1, R1), (R2, R2), (R1, R2), and (R2, R1) were 81.6%, 62.7%, 56.2%, and 45.3% 
respectively. The mean classification accuracy was 61.5%.
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had classification accuracies of 64.6% and 62.6% for training 
and validation on the (R1, R1) and (R2, R2) train-test pairs, 
respectively. For training and validation on the (R1, R2) and 
(R2, R1) train-test pairs, LDA had classification accuracies of 
43.0% and 27.4%, respectively (Figure 4).

Across all algorithms, the classification accuracies for 
training and testing on different regions (train test pairs of R1, 
R2, and R2, R1) were lower than the classification accuracies 
for training and testing on the same region (train test pairs of 
R1, R1, and R2, R2) (Figure 5). In addition, the classification 
accuracies for individual tree species were lower when training 
and testing on different regions (Figure 5). Altogether, our 

results support the conclusion that tree species classification 
with high classification accuracy using solely RGB values 
is possible when training and validating machine learning 
algorithms on the same general region and that RF performs 
with higher classification accuracy compared to GB, kNN, 
and LDA for this type of classification. 

A potential explanation for the low classification accuracies 
of our models could be the minimal distinction between RGB 
strength values pixels between different tree species, which 
is best observed when looking at the final collapsed and 
concatenated dataset between the tree species reference 
data and satellite imagery pixel data (Table 1).

Figure 3: Confusion matrix results for Gradient Boosting (Training Region, Testing Region). The y-axis represents the true instances 
of the tree species designated in Table 2, and the x-axis represents the instances of the same tree species predicted by the algorithm. 
The overall classification accuracies for train-test pairs (R1, R1), (R2, R2), (R1, R2), and (R2, R1) were 76.4%, 77.9%, 39.8%, and 41.3% 
respectively. The mean classification accuracy was 58.9%.

Table 1: Example rows of the final concatenated and collapsed dataset used for machine learning analysis. The algorithms use the 
values of the Blue, Green, and Red columns to predict the label in the Tree species column. The designated tree species and RGB strength 
values come through a concatenation of the satellite imagery and the USDA Forest Service TreeMap2016. *Geo coordinates in NAD83 Conus 
Albers. ** Strength of color bands in Landsat 8 satellite imagery using 16-bit digital notation.
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DISCUSSION
In order to study the applicability of machine learning in tree 

species classification through satellite imagery, we tested four 
widely-utilized machine learning algorithms: RF, kNN, GB, and 
LDA. Among them, we found the RF classification algorithm to 
have the highest precision compared to the other algorithms. 
Conversely, the algorithm with the lowest performance was 
LDA. We also found that training and testing on the same 
general region result in higher classification accuracies than 
training and testing on different regions across all algorithms. 
For instance, when validating the R2-trained RF model, the 
classification accuracy for validation on R2 was 36.1% higher 
than validation on R1. Across all algorithms, the percentage 
drop-off in classification accuracy between validation on 
the same and different regions ranged from 17.4-36.6%. In 
addition, the classification accuracies for models validated on 
different regions were remarkably lower than models training 
on the same region, with no model resulting in a classification 
accuracy above 74%. This demonstrates that the algorithms 
perform with higher precision when training and validating on 
the same general region. 

There could be many underlying reasons for such a 
substantial drop-off in the classification accuracy when 
validating on a different region. A few possible reasons 
include the size of our cropped datasets, the complex forest 
structure of the study region, a top-viewed pixel-based 

classification approach for specific tree species based on a 
large plot of land, and, as mentioned, very minimal distinction 
and delineation between RGB strength values pixels between 
different tree species. 

The strength values of the red, green, and blue bands 
of satellite imagery for PS and QC tree species have little 
distinction, with the 16-bit digital notation having at most 
a difference of 700 among all three RGB strength values 
(Table 1). Such minute differences between tree species 
were widely spread across the dataset, which increases the 
probability of misclassification from the machine learning 
algorithms. Adding more data, such as vegetation and land 
cover indexes, could draw a stronger distinction between 
separate tree species, regardless of the environment the tree 
is surrounded by, and potentially increase the classification 
accuracy of the models. 

While pixel-based classification is a viable method for 
classifying three-dimensional objects, numerous studies 
have shown object-based classification prevails as a 
better method, especially for tree species and land cover 
classifications. In addition, pixel-based classification fails to 
account for spatial patterns in a three-dimensional object, 
limiting its power and accuracy for classification compared to 
object-based classification (4, 19, 20). For instance, object-
based classification allows for the utilization of crown shape, 
height, and trunk dimensions, while pixel-based classification 

Figure 4: Confusion matrix results for Linear Discriminant Analysis (Training Region, Testing Region). The y-axis represents the 
true instances of the tree species designated in Table 2, and the x-axis represents the instances of the same tree species predicted by the 
algorithm. The overall classification accuracies for train-test pairs (R1, R1), (R2, R2), (R1, R2), and (R2, R1) were 64.6%, 62.6%, 43.0%, and 
27.4% respectively. The mean classification accuracy was 49.4%.
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using solely RGB strength values only encompasses color 
variation and possibly crown delineation between trees. An 
object-based classification approach would not only allow 
for more predictor variables to be used and draw a stronger 
distinction between tree species but also isolate the tree to 
solely spatial patterns/features. In addition, this approach 
will substantially subsidize the influence of the surrounding 
environment on the model’s prediction, potentially increasing 
the classification accuracy for training and testing on different 
general regions. Past research has demonstrated success 
with applying satellite imagery to object-based approaches, 
but it required predefining object-specific attributes in 
complement with satellite imagery (4). Nevertheless, when 
possessing the necessary spectral band variety, satellite 

imagery does present the scope for the inclusion of vegetation 
indices and chlorophyll content as predictor variables, which 
could potentially improve classification accuracy by increasing 
specie to specie distinction (4, 21).

Using RGB satellite imagery alone to classify forest tree 
species did not yield favorable results as the region changes 
and expands, but combining RGB satellite imagery and 
other data points, such as vegetation indexes, foliage height 
rasters, and more bands of satellite imagery, could potentially 
yield a more accurate model. By bringing in more variables, 
we can potentially draw a stronger distinction among tree 
species and isolate them from their surrounding environment, 
which will ultimately strengthen our models to classify distinct 
tree species. 

A possible alternative to using satellite imagery would 
be LiDAR imagery. Past research has demonstrated 
that classification using LiDAR imagery results in higher 
classification accuracies compared to classification using 
satellite imagery (21, 22). LiDAR imagery allows for models 
to leverage metrics such as tree height, trunk diameter, and 
crown shape, which will help draw a more robust distinction 
between tree species rather than solely RGB values without 
being too heavily influenced by the surrounding climate 
and environment. However, LiDAR imagery is not a largely 
available data source and requires expensive infrastructure to 
be put in place for data collection. In addition, data on object-
specific attributes of tree species is not largely available and 
requires field data collection, which also requires expensive 
infrastructure and resources (4). At the same time, LiDAR data 
and object-based classification methods would be a far more 
robust approach to classifying tree species. With adequate 
infrastructure and resources, this approach is feasible.

When processing the data for analysis, we ran into 
numerous memory issues because of the size and scale of our 
datasets. To bypass this issue, we initially experimented with 
incremental learning and k-fold cross-validation as a possible 
solution, but our system continued to run into memory issues. 
Especially for studies concerning large datasets, incremental 
learning allows for the model to be trained from a series of 
batches, compared to the entire dataset at once, which could 
pose issues depending on the strength of the system used 
for data analysis and processing. Specifically, incremental 
learning is learning through streaming data, which arrives 
over time without sacrificing the model’s accuracy. As a result, 
the models’ overall accuracy when training and validating 
different general regions could potentially have improved with 
a stronger system designed for handling larger datasets and 
a successful implementation of incremental learning (23).

A potential reason LDA performed the worst out of the 
algorithms is that LDA is an unsupervised learning algorithm. 
Unsupervised learning algorithms train by making predictions 
based on the data and actively adjusting for the correct answer 
(24). On the other hand, supervised learning algorithms train 
from labeled inputs and outputs (24). For applications like 
tree species classification using labeled data, supervised 
algorithms like RF, kNN, and GB can learn through pattern 
recognition and actively measure their accuracy through loss 
functions, which the algorithms use to minimize error (24). 
This ultimately makes them more efficient than LDA, as LDA 
is not tailored for labeled data and does not actively minimize 
error (24). Therefore, the performance of LDA was not as 
strong as the supervised learning algorithms.

Figure 5: Classification accuracies for each model for individual 
tree species and train-test pairs (Training Region, Testing 
Region). The spider charts compare overall performance and train/
test pair-specific performance for each algorithm. The distance of 
an algorithm’s polygon’s edge to the end of the spoke reflects the 
accuracy the algorithm demonstrated for that specific label. (A) Tree 
species-specific classification accuracies for each model on all train/
test pairs. (B) Train/test pair-specific classification accuracies for 
each model (Training Region, Testing Region). 
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This study focused on experimenting with various machine 
learning algorithms to classify forest tree species through 
satellite imagery. The machine learning algorithms used 
included RF, kNN, GB, and LDA classifiers. Our models were 
trained to classify the forest tree species of a certain plot based 
on the strength of the red, green, and blue bands of a pixel from 
the satellite image. Our findings indicated that classification 
based solely on RGB values is possible with high accuracy 
when training on the same general region. RF performed 
the best, having the highest classification accuracy of 95.4% 
when training on the same general region and the highest 
mean classification accuracy of 80.7%. For all algorithms, 
however, there was a substantial decrease in classification 
accuracy when validating on a different general region. 
When trained and validated on the same general region, our 
models provide accurate classifications of forest tree species, 
which are important for carbon sequestration analysis, forest 
management, and fuel treatment. Further research that uses 
vegetation indexes, object-based classification approaches, 
or incremental learning approaches could potentially yield 
higher classification accuracies and help construct more 
robust models.

MATERIALS AND METHODS
Study Area and Data

Our region of study was located in the western United 
States, specifically the Greater Lake Tahoe region/El Dorado 
National Forest, California (39°58'N, -121°24' W). The area 
is a mix of mountainous terrain and dense temperate forest 
with elevations ranging from 0 m to 1898 m above sea level, 
which adds to the marked variance among tree species in 
the area. Our satellite image, downloaded from the United 
States Geological Survey database, was captured from the 
Landsat 8 OLI (Figure 6) (26). The tree species discussed 
in our study, which were the most prevalent in our region of 
study, are white fir (Abies concolor, AC), Pacific madrone 
(Arbutus menziesii, AM), California incense-ceda (Calocedrus 
decurrens, CD), Pacific dogwood (Cornus nuttallii, CN), 
sugar pine (Pinus lambertiana, PL), ponderosa pine (Pinus 
ponderosa, PP), Douglas fir (Pseudotsuga menziesii, PM), 
canyon live oak (Quercus chrysolepis, QC), blue oak (Quercus 
douglasii, QD), and California black oak (Quercus kelloggii, 
QK) (Table 2).

We broke up the dataset into two small subregions, one 
in the northern region and one in the southern region of the 
Greater Lake Tahoe area. We optimized our data this way 

Figure 6: Study site and location of testing regions. The image was acquired from the United States Geological Survey database and 
captured by the Landsat 8 OLI satellite.
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because the scale of the study site was too large to train and 
cross-validate our machine learning models. The bounds 
of the full satellite image also contained non-forested land, 
such as shrubland, agricultural land, urban areas, etc., which 
could confound our models and lead to misclassification. In 
addition, we specifically selected the two subregions in the 
northern and southern regions of the Greater Lake Tahoe 
region because it allowed us to see if the models were scalable 
on very similar, but not identical, regions. Both regions had 
a similar distribution of tree species, with the discussed tree 
species being the most prevalent in the regions. The reason 
for the distribution of tree species not being identical across 
both regions is that the distribution of tree species varies due 
to environmental factors such as altitude, mean temperature, 
forest density, weather patterns, etc. (Figure 6) (13). 

Our ground truth data came from the USDA Forest 
Service TreeMap2016, a tree-level model of the forests in the 
conterminous United States (14). The authors of the dataset 
matched Forest Inventory and Analysis plot data to a 30x30m 

raster grid. The dataset comprises a raster map GeoTIFF file, 
which contains plot identifiers for each pixel, and a TreeMap 
table CSV file that, when referenced to the plot identifier in 
the raster data, can report the most prevalent tree species for 
that plot (14).

Preprocessing and Data Formatting
The bands of satellite imagery we used for our analysis 

were the second band (blue wavelength, 450– 510 nm), third 
band (green wavelength, 530–590 nm), and fourth band (red 
wavelength, 640–670 nm). The image had a resolution of 
30 meters, which is the default resolution for Landsat 8 OLI 
satellite imagery. To create an RGB satellite image that we 
could input into our machine learning models to classify the 
tree species in the area, we concatenated and overlaid the 
bands of imagery into a single GeoTIFF image. 

To prevent challenges while data processing, we also 
re-projected the satellite imagery, formerly onto the WGS84 
coordinate reference system (CRS), to match the CRS of the 

Table 2: The distribution of tree species in the regions of study. The total number of trees of the selected species in R1 and R2 is also 
included. The data were imputed from the Forest Inventory and Analysis database, which the USDA Forest Service matched onto a raster 
grid. We processed the raster data of our regions of study and computed the distributions for the most prevalent tree species in the regions. 
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TreeMap2016 raster image, which is on the NAD83 Conus 
Albers CRS. In addition, we cropped the dataset to match the 
bounds of the satellite image, considering the TreeMap2016 
dataset contained data on the entire conterminous United 
States. Due to the bounds of the full satellite image 
encompassing non-forested land and our system running into 
image processing constraints, we cropped the dataset to the 
two further subregions within the larger image. 

To prevent data imbalances and an uneven dataset, which 
could confound our machine learning models, we balanced 
our datasets using random undersampling. Random 
undersampling balances an uneven dataset by keeping all 
data points in a minority class and decreasing the size of the 
majority class to match the size of the minority class (25). The 
data points that are removed from the majority classes are 
chosen at random (25).

Classification
For each machine learning algorithm, we used a cross-

validation approach. We trained our models on Region 1 and 
validated on Region 1 (train-test pair of R1, R1), trained on 
Region 2 and validated on Region 2 (train-test pair of R2, R2), 
trained on Region 1 and validated on Region 2 (train-test pair 
of R1, R2), and trained on Region 2 and validated on Region 1 
(train-test pair of R2, R1). For training and testing on the same 
region (train-test pairs of R1, R1, and R2, R2), we subset a 
random sample of data points solely testing and excluded this 
sample from training to remove the possibility of overfitting. All 
classification and data processing was conducted in Google 
Colab using Python 3.6.

For our machine learning analysis, we used pixel-based 
classification methods to classify forest tree species through 
satellite imagery. Our inputs for our models were the strengths 
values of the red, green, and blue bands of satellite imagery 
represented as a 16-bit digital notation. All classification 
models were trained and validated using the Python library 
scikit-learn version 1.2.1.

We started by using the RF classifier. RF is a non-
parametric ensemble learning algorithm consisting of a large 
number of decision trees, which enhances traditional decision 
trees (4, 15). An individual bootstrapping sample (sampling 
with replacement) is utilized to construct each decision tree (4, 
15). At each node of the tree, the split determination is based 
on the Gini criterion (4, 15). With standard decision trees, 
nodes are split by the variable that provides the best split or 
the highest decrease in Gini (4, 15). However, RF randomly 
selects a subset of variables at each node and chooses the 
best splitting variable (4, 15). New data are classified from 
a majority vote among the classification outcomes of all 
constructed decision trees (4, 15). For determining a rough 
estimate of the classification error, the out-of-bag data (OOB), 
the samples not in the bootstrapping sample, are used (4, 15). 
With the OOB dataset, each decision tree is used to classify 
the samples (4, 15). Finally, for each sample in the original 
data set, the majority vote of the corresponding decision trees 
is compared with the truth labels, resulting in an estimate of 
the misclassification rate (4,15). For our model, we set our 
parameters such that warm_start=False, n_estimators=100, 
and the max_depth=100.

We also applied the kNN classifier. kNN was developed 
from the need to perform discriminant analysis when 
reliable parametric estimates of probability densities are 

difficult to determine or unknown (16). It is a nonparametric 
learning algorithm that makes no initial assumptions about a 
primary dataset (16). The classification involves classifying 
an unknown sample based on the classifications of the 
neighboring samples (16). The optimal choice of the chosen 
number of neighbors (k) depends on the metrics used for 
classification and regression purposes (16). For our analysis, 
we used 1000 neighbors to classify tree species because of 
our data’s large scale and wide range of possible class labels 
(16).

Another tree-based ensemble algorithm we applied was 
the GB algorithm. GB is a powerful ensemble algorithm that 
employs decision trees to construct the classifiers (10, 17). In 
addition, the algorithm applies iteration by adding new models 
to correct weaknesses found in former models, improving 
the overall performance accuracy of the model (10, 17). 
Essentially, a decision tree or linear regression that improves 
the model most is added to an ensemble at each iteration 
until the set number of estimators (n_estimators) has been 
reached (10, 17). The main difference between GB and RF is 
that GB utilizes shallow trees with fewer splits than RF, which 
uses trees to their maximum extent (10, 17).  For our model, 
we set our parameters such that n_estimators=100, learning_
rate=0.1, and the max_depth=100.

The unsupervised machine learning algorithm we 
experimented with was LDA. LDA is a dimensionality 
reduction algorithm that maximizes the ratio of between-class 
variance to the within-class variance, guaranteeing maximum 
separability (18). Essentially, LDA is an algorithm that tries 
to maximize the distinction between multiple classes, which 
allows it to classify input data into a specific class (18). For 
our analysis, we used a class-dependent transformation, 
which involves maximizing the separability between classes 
and utilizing two optimizing criteria for the independent 
transformation of the data sets (18). For our model, we used 
a singular value decomposition solver, no shrinkage, and set 
n_components=None.

Received: June 18, 2022
Accepted: November 2, 2022
Published: March 18, 2023

REFERENCES
1. Brown, Timothy J., et al. “The Impact of Twenty-First 

Century Climate Change on Wildland Fire Danger in the 
Western United States: An Applications Perspective.” 
Climatic Change, vol. 62, no.1, Jan. 2004, pp. 365–388. 
doi:10.1023/B:CLIM.0000013680.07783.de.

2. Talukdar, Swapan, et al. “Land-Use Land-Cover 
Classification by Machine Learning Classifiers for Satellite 
Observations–A Review.” Remote Sensing, vol.12, no. 7, 
2 Apr. 2020., pp. 1135. doi:10.3390/rs12071135.

3. Ballanti, Laurel, et al. “Tree Species Classification 
Using Hyperspectral Imagery: A Comparison of Two 
Classifiers.” Remote Sensing, vol. 8, no. 6, 24 May 2016, 
pp. 445. doi:10.3390/rs8060445.

4. Immitzer, Markus, et al. “Tree Species Classification 
with Random Forest Using Very High Spatial Resolution 
8-Band WorldView-2 Satellite Data.” Remote Sensing, 
vol. 4, no. 9, 14 Sep. 2012, pp. 2661–2693. doi:10.3390/
rs4092661.

5. Koukal, Tatjana and Atzberger, Clement. “Potential 



18 MARCH 2023  |  VOL 6  |  10Journal of Emerging Investigators  •  www.emerginginvestigators.org

of Multi-Angular Data Derived From a Digital Aerial 
Frame Camera for Forest Classification.” IEEE Journal 
of Selected Topics in Applied Earth Observations and 
Remote Sensing, vol. 5, no. 1, Feb. 2012, pp. 30–43. 
doi:10.1109/JSTARS.2012.2184527. 

6. Wang, Yutang, et al. “Classification of Street Tree Species 
Using UAV Tilt Photogrammetry.” Remote Sensing, vol. 
13, no. 2, 10 Jan. 2021, pp. 216. doi:10.3390/rs13020216.

7. Ghimire, B. “Contextual land-cover classification: 
incorporating spatial dependence in land-cover 
classification models using random forests and the Getis 
statistic.” Remote Sensing Letters, vol. 1, no. 1, 22 Jan. 
2010, pp. 45–54. doi:10.1080/01431160903252327. 

8. Clark, Matthew L. and Roberts, Dar A. “Species-Level 
Differences in Hyperspectral Metrics among Tropical 
Rainforest Trees as Determined by a Tree-Based 
Classifier.” Remote Sensing, vol. 4, no. 6, 18 June 2012, 
pp. 1820–1855. doi:10.3390/rs4061820. 

9. Raczko, Edwin and Zagajewski, Bogdan. “Comparison 
of support vector machine, random forest and neural 
network classifiers for tree species classification on 
airborne hyperspectral APEX images.” European Journal 
of Remote Sensing, vol. 50, no.1, 9 Mar. 2017, pp. 144–
154. doi:10.1080/22797254.2017.1299557. 

10. Sun Fei, et al. “Efficiency of Extreme Gradient Boosting 
for Imbalanced Land Cover Classification Using an 
Extended Margin and Disagreement Performance.” 
ISPRS International Journal of Geo-Information, vol. 8, 
no. 7, 23 July 2019, pp. 315. doi:10.3390/ijgi8070315.  

11. Zhang, Yanchao, et al. “Fusion of Multispectral Aerial 
Imagery and Vegetation Indices for Machine Learning-
Based Ground Classification.” Remote Sensing, vol. 13, 
no. 8, 7 Apr. 2021, pp. 1411. doi:10.3390/rs13081411. 

12. Davidson, Scott J., et al. “Mapping Arctic Tundra 
Vegetation Communities Using Field Spectroscopy 
and Multispectral Satellite Data in North Alaska, USA.” 
Remote Sensing, vol. 8, no. 12, 26 Nov. 2016, pp. 978. 
doi:10.3390/rs8120978. 

13. Ricklefs, Robert E. and He, Fangliang. “Region effects 
influence local tree species diversity.” Proceedings of the 
National Academy of Sciences, vol. 113, no. 3, 5 Jan. 
2016. pp. 674–679. doi:10.1073/pnas.1523683113. 

14. Riley, Karin L., et al. “TreeMap 2016: A tree-level model 
of the forests of the conterminous United States circa 
2016.” Forest Service Research Data Archive, 2021. 
doi:10.2737/RDS-2021-0074.

15. Breiman, Leo. “Random Forests.” Machine 
Learning, vol. 45, no.1, 1 Oct. 2001, pp. 5–32. 
doi:10.1023/A:1010933404324.

16. Peterson, Leif. “K-nearest neighbor.” Scholarpedia, vol. 4, 
no. 2, 21 Feb. 2009, 1883. doi:10.4249/scholarpedia1883.  

17. Natekin, Alexey and Knoll, Alois.“Gradient boosting 
machines, a tutorial.” Frontiers in Neuro Robotics, vol. 
7, no. 21, 04 Dec. 2013, doi:10.3389/fnbot.2013.00021.  

18. Fisher, Adrian, and Danaher, Tim. “A Water Index for 
SPOT5 HRG Satellite Imagery, New South Wales, 
Australia, Determined by Linear Discriminant Analysis.” 
Remote Sensing, vol. 5, no. 11, 13 Nov. 2013, pp. 5907– 
5925. doi:10.3390/rs5115907. 

19. Cleve, Casey, et al. “Classification of the wildland-urban 
interface: A comparison of pixel- and object-based 
classifications using high-resolution aerial photography.” 

Computers, Environment and Urban Systems, vol. 
32, no. 4, July 2008, pp. 317–326. doi:10.1016/j.
compenvurbsys.2007.10.001. 

20. Sheeren, David, et al. “Tree Species Classification in 
Temperate Forests Using Formosat-2 Satellite Image 
Time Series”. Remote Sensing, vol. 8, no. 9, 7 Sep. 2016, 
pp. 734. doi:10.3390/rs8090734. 

21. Ma, Quin, et al. “Comparison of Canopy Cover 
Estimations From Airborne LiDAR, Aerial Imagery, and 
Satellite Imagery.” IEEE Journal of Selected Topics in 
Applied Earth Observations and Remote Sensing, vol. 
10, no. 9, 13 June 2017, pp. 4225–4236. doi:10.1109/
JSTARS.2017.2711482.

22. Maxa, Melissa and Bolstad, Paul. “Mapping northern 
wetlands with high-resolution satellite images and 
LiDAR.” Wetlands, vol. 29, no.1, 1 Mar. 2009, pp. 248. 
doi:10.1672/08-91.1.

23. He, Chen, et al. "Incremental Learning From Stream 
Data.” IEEE Transactions on Neural Networks, vol. 
22, no. 12, 31 Oct. 2011, pp. 1901-1914. doi:10.1109/
TNN.2011.2171713.

24. Alloghani, Mohamed, et al. “A Systematic Review 
on Supervised and Unsupervised Machine Learning 
Algorithms for Data Science.” Unsupervised and Semi-
Supervised Learning, Springer International Publishing, 
5 Sep. 2019, pp. 3–21. doi:10.1007/978-3-030-22475-
2_1.

25. Hasanin, Tawfiq, and Taghi Khoshgoftaar. “The Effects of 
Random Undersampling with Simulated Class Imbalance 
for Big Data.” 2018 IEEE International Conference on 
Information Reuse and Integration (IRI), 9 July 2018, 
doi:10.1109/IRI.2018.00018.

26. U.S. Geological Survey, EarthExplorer, 8 Sep. 2016, 
earthexplorer.usgs.gov

Copyright: © 2023 Gupta and Wen. All JEI articles are 
distributed under the attribution non-commercial, no 
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/). This means that anyone is free to share, 
copy and distribute an unaltered article for non-commercial 
purposes provided the original author and source is credited.


