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The second principle is unpredictability: the impossibility 
of knowing how to control the output of a system as it is 
impossible to know all the initial parameters of the system. 
Thus, it becomes entirely possible for this output to exhibit 
chaotic characteristics even if a slight change is made in the 
initial conditions (2). 

The third principle is that chaos connects order and 
disorder. Order comes from an established operation for 
which, when an input is provided to the operation, the exact 
output can be confidently paired with the input. On the other 
hand, disorder arises when a slight alteration is made to a 
known input-output pairing. Namely, when that input is slightly 
altered, it is impossible to use the established operation to 
determine how the corresponding output will change. The 
entity that is connecting this order and disorder to enable the 
system to continue functioning is chaos (2). 

The fourth principle is mixing. Given a system with an 
established operation, two similar inputs can produce very 
different outputs, similar to a group of balloons ending up 
in very different places after being released from the same 
location (2). 

The fifth principle is the fractal, or the geometric 
representation of chaos and one of the most prominent 
phenomena that appears in chaos. Fractals are infinite and 
intricate figures that are self-repeating at every scale, and 
are present at every scale in the universe, whether it be 
entire landscapes, biological structures, or leaves on a plant 
(3). Therefore, the Mandelbrot Set, one of the world’s most 
popular models of fractals, was investigated to gain insight 
into the chaos of fractal nature in our world. 

The sixth principle is feedback. Specifically, chaos can 
be amplified when there is a response to the chaos itself (3). 
With fractals, feedback can be understood as the process of 
a simple operation (Mandelbrot function) being carried out on 
data (points in the complex plane) and then feeding the output 
back into the operation. 

While these six principles are the core of Chaos Theory, 
it is important to understand that the phenomenon of slight 
changes in the initial state leading to drastic changes in the 
final state of a system is the foundational characteristic of 
chaos and what much of the work in this study relies on. 

INTRODUCTION
Chaos Theory

Chaos Theory attempts to explain completely unpredictable 
systems such as the stock market, weather, turbulence, and 
human organs including the heart, lungs, and brain (1). Chaos 
theory has numerous principles that have varied as more 
information about chaos was discovered, but there are six 
significant principles that effectively explain the fundamentals 
of Chaos Theory. The first principle is the phenomenon of 
slight changes in the initial state leading to drastic changes 
in the final state. The Butterfly Effect, which is the assertion 
that a butterfly flapping its wings in one place guarantees the 
occurrence of a hurricane in a place across the world, is the 
most used example to explain this phenomenon (2). While 
there are 5 other principles, this study and the rest of the 
principles heavily rely on this first principle. 

SUMMARY
The phenomenon of small changes leading to 
drastic effects is fundamental to Chaos Theory. 
Understanding the chaos in our world could provide 
more control over the systems that govern the 
universe. Therefore, this study aimed to predict 
and explain chaotic behavior in the Mandelbrot Set, 
one of the world’s most popular models of fractals 
and exhibitors of Chaos Theory. We hypothesized 
that repeatedly iterating the Mandelbrot Set’s 
characteristic function would give rise to a more 
intricate layout of the fractal and elliptical models 
that predict and highlight “hotspots” of chaos 
through their overlaps. While a novel method of 
discovering miniature versions of the Mandelbrot 
fractal was discovered and a statistically significant 
transformation function was developed, overlaps of 
the elliptical models were not supported to exhibit 
higher levels of chaos. Many biological and natural 
phenomena such as the heartbeat, lung vessels, 
neurons, weather, the stock market, and more, are 
both chaotic in nature and can be described using 
fractal-based models. The positive and negative 
results from this study may provide a new perspective 
on fractals and their chaotic nature, helping to solve 
problems involving chaotic phenomena.
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Mandelbrot Set
The Mandelbrot Set contains the set of complex numbers 
‘c’ for which the function F(z) = z2 + c remains bounded for 
the orbit of 0, the path a function takes when iterated over 0 
(Figure 1). The main cardioid is the main heart-shaped region 
of the Mandelbrot Fractal. This part of the Mandelbrot Fractal 
is in the section between -0.75 and 0.25 on the real axis and 
between approximately -0.637 and 0.637 on the imaginary 
axis. The approximate circles surrounding and attached to 
the cardioid are called primary bulbs. Any of the approximate 
circles not directly attached to the cardioid are simply called 
bulbs. For each bulb, all the points inside it approach a cycle 
of period n (4). Therefore, each bulb is assigned a period 
n. Additionally, “Minibrots” are defined as smaller figures 
similar in shape to the Mandelbrot itself. Minibrots are found 
when zooming into certain regions of the Mandelbrot Fractal 
(Figure 2) and consist of a cardioid and bulbs themselves. In 
other words, Minibrots are self-similar cardioid-bulb pairings 
emanating from all bulbs around the Mandelbrot Fractal. 

Significant Points
The Mandelbrot Set contains an infinite number of points 

for which z = 0 orbits with a finite period when iterated over 
the function F(z) = z2 + c, and every one of these points 
resides inside a cardioid and bulb. Furthermore, these 
points are denoted “center points” due to their location at the 
approximate center of the cardioids and bulbs (Figure 3).

The point where the largest primary bulb meets the main 
cardioid of the Mandelbrot Set (Figure 3) signifies a period 
doubling; the transition from points inside the cardioid to 
points inside the largest primary bulb parallels the transition 
from approaching a period of 1 to a period of 2. As this point 
is a representation of bifurcation, or the division of something 
into two branches, they are referred to as “bifurcation points” 
in this study (5). Specifically, the main cardioid’s bifurcation 
point resides at -0.75 (Figure 3, red marker). The period 
doubling characteristic of bifurcation points leads to the 
fact that the derivative of the Mandelbrot function where ‘c’ 

Figure 2. Mandelbrot Set components. The main cardioid and 
three primary bulbs are labeled. Four Minibrots are emphasized with 
red circles. The numbers indicate the period of each bulb.

Figure 1. Stages of Mandelbrot Set iterations. a) The red and 
black regions combine to make up a circle with radius 2, centered 
at the origin of the complex plane. The red region indicates all 
complex numbers excluded during the first iteration, while the black 
region indicates all points that are in the Mandelbrot Set after the 
first iteration. b) The green region indicates all complex numbers 
excluded during the second iteration. The black region indicates all 
points that could possibly be in the Mandelbrot Set after the second 
iteration. c) The Mandelbrot Set formed by infinitely removing regions 
that prove to have an unbounded path after each iteration. 

Figure 3. Significant points. Examples of center points for bulbs 
are shown in blue. The orange point inside the main cardioid is the 
center point for the main cardioid. Other orange points represent 
the center points for cardioids of Minibrots. Green points represent 
saddle points and red points represent bifurcation points. One 
Minibrot is enlarged to show all four of these points on a specific 
Minibrot. 
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equals the bifurcation point is greater than 1 for any input. 
This is because the rate of change of the approximate period 
increases at a factor of 2 at bifurcation points and other points 
along the real axis. 

The point 0.25 on the Mandelbrot Set (Figure 3, green 
marker) carries significance for the opposite reason as that 
for the bifurcation point; this point is where, rather than the 
period doubling, the period simply ceases to exist. Due to 
the Mandelbrot Set resembling a saddle at this point, it will 
be referred to as the “saddle point” in this study. Contrasting 
bifurcation points, the derivative of the Mandelbrot function 
where ‘c’ equals the saddle point is equal to 1 for any input. 

Bifurcation points and saddle points provide helpful insight 
into the nature of the structures they are a part of. Specifically, 
while bifurcation points are part of both the largest primary 
bulb and the cardioid, saddle points are only part of the 
cardioid. These properties can provide important information 
when locating Minibrots. Namely, once a set of center points 
is discovered, one can determine whether each center point 
resides in a bulb or cardioid by calculating whether the 
derivative of the Mandelbrot function where ‘c’ equals the 
center point is equal to 1 for any input. If so, then that center 
point is not associated with a bulb but with a cardioid, and 
thus, a Minibrot. 

Entropy
The Kolmogorov entropy, an important measure of 

the degree of chaos in systems such as fractals, gives the 
average rate of information loss about a position of the phase 
point on the attractor (6). In this case, the phase point is any 
given point in the complex plane and the attractor is a set of 
values toward which a system tends to approach given many 
starting conditions of the system. In the Mandelbrot Set, 
this attribute converts nicely to the number of Minibrots in a 
specified region of the fractal. Specifically, the higher number 
of Minibrots in the region, the larger range of possible periods 
of inputs for which ‘c’ equals each point in the region; thus, 
this larger range is associated with a loss of information about 
the period. Furthermore, because the Kolmogorov entropy 
measures chaos, a higher number of Minibrots in a region 
is associated with higher entropy, which in turn is associated 
with more chaos. 

The overlap of period states creates a region which could 
contain Minibrots that could have multiple possible periods, 
creating unpredictability and chaos (Figure 4). A higher level 
of Minibrots incidence in these regions would support these 
overlapping regions display a more intense chaotic nature.

RESULTS
In this study, the primary goal was to predict and explain 

chaotic behavior in the Mandelbrot Set. This was approached 
by repeatedly iterating the Mandelbrot Set’s characteristic 
function, using an elliptical model to characterize the results 
from the iterations, and applying a logistical regression test 
to these data. The regression was employed to engender 

statistically significant parameters of a function that 
predicts the layout of the Mandelbrot Set and insight into 
relationships between chaos intensity and fractal locations. 
We hypothesized that repeatedly iterating the Mandelbrot 
Set’s characteristic function would give rise to a more 
intricate layout of the fractal and elliptical models that predict 
and highlight “hotspots” of chaos through their overlaps. 
While a novel method of discovering miniature versions of 
the Mandelbrot fractal was discovered and a statistically 
significant transformation function was developed, overlaps 
of the elliptical models were not supported to exhibit higher 
levels of chaos.

Solving the Mandelbrot iteration function resulted in both 
center points of cardioids and bulbs that may be attached to 
cardioids (Figure 5). The Python program developed to fit an 
ellipse to each cardioid center set resulted in five diagrams 
(Figure 6, panels i–v). For each plot, the parameters that 
describe the ellipse are also given. Each parameter is relative 
to the period that the curve is being fit upon. To develop a 
transformation of a period that results in a function mapping 

Figure 4. Examples of period states and overlaps. The two gray 
ellipses are the states that traverse the Mandelbrot Set, with a certain 
thickness due to the error margin, with intersections with Minibrots 
circled in orange and the overlap of states circled in blue.

Figure 5. Calculated center points. Plot data of center points for 
Mandelbrot cardioids and bulbs of a certain period. Periods 3 to 7 
correspond with panels (a) to (e) respectively.
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the best fit curve for that period, a relation must exist between 
the period and the parameters (Figures 7-9).

The linear regression test used to generate functions for 
the parameters of an elliptical curve function resulted in the 
following equations:

  a = 1.137 * ln(p) - 1.175         (1)
  b = -0.6400 * ln(p) - 2.175         (2)
  c = -0.7530 * ln(p) - 0.9812         (3)          

Embedded into the general elliptical curve equation 
symmetric about the real axis ((x - c)²/a² - y²/b²), the parameters 
give rise to final transformation model with a relationship with 
the period:

The resulting incidence of Minibrots inside of overlapping 
period states and difference between the average Minibrot 
incidence and the actual Minibrot incidence of each period 
within each ellipse-pairing overlap show an insignificant 
change (Table 1). The various calculated ellipses for each 

period imposed on the same plane show the similarities for 
ellipses of higher periods (Figure 10).

DISCUSSION
The current study resulted in the development of a 

novel method that traverses the Mandelbrot Set to locate 
all Minibrots throughout the Mandelbrot Fractal. In addition, 
a significant transformation model was developed to predict 
the positions of all Minibrots of a certain period altogether. 
However, when ellipses were widened and overlaps of 
these period states were analyzed, there was no significant 
difference between the average Minibrot incidence and the 
incidence of Minibrots within the overlaps. The difference 
between the period state overlaps’ Minibrot incidence and the 
average Minibrot incidence is almost negligible, with some 
overlaps even consisting of less Minibrots than the average 
number of Minibrots in a similarly sized region (Table 1). This 
result did not align with the initial intuition. Namely, since an 
overlap of states indicates that the main cardioid of a Minibrot 
found in that region does not have a predetermined period, its 
period has as many possibilities as the number of states that 
have overlapped to create that region and should produce 

Figure 7. A parameter. Regression analysis 
results with 95% confidence intervals for a 
parameter of the transformation function. 
(R = 0.896 > R_crit = 0.811; p < 0.05, df = 4)

Figure 8. B parameter. Regression analysis 
results with 95% confidence intervals for b 
parameter of the transformation function. 
(R = 0.834 > R_crit = 0.811; p < 0.05, df = 4)

Figure 9. H parameter. Regression analysis 
results with 95% confidence intervals for h 
parameter of the transformation function. 
(R = 0.879 > R_crit = 0.811; p < 0.05, df = 4)

Figure 6. Calculated period states. Best fit ellipse for set of center 
points (blue points) for each period. Each ellipse is associated with 
a, b, and h values that are derived from the equation (III). Orange 
points are example points on the calculated ellipses spaced at equal 
intervals. 

Table 1. Minibrot incidence and differences by period state.

(4)
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higher Minibrot incidence. Therefore, instead of discovering 
areas associated with elevated chaos, analysis of the 
overlapping period states revealed that these areas exhibit as 
much chaos as the rest of the Mandelbrot Fractal. In fact, this 
result inevitably inspires the possibility that chaos (or entropy) 
is evenly “distributed” among the fractal space. Despite the 
negative result, taken together, this study did partially predict 
and explain chaos in the Mandelbrot Set. Looking forward, the 
newfound possibility of uniform chaotic behavior throughout 
the Mandelbrot Fractal provides numerous interesting new 
avenues of research if a substantial relationship between 
the specific Mandelbrot Fractal and the fractal nature of the 
universe can be established. 

Based on our results, there are three major 
recommendations to improve future directions from this 
study. The first would be to use a larger sample size with not 
only the period state-parings for overlaps, but also with the 
Minibrots used to calculate the average Minibrot incidence in 
a certain area. By including Minibrots for which the center 
points cycle with higher periods, it would be possible to 
increase the sample size and use a similar strategy as used 
in this study to uncover a significant difference between the 
period state overlaps’ Minibrot incidence and the average 
Minibrot incidence. The second direction to further this study 
would be to model the states using a figure more versatile 
than an ellipse to capture slight variations in the state’s curve. 
This would then allow for less of an error margin as the state 
would prove a more accurate method of locating Minibrots 
in the Mandelbrot Set. Finally, the third direction would be 
to introduce more diversity by applying the same study to 
various fractals. This would potentially provide more insight 
into the purpose of chaos in dynamical systems which could 
then be applied to the following areas. 

The Mandelbrot Fractal and Chaos Theory in general are 
at the core of how the universe functions (7). Furthermore, 
numerous significant fields, such as biology, physics, 
chemistry, cosmology, meteorology, and even the stock 
market, have been shown to follow fractal laws and exhibit 
chaotic behavior (8). This study provides valuable insight 
into three inherent mechanisms of the human body: the 
heart, lungs, and brain. The rate of the human heartbeat, 
the firing of neural clusters and the network of arteries, lung 
vessels, and neurons are all both chaotic in nature and can 
be described using fractal-based models. Intersections of 
certain muscles, which are essential to human biology and 
resilience, very closely resemble the regions of overlapping 
states in this study (9). If the future directions outlined 
above were proven more successful in confirming the entire 
hypothesis of this study, it may be possible to support that 
cardiac malfunctions, lung alveoli blockages, and neuron 
damage cases are associated with overlapping period state 
regions and can be efficiently reduced and predicted in the 
future using correspondences between the Mandelbrot Set 
and human organs (9). Therefore, the intersections of period 
states from this study could prove useful for diagnosis and 

therapeutic treatment for various diseases, development of 
artificial intelligence, and overall advancement of efficient 
technology in the future. 

METHODS
Phase 1: Locating Minibrots

To find the points ‘c’ for which F(0) cycles exactly with 
period n, it is necessary to find the solution to the equation 
value, that, when plugged into the n-times-iterated Mandelbrot 
function, equals itself. Therefore, for varying values of n, the 
equation Fn(c) = c was solved using a program developed in 
Python (3.6.3). Since the solutions to this equation are in both 
cardioids and bulbs, it is required to find only those located in 
cardioids to locate the Minibrots containing those cardioids. 
As explained in the introduction, the equation d/dc(Fn(c) = 
1) was tested for each center point to determine whether 
each center point corresponded to a bulb or cardioid. After 
eliminating the solutions that correspond to center points in 
bulbs, the set of points that correspond to each Minibrot was 
established. 

Phase 2:  Constructing Period States
The set of solutions to Fn(c) = c becomes very tedious to 

calculate after the first few periods. Therefore, as the portion 
of the Mandelbrot Fractal on the right side of the imaginary 
axis represents a nearly elliptical figure, and the majority of 
Minibrots reside on the perimeter of this “ellipse,” ellipses are 
an ideal model for predicting the locations of all Minibrots in 

Figure 10. Calculated ellipses together. Various resulting period 
states, calculated using the transformation model. Figure created 
using Desmos.  
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a certain period state. A Python program was developed to 
compute the best fit elliptical regression curve for all Minibrots 
in a given state. This was done by applying the OpenCV 
fitEllipse function to all the center points of the Minibrots in 
the respective state.  After gathering the equations for these 
ellipses for various states, a linear regression test was used 
to generate functions for the parameters of an elliptical curve 
function with an error margin that outlines a regional state 
where the Minibrot could possibly be located. Note that k = 0 
due to fractal symmetry. The parameter equations were then 
plugged into the general equation for an ellipse symmetrical 
over the real axis to develop the final transformation model.  
Finally, error margins for each ellipse were set equal to the 
average uncertainty in each parameter’s regressions. 

Phase 3: Testing Overlaps of Period States
The ellipses calculated in phase 2 combined with their 

error margins are referred to as period states in this study. 
The overlap of period states (Figure 5) creates a region that 
could contain a significantly higher number of Minibrots and 
thus more chaos. To determine whether overlaps truly do 
exhibit higher levels of chaos, each overlap was analyzed 
by calculating the incidence of Minibrots that it enclosed. 
After executing this for multiple pairs of period states that 
intersect, it was determined whether there is a significantly 
higher density of Minibrots in these overlapping regions than 
the average Minibrot incidence density throughout the entire 
Mandelbrot Set (determined by averaging the number of 
Minibrots inside multiple areas across the perimeter of the 
Mandelbrot Set roughly equal in size to the overlaps of period 
states).
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