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at specific times. These advancements amplify the danger 
of hackers, who exploit these databases to gain information 
about specific individuals even though these people trust that 
their sensitive data is being kept private.
 Many of the older, simpler approaches to privacy, such 
as data anonymization and k-anonymity, don’t work as well 
anymore because hackers have more sophisticated methods 
for pinpointing individuals. Data anonymization doesn’t 
account for linkage attacks since hackers use multiple 
databases, and k-anonymity only works for large databases 
with very simple fields (1). Fortunately, there is a modern 
approach to preserving the utility and privacy of this data.
 This approach is known as differential privacy, which is 
the study of quantifying and limiting how much privacy is lost 
when extracting useful information from a dataset (1). There 
are many differentially private algorithms, but all provide the 
same guarantee. This guarantee is that no individual can 
be targeted from the output of a query on a dataset. This 
is mostly done by perturbing the input or output using a 
randomized algorithm. The output of this algorithm remains 
similar even if a single data point in the dataset is modified 
(2). Traffic congestion forecasting is a key application of 
differential privacy in a few ways. First, many of the existing 
traffic datasets, including the one used in this research, use 
map data from user devices to track travel times and traffic. 
Second, data that includes pictures of license plates or 
passengers are frequently recorded by law enforcement and 
points to specific drivers on the road. Third, the time series 
nature of our traffic data matches the form of other time series 
data like disease tracking and sales, which could reveal the 
personal information of individuals. All the data in each of 
these cases is very specific to individuals and can be used 
to track their location and movements, making differential 
privacy a key technique in protecting user privacy.
 There is existing research in the field of machine learning 
with differential privacy, specifically differential privacy 
applied to time series data and forecasting. Various studies 
we found are examples of research focusing on similar 
approaches (2-6). However, there are a few key differences 
among the approaches. Most of them use time series data in 
a different way, as opposed to direct forecasting. Many are 
related to sharing real-time aggregate statistics of private 
data, but our research aims to fill the gaps and limitations 
in time series differential privacy. We also expand upon all 
the existing research by comparing and trying different 
forecasting models beyond simple regression models. For 
example, Fan and Xiong compared various differentially 
private mechanisms but with a constant forecasting model 
(2). Our research aims to fill the gap of the exact effects of 
different models and mechanisms on the utility and privacy 
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SUMMARY
Time series data has many applications to understand 
real-world phenomena. A common application is traffic 
congestion forecasting. Preserving privacy with traffic 
data is also essential, and an emerging solution is 
differential privacy, which causes a tradeoff in utility. 
In this paper, we measured the privacy budgets and 
utilities of different differentially private mechanisms 
combined with different machine learning models 
that forecast traffic congestion at future timestamps. 
We expected the ANNs combined with the Staircase 
mechanism to perform the best with every value in 
the privacy budget range, especially with the medium-
high values of the privacy budget. In this study, we 
used the Autoregressive Integrated Moving Average 
(ARIMA) and neural network models to forecast and 
then added differentially private Laplacian, Gaussian, 
and Staircase noise to our datasets. We tested two 
real traffic congestion datasets, experimented with 
the different models, and examined their utility for 
different privacy budgets. We found that a favorable 
combination for this application was neural networks 
with the Staircase mechanism. Our findings identify 
the optimal models when dealing with tricky time 
series forecasting and can be used in non-traffic 
applications like disease tracking and population 
growth.

INTRODUCTION
 Today, the increase in knowledge, technology, and 
innovation in the physical and virtual worlds has created a 
demand for the collection and analysis of real-world data. This 
demand is fueled by humanity’s desire to know the patterns 
of phenomena around us. By understanding patterns, we can 
make useful predictions for businesses or for ensuring safety. 
For example, traffic monitoring can be used to see the public’s 
interest at specific locations and times. This information 
is precious to owners who seek to optimize the number of 
customers in their business.  Furthermore, disease and 
natural disaster tracking can save lives. The speed and ease 
of tracking have only been improving with the advancements 
in machine and deep learning. All of this new technology is 
extremely important and exciting, but it comes with the major 
concern of privacy. These models must use real preexisting 
data to make predictions about the future. The problem is 
that this data stores information about individuals. In the case 
of traffic monitoring, GPS service providers and sensors 
are used to collect the locations and speeds of individuals 
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when making predictions by experimenting with the machine 
learning and differential privacy parts to draw a conclusion 
on the most favorable privacy-preserving combination for 
traffic monitoring and other time series data. This will give 
more insight into the effect of machine learning on differential 
privacy by experimenting with a variety in terms of data, 
models, and popular mechanisms that simulate the relevant 
options in the field of machine learning and differential privacy.
 First, we define some key terminologies. Machine learning 
(ML) is a sub-field of artificial intelligence (AI) and the study of 
where computer systems use data and algorithms to improve 
their knowledge for completing a given task. In supervised 
learning, the data consists of predetermined mappings 
between the input (x) and the output (y) (7). We used time 
series data for this paper, a sequence of measurements of 
some variable (traffic congestion) at successive points in time 
with an equal time interval between every point (7). Auto-
regressive integrated moving average (ARIMA) is a model 
that uses past time series values and linearly maps them into 
an output. It is a widespread model when working with time 
series data (8).
 Inspired by the biological neural networks that make up 
our brains and emerging technology within AI, artificial neural 
networks (ANNs) are made up of many neurons, which 
receive and output information. The two types of ANNs that 
we studied are feed-forward neural networks (FFNN) and 
convolutional neural networks (CNN). FFNNs are the simplest 
type of ANNs. The connections between neurons do not 
form any cycles, so the flow of information is straightforward 
through the network. An improved version of FFNNs, CNNs 
excel at mapping inputs to outputs. Models like long short-
term memory (LSTM) and recurrent neural networks (RNN) 
are commonly used in time series problems, but FFNNs and 
CNNs are simpler and less used, so we chose to explore 
them in our time series context. 
 Finally, differential privacy (DP) is a cybersecurity 
technique that prevents learning information about a specific 
individual in a dataset. Differentially private mechanisms add 
noise to functions to guarantee that an adversary won’t learn 
anything new about an individual, meaning that individuals 
can be taken out or added without affecting the overall results 
(10). The privacy budget (ε) determines the level of privacy and 
utility. Generally, lower values of the privacy budget provide 
more perturbation, which leads to higher levels of privacy 
and lower levels of utility. In contrast, higher values provide 
less privacy and more utility. We study three differentially-
private mechanisms: the Laplace mechanism, the Gaussian 
mechanism, and the Staircase mechanism. Dwork et al. have 
proven that the Laplace mechanism preserves differential 
privacy if noise is added (11). It is good for low-sensitivity 
queries, where sensitivity is defined as the change in the 
dataset if one element is changed. The Gaussian mechanism 
is a common, more flexible alternative to the Laplace 
mechanism (10). Both the Laplace and Gaussian mechanisms 
are very popular in differential privacy. Geng and Viswanath 
proposed the Staircase mechanism to optimize the Laplace 
mechanism (12). Similar to how we chose the ML models, 
we chose two common (Laplace and Gaussian) and one less 
common (Staircase) DP mechanism to balance our research. 
 Our research’s main contribution and objective are to 
figure out the best combination of a forecasting model and 
a differentially private mechanism for making predictions 

from time series data. For our paper, we specifically used two 
traffic congestion datasets. We defined this combination as 
the best one that guarantees a high level of privacy and utility. 
These are the two biggest concerns, as an increase in the 
level of privacy decreases the level of accuracy. In our case, 
the accuracy of a model depends on how close its predictions 
were compared to the actual values. We tried three different 
common forecasting models (ARIMA and two neural network 
models) and three different differentially private mechanisms 
(Laplace, Gaussian, and Staircase). We expected the ANNs 
combined with the Staircase mechanism to perform the best 
with every value in the privacy budget range, especially with 
the medium-high values of the privacy budget. The Staircase 
and Gaussian mechanisms should both outperform the 
Laplace mechanism. Non-parametric models, such as neural 
networks, work better with non-linear data, such as traffic 
congestion. Within neural networks, we expect CNNs to 
outperform FFNNs because CNNs are optimized FFNNs. 

RESULTS
 In trying to figure out the best combination of a 
forecasting model and a differentially private mechanism, we 
implemented each of the models and mechanisms discussed 
in the Introduction (FFNN and CNN with Laplace, Gaussian, 
and Staircase) with their best hyperparameters (explained 
in Figure 6). We plotted a summary of the raw values when 
the privacy budget is equal to 0.1 (Table 1). The range of the 
privacy budget goes from 0.001 to 2, and the corresponding 
error using mean absolute error (MAE) is plotted (Figures 
1-5). MAE is a common accuracy metric that measures the 
average magnitude of the errors in a set of predictions without 
considering their direction (9). We chose this over other 
metrics like mean square error (MSE) and root-mean-square 
deviation (RSME) for two reasons. First, MAE does not give 
a very high weight to outliers in a dataset, which works well 
since we are only comparing privacy and ML models. Second, 
other metrics tend to be increasingly larger than MAE as the 

Table 1: MAE values for each mechanism and model 
combination. MAE was calculated after each noise mechanism and 
forecasting model was applied to the dataset (ε = 0.1). Bolded values 
are the best-performing ones in the group. The privacy budget was 
held constant at ε = 0.1 because it is the middle value in our range. 
Out of the noise mechanisms, the Staircase mechanism consistently 
performed the best, while the Gaussian mechanism consistently 
performed the worst with every forecasting model.
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test sample size increases. Since we have two differently 
sized datasets, MAE was better when comparing accuracy 
between datasets. We explain the following datasets in more 
detail in the Methods section.

Dataset #1
 From TomTom traffic indexing, this dataset marks urban 
congestion. We only used ARIMA, since it contains a smaller 
number of data points than Dataset 2. Neural network models 
were unsuccessful since they require much more data to make 
predictions accurately. The algorithm predicted the traffic 
congestion for 100 time steps in the future and compared 
those predictions to the actual values (Figure 1). These 
predictions matched the trends and extrema very closely, but 
the slight error came from the model and the small amount 
of training data in this set. This error of 2.74 is only about 0.2 
less than the error when we added noise (Table 1).
 We then added three types of differentially private 
noise (Laplace, Gaussian, Staircase) to Dataset #1 before 
training it with ARIMA (Figure 2). In general, all mechanisms 
trended downward. As the privacy budget increased, 
the error decreased, which was expected since a lower 
budget guarantees more privacy by adding more noise. All 
mechanisms seem to have at least one major drop between 
an interval. For the Laplace mechanism, the blue line shows 
a decrease in error that reaches zero towards the end. The 
biggest drop in error occurred between privacies 0.01 and 0.1. 
For the Gaussian mechanism, the behavior of this mechanism 
was the most unexpected. There was a slight increase in error 
between 0.01 and 0.1, followed by a massive drop. However, 
the error was the highest of the three mechanisms, which is 
unexpected since the noise distribution is less steep than 
the Laplace distribution. The Staircase mechanism steadily 
decreased like the Laplace mechanism. The biggest drop 
in error occurred between privacies 0.001 and 0.01. This 
mechanism gave the least error. 

Dataset #2
 We used FFNN and CNN on this dataset since these 
were more accurate and successful than when run on the 

first dataset (Figures 3-5). The graph of the forecasted 
versus actual values is not shown because there are many 
data points, making the graph cluttered and less readable. 
We plotted FFNN with all mechanisms (Figure 3), CNN 
with the Laplace and Staircase mechanisms (Figure 4), 
and CNN with the Gaussian mechanism. The overall results 
were very similar for both neural network models, which is 
expected since these models work similarly. For the Laplace 
mechanism, the blue line shows a decrease in error that 
reaches zero towards the end. The error associated with 
FFNN decreases in almost equal intervals (Figure 3). CNN 
behaves strangely, as there is a slight spike in error between 
0.01 and 0.1 (Figure 4). For the Gaussian mechanism, the 
red line shows an overall decrease in error. It starts off higher 
and meets with the Laplace and Staircase mechanisms as 
the privacy budget increases (Figure 3). This unexpected 
behavior of the highest error is like what we observed with 
Database #1. Unlike Database #1, the error never increased 
in any privacy interval. For the Staircase mechanism, the 
yellow line shows a decrease that eventually plateaus. The 
error values were very similar to the Laplace mechanism with 
FFNN (Figure 3). With CNN, there is a bigger drop in error 
between 0.001 and 0.01 (Figure 4).
 Overall, the most accurate differentially private mechanism 

Figure 1: Forecasted vs Actual values from ARIMA on Dataset 
1 without noise. The ARIMA forecasting model was used to 
predict traffic congestion in future time steps. The blue line shows 
the predictions, while the orange line shows the actual values. The 
model was fairly accurate as the lines are very close to each other.

Figure 2: Utility vs Privacy from ARIMA on Dataset 1 with noise. 
Graph shows privacy budget vs error (MAE) for every differential 
privacy mechanism. The ARIMA forecasting model was used on 
Dataset 1 with added noise from each mechanism. Different privacy 
budgets were tested, and the results consistently show that a greater 
privacy budget (less protection) means less error (greater accuracy).

Figure 3: Utility vs Privacy from FFNN on Dataset 2 with noise. 
Graph shows privacy budget vs MAE for every differential 
privacy mechanism. The FFNN forecasting model was used on 
Dataset 2 with added noise from each mechanism. Different privacy 
budgets were tested, and the results consistently show that a greater 
privacy budget (less protection) means less error (greater accuracy).
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was the Staircase mechanism. It outperformed the Gaussian 
mechanism and performed slightly better than the Laplace 
mechanism. The privacy budget depends on the application 
and how much utility can be given up for an increase in 
privacy.

DISCUSSION
 Our results are consistent with differential privacy. As the 
privacy budget increased, the mechanisms added less noise 
to the data, yielding a smaller error. This small error seemed 
consistent for the Laplace and Staircase mechanisms, with 
the slight exception of the strange behavior of the Gaussian 
mechanism. With the Gaussian mechanism, error increased 
during one interval of ARIMA and exhibited greater error than 
the Laplace mechanism for most of the privacy budgets. This 
large error is most likely due to the difference in sensitivity, 
which was a general challenge due to the nature of the 
time series datasets, where every data point is in a specific 
order, and the values and intervals are extremely dependent 
on each other. Another potential reason is the difference in 
using the Laplace and Gaussian mechanisms. The Gaussian 
mechanism is more favorable in certain situations, for example, 
when using larger datasets, which could explain why it still 
had a continuous decrease with Dataset #2 (13). Even with 
the lowest privacy budget (0.001), the Gaussian mechanism 
still yielded errors higher than the other mechanisms. 
 After experimentation with commonly used models, 

we found a favorable combination of machine learning 
and differential privacy for the specific application of traffic 
congestion forecasting. Adversaries exploit time series data 
by bypassing older, simpler privacy methods, thus increasing 
privacy concerns. Differential privacy can solve this with 
many different mechanisms that protect information about 
individuals and allow us to see important patterns. Our 
experimentation involved two different time series datasets, 
three machine learning models, and three differentially 
private mechanisms. After formatting data and choosing the 
hyperparameters, we added calibrated noise to the input data 
and trained our forecasting models. We evaluated the utility, 
or accuracy, compared to the range of private budgets. We 
were able to draw a conclusion on which models worked 
the best. Furthermore, although our experimentation was 
specific to traffic congestion, other similar applications with 
time series data, such as disease or weather forecasting, 
would have very similar results. Still, our research was limited 
in the number of models and mechanisms we were able to try, 
and future research should include the utility versus privacy 
study of more machine learning models that work well with 
time series, such as exponential smoothing or deep learning 
models like Recurrent Neural Networks (8, 14). Since adding 
noise to each time step creates a background, we could even 
consider representing the data differently by doing a Fourier 
transform and adding noise in the frequency domain (15).
 We conclude that, for time series datasets with appropriate 
amounts of data points, a neural network approach, such as 
Feed-forward Neural Networks, and adding noise to the data 
through the Staircase mechanism ensures the best utility 
no matter the privacy budget. The Laplace mechanism is 
an excellent second option since the Gaussian mechanism 
displayed some unexpected results. These results are 
significant in a world where privacy for individuals is a huge 
concern.

MATERIALS AND METHODS
Figure 6 shows the flow of the methodology.

Datasets
 We chose two datasets to test the models and 
mechanisms. With time series problems, the time between 
any pair of recorded data points must be the same for all pairs 
in the dataset.
 Dataset #1 is from TomTom traffic indexing (Ref). Using 
free-flow travel times of vehicles on the road, TomTom 
compiled this traffic data for COVID traffic tracking. There are 
482 data points (385 for training, 97 for testing) representing 
the traffic congestion in a San Francisco Street on 1-day 
intervals, meaning that we aimed to predict daily traffic.
 Dataset #2 is from the UC Irvine Machine Learning 
Repository (13). It contains 15 months’ worth of daily data 
that describes the occupancy rate of different car lanes of the 
San Francisco Bay Area freeways. We chose data from one 
specific sensor, so the total data is 440 days x 144 10-minute 
intervals = 63,360 data points (38,448 for training, 24912 for 
testing). We aimed to predict traffic 10 minutes in advance.

Data Preparation 
 While there are differences in preparing the data between 
the different datasets and models, many parts are the same. 
Our end goal was to separate the train and test data, with 

Figure 5: Utility vs Privacy from CNN on Dataset 2 with noise. 
The CNN forecasting model was used on Dataset 2 with added 
noise from the Gaussian mechanism. Different privacy budgets 
were tested, and the results show that a greater privacy budget (less 
protection) means less error (greater accuracy).

Figure 4: Utility vs Privacy from CNN on Dataset 2 with noise. 
The CNN forecasting model was used on Dataset 2 with added 
noise from the Laplace and Staircase mechanisms. Different privacy 
budgets were tested, and the results show that a greater privacy 
budget (less protection) means less error (greater accuracy).
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only the time step and traffic congestion value. In Dataset 
#1, we removed the unnecessary columns of “country”, “city”, 
and “diffRatio”. We also removed the first couple of months of 
this dataset, as this part has been affected by the COVID-19 
pandemic. In Dataset #2, we also used data from just one of 
the 900 sensors provided in the dataset.
 For the train and test split, we use a standard 80% train 
and 20% test. Dataset #2 is pre-split into training and testing 
data. For Dataset #1, we used Python 3.8 and the latest 
version of NumPy to do the split. 
 The next step was to scale the data. We scaled the data 
to a range of values between 0 and 1. Dataset #1 had to be 
manually scaled, but Dataset #2 was already scaled.
 NumPy methods were used to transform the input and 
output. We created input and output (X and Y) representing 
the traffic congestion for each of training and testing.

Machine Learning
 Hyperparameters are constant parameters that machine 
learning models depend on. We chose our hyperparameters 
from previous experimentation and by conducting our own 
tests (8). 

ARIMA
 We only used ARIMA on Dataset #1 due to its smaller 
size. To find the degree of differencing (d), we use the 
Augmented Dickey-Fuller test. To find the lag order (p) and 
moving average (q), we use the ACF and PACF plots of the 
data and examine the trends and spikes. We use p = 1, d = 1, 
q = 0: (1,1,0).

FFNNs and CNNs
 For both neural network models, we chose 30 hidden 
layers, 60 epochs, a learning rate of 0.01, and a batch size 
of 30. We chose 50 neurons for each FFNN layer and 200 
neurons for each CNN layer.

DP Mechanisms
 These differentially private mechanisms (proved in Section 
I) add noise (ξ), based on their corresponding distributions, to 
each of the T time steps of the input data.

Input training data + Noise (ξ) = Secure dataset

 Epsilon (ε), also known as the privacy budget, contributes 
to how much noise is added and was varied through a range 
(0.001…2)
 We used the random.laplace() and random.noral() 
methods from NumPy to draw samples from the Laplace 
and Gaussian mechanisms, respectively. For the Staircase 
mechanism, we use Diffprivlib to generate the noise.
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