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Introduction
The search for planets that could harbor life has 

been a hot topic in the astronomical community today. 
For example, the National Aeronautics and Space 
Administration (NASA) utilized the Kepler Mission, 
or NASA Discovery mission #10, to survey regions of 
the galaxy for habitable zones (1). The Kepler Mission 
has developed the modern search for habitability by 
gathering statistics on the size, mass, orbital radii, and 
energy emission of various stars and their satellites. As of 
February 2012, the Kepler Science Team has discovered 
1,790 host stars with 2,321 planet candidates (1). 
However, this interest in isolating habitable zones dates 

back to the late 1950s, when astrophysicists such as Su-
Shu Huang and Hubertus Strughold dubbed the term 
“habitable zone”, or its “ecosphere” (2). Various methods 
have been used in the past to calculate the habitable 
zone. Limits, such as the mean temperature appropriate 
for habitation by humans and the existence of water 
within a planet, have been established (2). However, 
many different aspects of science must be incorporated 
for a more accurate estimation of a habitable zone—
from “stellar evolution, planetary dynamics, climatology, 
biology, and geophysics” to “planet formation processes 
and subsequent gravitational dynamics” (3).

The authors intend to investigate another method of 
defining a habitable zone by using a variable of mass 
to determine a distance from a central celestial body. 
The research focuses on combining Newton’s Law 
of Universal Gravitation, which defines the amount of 
attraction that two bodies have with each other, with basic 
projectile characteristics like velocity, acceleration, and 
period. This approach is unique as it utilizes Newtonian 
physics as its core and supplements the derivation with 
biological and astronomical research. The question 
posed through this research is if a formula for defining 
a habitable zone of a singular celestial body can be 
mathematically derived using this novel method.

Results
 For a star of mass M, the orbital radii of potential 

habitable satellites must fall within the following 
boundaries to sustain known life according to the outlined 
methods:

where Q = 

In order to verify the general accuracy of the results 
proposed, data from the Kepler Mission was compared 
to sample calculations with the equations proposed. 
Specifically, the Kepler-11 planetary system was studied. 
Kepler-11 is the first system discovered by NASA’s Kepler 
Mission, which contained a star system with six orbiting 
planets. The equations derived above have been applied 
to Kepler-11.

Given that σ has a value of 5.67 × 10-8 Wm-2K-4, and 
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Summary
The goal of this project is to determine the habitable 
zone around a star, given the mass of the star. The 
determination of the habitable zone would apply only 
to stars in a singular solar system, as it examines the 
gravitational pull of one star. The research focuses on 
deriving the mass of the object being orbited by finding 
the velocity, acceleration, and the period of the orbit of 
the satellite, the object in orbit,  using Newton’s Law of 
Universal Gravitation, principles of circular motion, and 
Newton’s Second Law of Motion. Then, utilizing software 
including Mathematica and LoggerPro and compiled 
research from areas of astronomy, biology, and physics, 
the boundaries for known life can be mathematically 
derived. The definition of life, used to set the parameters 
of the scope of the zone, depends on the ability for 
existing life to grow and reproduce. This project utilizes 
various sources of research and information to define 
the conditions in which life might exist, specifically the 
surface temperature of the satellite versus the distance 
from the star. This process, if combined with chemical 
and geographical information, could allow isolation of 
the most likely satellites for life in a singular solar system. 
Future work involving the study of chemical elements 
present in the satellite and its atmosphere may aid in 
further narrowing down the most likely habitable zones.
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that M stands for the solar mass, the habitable zone 
of the Kepler-11 system can be calculated as follows. 
Using data compiled from the NASA Kepler mission, 
the M for Kepler-11 is around 0.95 solar masses, with 
an error of 0.10 solar masses (14). The luminosity, L, 
is given as 1.13 solar luminosities with an error of 0.29 
solar luminosities. One solar luminosity is equal to 3.839 
× 1026 W. Substituting in the known values gives a rmin 
and rmax equal to, respectively, 7.472 ×1010 m and 1.896 × 
1011 m. Comparing these distances to the planets in orbit 
in the Kepler-11 system and converting the standardized 
AU (Astronomical Unit) to m with a conversion factor 
from 149,597,871 km to 1 AU results in boundaries of 
distances between 0.499 AU and 1.267 AU. This radius 
indicates that none of the Kepler-11 extrasolar planets fall 
into the calculated range of habitability, as their distances 
range from 0.091 AU to 0.462 AU from Kepler-11 (14).

Discussion
The proposed hypothesis questioned whether an 

equation for a habitable zone could be developed from 
a foundation of Newtonian physics, a common topic in 
high school physics classrooms. This derivation required 
the integration of extensive research in other sciences 
(biology and astrophysics, for example); however, the 
derivation produced equations defining the maximum 
and minimum boundaries of a habitable zone. The real 
life application of this problem is apparent, given that 
organizations like NASA consider the pursuit of life in 
outer space an important and novel area of research. 
However, future work should include aspects of chemistry 
and geology. Because a star is not a perfect body, the 
equations derived for rmin and rmax can only serve as 
general equations to determine the zone around a star 
that yields a habitable temperature, which is crucial for 
the existence of life. However, mathematically, errors 
like the lack of a spherical body and the approximation 
of the shape of an orbit should also be considered. As 
astrophysics uses approximations for these equations, 
error is inevitably present. 

In addition, as this habitability only sets parameters 
for life based on a certain level of energy received, the 
equation does not take into account the presence or lack 
of certain elements (i.e. liquid water or carbon), nor does 
it take into account the size nor substance composition 
of an atmosphere, which contributes to the amount of 
energy a blackbody takes in. The albedo, or reflectivity 
of the surface, would also contribute to this energy 
intake. Further research on how energy is affected by 
the presence of these elements would improve the 
equation and narrow the habitable zones in question. 
Additionally, it would be interesting to study the habitable 
zones of more bodies in the universe by examining the 

phenomena of binary or multi-solar systems, as this 
equation only takes into account the gravitational pull of 
a singular star.

Methods
Satellite Orbit

Studying certain aspects of a satellite can tell us 
the characteristics of the object that it is orbiting. In the 
proofs below, we isolate the mass of the object being 
orbited by deriving the velocity, acceleration, and the 
period of the orbit of the satellite.
Deriving the Velocity of the Satellite

The speed of a satellite in a circular orbit of radius r 
around an object of mass M0 is:

where G is the universal gravitational constant of 6.67 x 
10-11 Nm2kg-2 (4). For the purposes of this derivation, the 
orbit’s shape is an approximation as generally planets 
follow an elliptical orbit.
This approximation is an application of Newton’s Law of 
Universal Gravitation, which defines the force of any two 
objects of mass m1 and m2 to be of a force that is the 
magnitude of:

where r is the distance between the masses. This Law 
of Universal Gravitation applies to all objects in the 
known universe, as “all objects in the universe attract all 
other objects in the universe by way of the gravitational 
interaction” (4). Figure 1 provides an illustration of the 
Law of Universal Gravitation, where Mp is the mass of 
the orbited object, Fg is the force of gravity, v is velocity, 
a is acceleration, and y is the vertical difference between 
the centers of the orbited object and the satellite.

Using Newton’s Second Law of Motion, we can then 

Figure 1. A force diagram illustrating the Newtonian 
physics concepts involved.
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substitute in the following:

where ms is the mass of the satellite that is orbiting the 
larger object M0 and ag is the acceleration caused by 
gravity. 

Thus, the acceleration of the satellite can be derived:

Applying the principles of fundamental circular motion, 
the acceleration of an object in circular motion is equal 
to the velocity squared over the radius of the object’s 
displacement:

Using the circular motion equation to isolate the value of 
v from ag leads to:

Therefore, substituting in Newton’s Law of Universal 
Gravitation, the following equation can be derived:

To verify that this derivation is an appropriate value 
for the velocity, the units, the signs, and the sensibility of 
the value can be examined. Inserting the values of the 
units of each of the variables results in velocity having 
the unit of distance/time, which is appropriate for the 
units of velocity. The resulting sign should be positive, 

as the variables underneath the radical are all positive 
(G, M0 and r inherently all are positive values), which is 
suitable for the value of the velocity. The resulting value 
is reasonable, as the net force method that Newton 
described was combined with principles of circular 
movement, which resembles orbital movement.
Deriving the Period of Orbit of the Satellite

The period of the orbit can be derived using similar 
methods. Using the derived velocity, and utilizing 
principles of circular motion, the period of the satellite 
can be described.

In circular motion, it is also known that:

where T is the period, and r is the radius of the orbit.

Checking the units of the calculated period of orbit, 
we can see that the unit simplifies to a unit of time, 
which is appropriate for measuring the period. The 
sign should be positive, as the signs within the radical 
and any constants would be positive. The sensibility 
stems from the utilization of the net force method from 
Newton’s Second Law of Motion and also from principles 
of circular motion.

Using Mathematica, we can find the planets in our 
solar system and then accordingly find the orbit period, 
in seconds, for each of the planets in the solar system. 
These data, including the period and the orbital radius, 
can be put into LoggerPro and used to calculate the 
orbital speed, acceleration and the period using the 
equations described earlier. The relationships illustrated 
between the planets’ mass and their orbital speed, 
acceleration and period reflect the equations derived 
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Figure 2. A table outlining the relationships between acceleration, velocity, and period with the mass of the celestial body 
orbited
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earlier. These data further verify the definition of the 
relationships between mass and acceleration, velocity, 
and period, as seen in Figure 2.

Using the exponent values of the radius, the equations 
of fit for each of the three graphs of speed, acceleration 
and period can be made. One of the methods by which the 
mass of the object was determined in this proof included 
using the relationships derived earlier for acceleration, 
velocity, and period to find the mass. Using these three 
relationships, the coefficient of the relationships from the 
value of the R to an exponent can be isolated, and the 
value of the coefficient as given by the fit curves derived 
by LoggerPro can be used. Using the relationships in the 
table, the mass of the object orbited, M0, can be solved.

Using velocity as an example, after isolation of the 
coefficient, (GM0)

0.5, mathematically the value of M0 
would be equal to the square of the coefficient divided 
by the value of the universal gravitational constant G. 

Using data that applies to the Earth’s solar system, 
verification that the mass of the object orbited would 
be equal to that of the sun can be made. These three 
relationships for the mass, derived as a function of the 
three parameters, are methods of expressing the same 
value. A method of deriving the mass using acceleration 
is outlined below.

Using the acceleration (4), we find that:

Substituting in values for the orbit of Mercury, we find:

= 1.810 x 1030 kg
Utilizing Mathematica, the AstronomicalData function 

of the software can be accessed to find the value of the 
mass of the Sun. The proximity of these calculations to 
the actual value shows the accuracy of the calculations 
from the motion of the orbit to derive the mass of the 
orbited object.

The following equation can be used to estimate the 
experimental error:

% Error = 100 ∙ |Measured Value - Accepted 
Value| ÷ (Accepted Value). (5)

Thus, the experimental error for the calculations of 
the acceleration in finding the mass is:

% Error = 100 ∙ |1.810 ×1030 kg – 1.988 ×1030 kg| 
÷ (1.988 × 1030  kg)

= 8.953%
As this principle only applies to solar systems with 

solitary stars as the center of gravitational pull, this 
narrows its application to the one-third of stars that, like 
the sun, are single (6). The extension of this mathematical 
derivation of the mass of the orbited object becomes 
important when considering the existence of life on the 
satellites. 

Satellites in single star systems derive their surface 
temperature from the effective temperature of the star 
they orbit. The distances from the stellar mass that they 
orbit set the magnitude of their surface temperature. If 
the maximum and minimum surface temperatures are 
within the broader set of temperatures at which known 
life exists, then we can hypothesize that life exists on 
the satellite.
Satellite Luminosity

The maximum known temperature at which life can 
exist, where life is defined as the continued ability to 
reproduce and grow, is approximately 121 °Celsius (8). In 
contrast, the coldest known limit at which life can exist is 
-18 °C (8). This definition of life is crucial to this research, 
as there are life forms that can exist in a stagnant state 
but not reproduce outside of this range (6).

The surface color of each of the stars reflects the 
stellar body’s temperature (7). Also, “the temperature of 
a star, and therefore its color, actually depends on the 
amount of mass it has. Very massive stars, which can 
be over ten times the mass of the Sun, are the hottest 
and smaller stars, with less than half the mass of the 
Sun, are the coolest” (9). Therefore, using physics, 
the mass of the orbited object can be derived and the 
general effective temperature and color of the star can 
be found. After finding the effective temperature/color of 
the star, then the mean distance of the habitable zone 
can be determined. The habitable zone calculations 
can be checked using the equations derived earlier for 
velocity, acceleration, and period to verify the mass of 
the star it orbits.

Given that the mass of the orbited star has been 
derived, matching it with the known effective temperature 
for its size is the next step to find the mean distance of 
the habitable zone (Figure 3). Knowing these effective 
temperatures of the stars, the laws of physics can be 
used to determine how the mass, temperature, and 
distance of these celestial bodies are linked.

Luminosity and mass are directly proportional, and 
thus: 

where L is luminosity (in units of solar luminosity, or 
3.839 × 1026 W of energy), and M is the mass of the star 
in solar masses (1.989 ×1030 kg) (10). Using the values 
known for the sun, the equation can be solved for the 
proportionality. This rule would then apply to stars in 
general, the perfect star approximation.

Luminosity is proportional to 3.5 powers of the mass 
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(10). Therefore, one solar mass has one solar luminosity. 
Two solar masses have around 10 solar luminosities, 4 
solar masses have around 100 luminosities, and 8 solar 
masses have around 1000 solar luminosities. 

The Stefan-Boltzmann constant (represented by σ) 
links the effective temperature of the star to its mass. 
Given the relationship between the power emitted is 
proportional to the fourth power of the celestial body’s 
effective temperature, the power emitted would equal 

(12). The constant σ has a value of 5.67 
×10-8 Wm-2K-4. Therefore, using the proportionality of 
luminosity and mass, and luminosity and temperature, 
the following equation is true:

Using data about stars of different spectral sequences, 
these equations can be verified. For example, a star from 
Class O, with a mass 50 times larger than the Sun would 
follow this proportion:

And utilizing the estimation system of factors of ten, the 
following is true:

440413 solar luminosities    50 solar masses3.5

This is a reasonable estimate, as 32 solar mass stars 
have 100,000 solar luminosities, and 64 solar mass 
stars have 1,000,000 solar luminosities (11).

Furthermore, from the Stefan-Boltzmann law that 
accompanies the constant, it is known that:

because the luminosity is fixed per surface area of the 
star. This equation assumes that the star is spherical, 
and thus the surface area is 4πR2, where R is the star’s 
radius.

Because of this proportionality, 

which, ultimately, links the mass to the star’s temperature 
T. It is reasonable that the mass is linked to the surface 
area of the star when observing temperature, because 
the surface area’s luminosity (energy) would vary 
depending on how much energy the surface of the star 
could give off. 

As defined previously, the known hospitable zone at 
which life can exist is from around -18 to 121 °C. However, 
since these universal calculations are derived in Kelvin, 
the boundaries of life must also be converted to Kelvin. 
Respectively, they are 255.15 and 394.15 Kelvin. These 
can be calculated using the ConvertTemperature function 
of Mathematica or by using the conversion relationship 
between Kelvin and Celsius: Kelvin = Celsius + 273.15.

In order to find the distance within which these 
temperatures occur for each amount of mass of the 
orbited star, we must then determine how the temperature 
of a blackbody planet depends on the size of its orbit, 
and then solve for the boundaries for a habitable zone. 
A blackbody planet is one that absorbs electromagnetic 
radiation (7). This model can be used since the planets 
that exhibit habitability must have the capacity to absorb 
energy to provide it to any living substances. This can be 
done using two calculations that have been described 
previously—the luminosity of the star and the radius of 
its orbit (13).

An extension of the Stefan-Boltzmann law leads to 
the following equation:

Temperature of the orbiting satellite (t)=

where r is the orbital radius of the satellite around the 
star, σ is the Stefan-Boltzmann Constant, and L is the 
luminosity of the star. Of note, the temperature of the 
orbiting satellite t is not the same as the capital T used 

Figure 3. A table that outlines the temperature range in metric Kelvin of each class and color of star in the modern spectral 
sequence from http://people.highline.edu/. 
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                      tmin = 255.15 K = 

                      tmax = 394.15 K = 

The values of r can be solved in order to define the 
potentially habitable zone around stars of mass M.

Using the values 255.15 K and 394.15 K for t gives us 
functions that define the minimum and maximum values 
of r for there to be temperatures that can sustain life for 
a star of mass M.
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