
09 FEBRUARY 2022  |  VOL 5  |  1Journal of Emerging Investigators  •  www.emerginginvestigators.org

Pneumonia causes an individual's pulmonary air sacs to fill 
up with fluid or pus (3). Pneumococcal pneumonia, the most 
common type of bacterial pneumonia, is a deadly disease 
that typically affects one lobe of the lung and can develop 
following an instance of the flu or a common cold (3). This 
disease spans an even wider range than TB as a common 
respiratory condition that affects over 450 million people 
every year (1). 
 The similarities between chest-x-ray (CXR) scans of 
tuberculosis and pneumonia are one of the leading causes 
of misdiagnoses. This is largely due to the lack of specialized 
faculty, primarily in developing countries, that can differentiate 
between these two diseases as well as the similarity in clinical 
and radiological patterns of TB and pneumonia (4). Although 
CXRs are an inexpensive and rapid method used to identify 
lung abnormalities by portraying complications both within 
and around the lung—thus conventionally used to diagnose 
a variety of pulmonary conditions (5)—misdiagnosis remains 
a pressing issue. This is because, in the acute phase, 
tuberculosis and pneumonia look extremely similar, which 
can be a particularly damaging problem in areas with a lack of 
trained radiologists. Therefore, automating these diagnoses 
through deep learning models trained on CXRs offers a 
promising avenue to better differentiate between pneumonia 
and TB. The increasing availability of datasets enhances the 
ability of models to identify features that can conclude the 
presence or lack of a respiratory condition. Additionally, the 
use of models trained on multi-institutional datasets reduces 
bias generated from the circumstances where the CXRs were 
taken, making the deep learning models robust.
 To predict disease states based on CXRs, this study 
utilizes convolutional neural networks (CNNs) that help 
enhance image classification of the x-rays by understanding 
patterns in x-rays displaying each disease. CNNs are deep 
learning algorithms inspired by the human visual cortex. 
They are currently the most popular technique for image 
classification in the biomedical field and commonly consist 
of different layers that provide the prediction power. They 
can consist of convolutional layers, pooling layers, fully 
connected layers, and many other sophisticated aspects (6). 
Convolutional layers are filters that are utilized to transform 
the image and pass the results to the next layers, whereas a 
pooling layer is normally utilized to reduce the feature map of 
the image to focus on important details. This is often achieved 
by identifying the average presence of a feature (average 
pooling) or by finding the most often activated presence in 
the image. Combinations of these layers (and other more 
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SUMMARY
Tuberculosis (TB) and pneumonia are commonly 
misdiagnosed respiratory conditions associated with 
high rates of mortality. Chest X-rays (CXRs) are an 
inexpensive method to identify respiratory conditions. 
Thus, a model used to distinguish between CXRs 
depicting lungs classified as normal, pneumonia, 
and tuberculosis would lead to accurate diagnoses of 
these respiratory conditions. This need is fulfilled by 
the recent explosion in deep learning, and new models 
with robust performance are constantly developed. 
However, these models have varying strengths and 
weaknesses which allow them to excel at certain tasks 
and struggle with others. Therefore, testing these 
models is essential to find the most suited model. In 
this study, we trained and applied six convolutional 
neural networks, the InceptionV3, ResNet50, 
ResNet152, InceptionResNetV2, DenseNet121, and 
AlexNet, to the diagnosis of TB and pneumonia. We 
hypothesized that InceptionResNetV2 would perform 
best for this task due to its combination of inception 
blocks that reduce the dimensionality of the CXR 
images and residual blocks that allow for deeper 
models by eliminating vanishing gradient. After 
training on a combination of five datasets from the 
Guangzhou Women and Children’s Medical Center, 
Shenzhen, Montgomery County, Belarus, and ChestX-
ray8, it was found that various models excelled in 
predicting different diseases shown in the datasets. 
The results displayed that there was no clear superior 
model but instead significant superiority within 
certain diseases. 

INTRODUCTION
 In 2018, over 10 million people fell ill with tuberculosis (TB), 
with a majority of these cases concentrated in the developing 
countries of India, China, Indonesia, the Philippines, Pakistan, 
Nigeria, Bangladesh, and South Africa (1). Tuberculosis is an 
infectious disease caused by Mycobacterium tuberculosis 
(MTB), generally targeting an individual's respiratory system. 
When infected, MTB multiplies in its host’s lungs, destroys 
lung tissue, and eventually spreads to other parts of the body 
through the bloodstream or lymphatic system (2). Another 
challenge posed by TB is the difficulty in distinguishing 
between TB and other diseases, such as pneumonia. 
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complicated structures) allow for the construction of models 
that can be used to make predictions on image data. Training 
these powerful models requires several runs through the 
training data, and each run is known as an epoch. The vast 
array of combinations that can be used to make models has 
resulted in some extremely successful models for prediction 
tasks. Several of the most powerful deep learning techniques 
in the classification of respiratory conditions with CXRs include 
AlexNet (7), ResNet50 (8), ResNet152 (8), InceptionV3 (9), 
InceptionResNetV2 (9), and DenseNet121 models (10). This 
study compares the efficacy of these models to differentiate 
between CXRs of patients with pneumonia and tuberculosis 
to provide a tool for radiologists when diagnosing patients. 
We hypothesized that the InceptionResNetV2 would be 
the best performing model to distinguish tuberculosis and 
pneumonia from CXRs but in reality, there was similarity in 
the overall performance of the models. The differences were 
stark when analyzing the models’ performance on individual 
disease states (tuberculosis, pneumonia, and normal).

RESULTS
 The world of artificial intelligence is rapidly growing, 
and along with it, is the variety of CNNs. These CNNs have 
differing architectures and world-class performance but are 
not a one-size-fits-all solution. 
 To determine what is best for this vital problem, we aim to 
use acclaimed models and form conclusions on what tools 
radiologists would benefit most from using.  
 Data for training was derived in the form of images provided 
by Guangzhou Women and Children’s Medical Center, 
Shenzhen, Montgomery County, Belarus, and ChestX-Ray8. 

We combined these different datasets and images into one 
large dataset (Table 1) with three total classes of x-ray images 
(Figure 1). 
 We then preprocessed this combined dataset into training 
and validation sets, resized, and augmented (Figure 2). Using 
Keras libraries, we constructed the models and evaluated 
them with metrics of accuracy, specificity, recall, precision, 
loss, and F1 score. In this work, precision describes the 
ability of the model to predict every positive value as positive. 
“Positive” samples consist of any disease/condition that is in 
question in the confusion matrix. The recall value provides the 
fraction of positive samples correctly predicted by the model 
as positive. Therefore, this value provides the consistency 
with which a particular model can predict the class each time 
it is shown in the dataset. Specificity is similar as it provides 

Figure 1: Images of Tuberculosis, Bacteria Pneumonia, and 
Normal Chest X-Rays (representation of all three classes in 
the assembled dataset). Three sample images of different disease 
states picked randomly from our combined dataset. The red arrows 
on the image point to telltale signs of the abnormalities that come 
with the disease that classifies it.

Table 1: Data Breakdown Based on Disease and Dataset. The amount of CXRs in the different datasets used to train the models. They are 
further broken down by the amount of CXRs in each class within each dataset. 

Figure 2: A sample image under each augmentation performed in the experiment. Examples of the augmentations that were performed 
on the image (the type of augmentation is shown below each image). Augmentations relevant to possible mishaps in the process of 
administering chest x-rays were included to increase relevance to prediction.
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the fraction of negative samples correctly predicted by the 
model as negative. For this multiclass problem, negative 
classes are denoted as any class other than the one being 
currently presented to the model. For example, if calculating 
the specificity for tuberculosis, a negative class will be either 
bacterial pneumonia or normal conditions.  The F1 score 
provides a depiction of the balance between the precision 
and recall metrics for each model and accounts for the class 
imbalance within the dataset. 
 After training was completed and these metrics were 
outputted, we generated graphs of validation accuracy and 
loss over the epochs (Figures 3, 4) as well as confusion 
matrices for all six models (Figures 5, 6). In these figures, 
we found that many of the models presented similar metrics 
and that they cannot be differentiated significantly with just an 
overall look at their metrics as all metrics were greater than 
0.9 (Table 2). 
 We see a similar trend with precision, recall, and F1 score, 
which all have a difference of 0.2 between the lowest and 
highest performing models on each metric. The specificity 
values of all six models are 0.97. Nevertheless, the values 
we see here are still important to the overall analysis of the 
models. The InceptionV3 and DenseNet121 achieved higher 
precision values of 0.95, indicating a low-false positive rate. 

The InceptionV3, along with the ResNet50, also had the 
highest recall values of 0.95 and 0.94 respectively, indicating 
a low rate of incorrect prediction on the negative class. The 
DenseNet121 and InceptionV3 both yielded an F1 score of 
0.95, suggesting higher overall precision and recall scores.
 To account for the overall similarity of these metrics, we 
plotted the validation accuracy and loss of each model over 
the epochs (the number of times the model goes through 
the training set) and noted how long models ran before early 
stopping (a method by which the model is stopped from 
overfitting on the training set by measuring if the accuracy/
loss is improving through epochs). With these graphs, we can 
see not only the final results of the model, but also how they 
fared during their training and if their metrics are a result of 
overfitting. The DenseNet121 and InceptionResNetV2 had 
relatively less spikes and maintained a healthy pattern of 
metrics throughout all epochs prior to early stopping when 
compared to other models like the ResNet152 or InceptionV3.  
We also analyzed each model’s performance on the three 

Figure 3: The validation accuracy across epochs for each model. 
The validation accuracy for all models (the key is given on the right of 
the graph) over the epochs that they trained for. The individual lines 
stop at different areas due to when its training stopped due to early 
stopping.

Figure 4: The validation loss across epochs for each model. 
The validation loss for all models (the key is given on the right of 
the graph) over the epochs that they trained for. The individual lines 
stop at different areas due to when its training stopped due to early 
stopping.

Figure 5: Confusion Matrices for the Inception V3, 
InceptionResnetV2, and the ResNet50. For these confusion 
matrices depicting the performance of the Inception V3, 
InceptionResnetV2, and the ResNet50, the intensity of the color 
corresponds to the normalized accuracy of each square in the matrix.
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classes using confusion matrices (CMs) (Figures 5, 6). 
Confusion matrices are tables that allow for easy visualization 
of model performance. The CMs depict nine values, which 
represent the normalized accuracy in each class and are 
placed on a color scaled based on this accuracy for each class. 
The AlexNet and ResNet152 models performed relatively 
well in classifying bacterial pneumonia CXRs (accuracies 
of 98.93% and 99.11%, respectively) when compared 
to the other four models. The AlexNet, ResNet152, and 
InceptionResNetV2 models performed worse in the normal 
class. By a small margin, the ResNet50 and InceptionV3 
models performed better while classifying normal classes. 
The DenseNet121 showed great proficiency in classifying 
normal CXRs with a 96.85% accuracy but also performed 
the worst on tuberculosis images (82.01% accuracy). This 
sort of polarity in models suggests different strengths and 
weaknesses and therefore, different models would fit best to 
respective purposes. 

DISCUSSION
 Tuberculosis and pneumonia are both life-threatening 
respiratory conditions that disproportionately affect those 
residing in developing countries. Because these countries 
may lack the medical personnel needed to quickly diagnose 
TB and pneumonia, it is critical to maximize the potential of 
deep learning on CXR-based diagnosis. Furthermore, the 
WHO has consistently elaborated on the necessity of applying 
deep learning models on CXRs to prevent misdiagnosis of 
common respiratory conditions. This study addressed this 
need by comparing different deep learning models trained 
on datasets from five different sources to distinguish TB 
and pneumonia. Convolutional neural networks trained on 
multi-institutional datasets may aid radiologists in delivering 
diagnoses more accurately and quickly.
 We hypothesized that the InceptionResNetV2 would be 
the best performing model to distinguish tuberculosis and 
pneumonia from CXRs. In reality, however, there was a high 
level of similarity among the tested CNN’s. We depicted the 
metrics in only two and four significant figures (in the case 
of accuracy) because there is little difference in the overall 
metrics. Similarly, all models showed similar noise levels, 
but on this slim margin, the DenseNet121 was the best 
performing model in terms of average validation accuracy 
and validation loss. DenseNet121 may have outperformed 

Table 2: Classification Metrics for Trained Models on Validation Data. The precision, recall, F1 score, accuracy, and specificity for each 
model on validation data. The accuracy values were within 0.2 percentage of each other (all around 0.93 and 0.94). 

Figure 6: Confusion Matrices for the AlexNet, ResNet152, 
and DenseNet121. For these confusion matrices depicting the 
performance of the AlexNet, ResNet152, and DenseNet121, the 
intensity of the color corresponds to the normalized accuracy of each 
square in the matrix.
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the other models due to its concatenating feature maps, 
which allow for maximum information flow between layers. 
However, as previously highlighted, there was no real 
superior model in this study. The similarities between the 
metrics achieved by the models made the use of further 
statistical analysis unnecessary as results would not show 
any significant difference (Table 2). Instead, the confusion 
matrices demonstrated that each model has strengths and 
weaknesses in different aspects of the prediction (Figure 5). 
The validation accuracy and loss showed variation and 
inconsistency, which can mostly be attributed to the use of 
the mini batch gradient descent with the Adam optimizer 
(chance could result in unlucky iterations) and a learning 
rate that is too large. Furthermore, the integration of multiple 
datasets could result in noise in the data, which has not been 
addressed in this work in order to get a better comparison of 
how the tested models can handle this noise. Some models, 
like the InceptionResNetV2 and DenseNet121, were able to 
handle the noise, Adam optimizer, and large learning rate 
better than others. 
 The performance of the six models on the three classes 
of data (tuberculosis, bacterial pneumonia, and normal) was 
compared using confusion matrices. When comparing the 
confusion matrices to select the best performing model, it was 
clear that each model was better at performing different tasks. 
While the bacterial pneumonia class consistently yielded 
the highest accuracy, it varied slightly between the models 
(Figure 5). While we assumed that the models would struggle 
with distinguishing between TB and bacterial pneumonia, the 
confusion matrices show that the models instead struggled 
to distinguish these diseases from the normal class. This 
may be because the ‘normal’ class consisted of any x-rays 
that did not depict TB, bacterial pneumonia, or any of the 14 
most common thoracic diseases. This is a broad category 
that may have x-rays showing various other diseases that the 
models may struggle to form accurate decision boundaries. 
Furthermore, the multi-institutional nature of the data used 
could result in further confusion for the models, as different 
sources of data could provide various angles or quality 
of pictures. Although this could result in a lower perceived 
accuracy, the use of the multi-institutional aspect improves 
the robustness and practical usage of the model. The models 
that did well while predicting TB (InceptionV3 and ResNet50) 
show a greater ability to generate accurate classifications 
with a lower number of real images (not augmented) than the 
other models. This may be because they have a shallower 
structure than that of the ResNet152 and InceptionResNetV2, 
allowing them to learn the conditions of a pattern easier.
 While there are evident differences between the models, 
they all achieve high metrics, meaning that there is no model 
that would bring a detriment to the overall prediction task. 
This relative similarity with finer differences shows that our 
hypothesis was proven incorrect. While we hypothesized 
that the InceptionResNetV2 would perform the best for the 
prediction of tuberculosis, pneumonia, and normal lungs, this 
model’s performance varied based on the class, and other 
models excelled in classes the InceptionResNetV2 struggled 
in. 
 The majority of the models in this study were first built 
and trained on the ImageNet, where their differences in 
architecture produced significant difference in performance. 
However, the ImageNet dataset is much larger and complex 

than our dataset, which focuses solely on Chest X-rays. This 
could provide less room for the architecture to form different 
patterns, and therefore, different results, which leads to the 
conclusion formed in this study.
 Some limitations of our study included a lack of original 
TB CXRs. The datasets we used to provide TB images 
did not provide as many images as those used in the 
bacterial pneumonia class. As a result, we performed more 
augmentations on the tuberculosis class to even the class 
imbalance. While this is an acceptable solution as the model 
learns to identify TB despite the disturbance, more TB CXRs 
would be optimal. Another limitation includes that there was 
a lack of adult CXRs to train the bacterial pneumonia class 
as the Guangzhou Women and Children’s Medical Center 
dataset had CXRs for only those from one to five years old. 
This dataset comprises much of the bacterial pneumonia 
class, so the changes in the chest that occur as patients age 
may not be accounted for. Furthermore, the metrics shown 
in this study may not be completely accurate with fine tuning 
with respect to each model. With the purpose of not interfering 
with the metrics achieved by each model, we did not fine tune 
the models based on their weaknesses and strengths (after 
all, these are the weaknesses and strengths that we sought to 
identify). However, we still provide the baseline reality for the 
performance of these models in this experiment. 
 The scope of this research can be expanded by 
incorporating more diseases that are misdiagnosed  such 
as lung cancer (11). To improve upon the accuracy of the 
constructed models, transfer learning could be applied. 
Transfer learning is a technique by which a machine learning 
a model trained for one is re-used and changed for utilization 
on another purpose. It could be utilized here to improve the 
models in this study with patterns learned from application 
to another topic (12). Also, because this study sought to 
manipulate a limited number of variables, there was little 
fine-tuning on each model. Therefore, testing how optimal 
performance varies with a change in hyperparameters may 
provide insight into the application of neural networks to label 
CXRs. The discrepancies between the models’ performance 
in each class show the various approaches and advantages 
of the six models. The differing architectures and abilities 
of the models uniquely influenced their decision-making for 
the three classes of CXRs in this study. In conclusion, these 
results provide a general overview of how these models can 
be used in future applications.

METHODS AND MATERIALS
 To test our models, we first had to get our data. To 
minimize bias, we combined data from five different 
datasets that summarized three classes: tuberculosis, 
bacterial pneumonia, and normal. Our tuberculosis datasets 
(Shenzhen, Belarus, Montgomery County) contained 
different varieties of tuberculosis manifestations, which we 
noted within the dataset. Some images in the data depicted 
spinal tuberculosis (STB) while others showed pulmonary 
tuberculosis (PTB) and bilateral pulmonary tuberculosis. The 
region of this disease was also identified in the description of 
the images. In contrast, the pneumonia datasets we used did 
not identify the specific type of pneumonia (lobar, multifocal, 
etc.). However, they did have classifications of viral and 
bacterial pneumonia (only bacterial pneumonia was used for 
this experiment).
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 CXR images from the Shenzhen Dataset included 
326 normal CXRs (defined as not containing CXRs which 
depict TB, pneumonia, or any of the fourteen most common 
thoracic diseases) (13) and 336 abnormal CXRs with various 
manifestations of tuberculosis (including spinal tuberculosis, 
pulmonary tuberculosis, and bilateral pulmonary tuberculosis). 
The Montgomery Dataset from the Department of Health and 
Human Services of Montgomery County contained 80 normal 
CXRs and 58 TB CXRs (14). This dataset included effusions, 
military patterns, and other abnormalities. The Guangzhou 
Women and Children’s Medical Center dataset (15) included 
images of CXRs depicting normal lungs, bacterial pneumonia, 
or viral pneumonia; however, we only utilized CXRs of normal 
lungs and lungs with bacterial pneumonia, totaling 4387 
images. This dataset had a large range of pneumonia patients, 
but the specific type of pneumonia (lobar, multifocal, etc.) was 
not noted. The Belarus (16) dataset consisted of 304 CXRs, all 
of which showed patients infected with TB. From the ChestX-
ray8 dataset published by the National Institutes of Health, 
we extracted 864 CXRs of normal lungs. We incorporated 
datasets with CXRs of bacterial pneumonia, TB, and normal 
lungs (Figure 1) to improve the likelihood that the model can 
accurately differentiate between various conditions.
 We then combined these images into one dataset and 
divided them into training and validation sets with an 80:20 
ratio, respectively (Table 1). We resized all images in the 
dataset to 224x224 pixels. The data was augmented to 
generate new, unique images to create an equal number of 
images in each class. In this work, we used augmentation 
for a dual purpose. It helped create a more robust model that 
can identify diseases despite added noise/alterations to the 
images while also fixing the class imbalance. We implemented 
the typical augmentation methods, which consist of a 
horizontal flip, vertical flip, noise addition, image blur, width 
shift, and height shift, on all images in the training set. Before 
the augmentations, there were 5079 lung CXRs in the training 
set. Data in the training sets were augmented to form a total 
of 10,500 images, with each class of tuberculosis, bacterial 
pneumonia, and normal containing 3,500 CXRs. However, we 
did not augment the validation set to reduce bias during the 
evaluation of the model’s performance and consisted of 1272 
images.
 With the images ready, we then moved on model 
construction, which we did through understanding and 
building the architecture of our acclaimed models with Keras 
libraries. These models were set to predict three classes with 
an input shape of 224x224x3 (the image dimensions that we 
reshaped to). After each model was instantiated, we compiled 
them with an Adam optimizer (an optimization algorithm that 
updates weights based on training data) and set to output 
metrics of accuracy, specificity, recall, precision, loss, and 
F1 Score. We then trained each model on the previously 
preprocessed data and set them to run for 50 epochs (early 
stopping and best model callbacks were declared to prevent 
overfitting). 
 Utilizing these metrics (which were now stored in arrays 
for every epoch that the model underwent), we formed graphs 
for each metric. Furthermore, the classification report and 
confusion matrix toolkits were utilized to receive information 
about the performance of the models. Using a formatting 
method, these were then turned into interpretable confusion 
matrices for each model. 

The models that we used in this experiment are explained 
below. 

AlexNet
 AlexNet revolutionized deep learning in 2010. It produced 
breakthrough results in the ImageNet LSVRC-2010 contest, 
achieving a top-1 error rate of 39.7%. The AlexNet algorithm 
consists of five convolutional layers and three fully connected 
layers. Multi Convolutional Kernels, part of the convolutional 
blocks in the AlexNet, extract features from the image. The 
AlexNet was pre-trained on 1.3 million images, validated on 
50,000, and tested on 150,000 (7).

Residual Networks
 Residual Neural Networks (ResNets) are a powerful set of 
algorithms used for image classification. Residual networks 
address the vanishing gradient problem, in which accuracy 
decreases as the number of layers increases. Instead of 
stacking convolution layers, ResNets add a skip connection, 
which adds a convolutional block to the input and output. This 
mitigates the problem by allowing an alternate shortcut path 
for the gradient to flow through. Both the ResNet50 and the 
ResNet152 models were used (8).

InceptionResNetV2
 The InceptionResNetV2 is based upon a combination of 
the structure of the Inception and ResNet models. The most 
basic architecture of this model consists of a stem block, 
five repetitions of the Inception-ResNet-A, a reduction, 
ten repetitions of the Inception-ResNet-B, a reduction, 
five repetitions of Inception-ResNet-C, average pooling, 
dropout, and then a softmax activation function. Outputs are 
concatenated before each inception module (9).

InceptionV3
 The InceptionV3 was created to minimize representational 
bottleneck, which refers to the loss of information when 
convolutions alter the input’s dimensions. Thus, a 5x5 
convolution is factored into two 3x3 convolution operations 
to increase performance and computational speed. Instead 
of increasing depth, the InceptionV3 widens filter banks. It 
builds upon the InceptionV2 through four primary additions: 
an RMSProp Optimizer, Factorized 7x7 convolutions, 
BatchNorm in the Auxiliary Classifiers, and Label Smooth 
Regularization. In particular, label smooth regularization 
estimates the dropout rate to decrease the error rate. The 
InceptionV3 model constructed in this study consisted of a raw 
InceptionV3: average pooling, max pooling, concatenation, 
dropout, a fully connected Dense layer, and a concluding 
SoftMax function (9).

DenseNet
 DenseNets, or Dense Convolutional Networks, were 
created to provide an alternative way to increase the depth of 
deep convolutional neural networks. Classic neural networks 
connect the output of one layer to the next after performing 
operations. While other networks sum the output feature 
maps of a layer with the incoming feature maps, DenseNets 
concatenate them.
 The output of the previous layer acts as an input for 
the second layer by using composite function operation 
(which consists of the convolution layer, pooling layer, batch 
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normalization, and non-linear activation layer). This study 
utilizes the DenseNet121, which consists of five convolution 
and pooling layers, three transition layers, one classification 
layer, and two dense blocks. The DenseNet121 allows for the 
use of deeper models without concern for vanishing gradients 
(10).
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