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disease. However, identification of risk factors is traditionally 
done with observational studies, which are limited due to 
effects between confounding variables and environmental 
factors (6). For this reason, many observational studies are 
not able to distinguish between correlative and causative 
relationships. Mendelian randomization offers a solution to 
the difficulty of causal inference in observational studies by 
leveraging genetic information to inform statistical tests of 
causality (6,7).

Mendelian randomization (MR) is a statistical method that 
can identify factors which increase the risk or protect against 
a disease (6,7). When observing patients, it is difficult to 
differentiate between a correlative or a causative relationship 
between protective or risk factors and disease outcomes. MR 
can address this by using an instrumental variable analysis, 
which relies on genetic variation (7). Genetic variation is 
inherited at birth and cannot be affected by disease status 
or the environment (6). MR utilizes genetic variations as 
instrumental variables to identify causative effects. In this 
analysis, we studied the use of MR to identify the risk factors 
of CAD. Our hypothesis was that MR can identify known risk 
factors for CAD, and also that there would be causal effects 
from suggested risk factors such as eosinophil, lymphocyte, 
basophil, and platelet cell count on CAD.

The analytical advantage of MR is the ability to distinguish 
correlation from causation between risk factors and disease 
outcomes (6,8). The MR protocol begins by identifying key 
genetic variations associated with a risk factor and the 
effect of these genetic variations on a disease outcome 
risk (6). In our analysis, we collected the latest results from 
a genome-wide association study of 16 human phenotypes 
with purported mechanistic associations with CAD risk. 
For example, our MR study showed that an increase in low 
density lipoprotein (LDL) cholesterol levels will also increase 
the risk of CAD. The MR analysis identified that genetic 
variations which increase LDL cholesterol levels will also on 
average increase the risk of CAD. This MR analysis relies first 
on a study of LDL cholesterol levels that identified key genetic 
variations influencing the LDL cholesterol levels phenotype. 
We further query and extract the effect of these genetic 
variations on CAD risk utilizing a large study of the genetics of 
CAD patients. Using this combined dataset, the MR protocol 
is applied to derive a causal effect between LDL cholesterol 
levels and CAD risk.

Interesting results were obtained from the study. Several 
traits such as blood pressure readings, LDL cholesterol 
levels, tobacco smoking, body mass index (BMI), uric acid, 
C-reactive protein levels (a biomarker of inflammation), and 
type 2 diabetes were significant risk factors for CAD. Blood 
cell counts such as eosinophils, basophils, neutrophils, 
monocytes, lymphocytes, platelets, and red blood cells had 

Deciphering correlation and causation in risk factors 
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SUMMARY
In this analysis, we studied the use of Mendelian 
randomization to identify the risk factors of coronary 
artery disease (CAD), a major cause of cardiovascular 
disease. Identifying risk factors of CAD are critical 
to understanding and managing the disease. Our 
analysis combined results from 28 genetic analyses 
from 12 unique studies. For each genetic variation, 
we obtained the variant ID, chromosome, base-
pair position, reference and alternative alleles of 
the genetic variation, and estimated effect and 
p-value of the genetic variation on the outcome. 
We hypothesized that traits which are correlated 
with CAD outcomes will be causally associated 
with CAD risk in a genetic Mendelian randomization 
analysis. Our analysis showed that several traits 
such as blood pressure readings (systolic, OR 0.51 
(95% CI: 0.34-0.69), p-value = 5.4x10-9) and (diastolic, 
OR 0.56 (95% CI: 0.41-0.71), p-value = 7.6x10-14), 
LDL cholesterol levels (OR 0.54 (95% CI: 0.47-0.60), 
p-value = 4.4x10-56), and BMI (OR 0.41 (95%  I: 0.35-0.48), 
p-value = 6.30x10-33) were significant risk factors for 
CAD. C-reactive protein (OR -0.09 (95% CI: -0.18–0.00), 
p-value = 0.05) was a protective risk factor of CAD 
due to its negative odds ratio. In contrast, eosinophil 
count (OR -0.007 (95% CI: -0.06-0.04), p-value = 0.79) 
had no statistically significant association. Blood 
cells had weak associations with CAD, and uric acid’s 
role as a causal or reversible risk factor of CAD was 
inconclusive, requiring further study.

INTRODUCTION
Coronary artery disease (CAD), a condition caused by 

the buildup of plaque in the wall of the arteries that supply 
blood to the heart, is the leading cause of death for men and 
women in the United States (1). Nearly 610,000 Americans 
and 17.8 million people worldwide die annually from heart 
disease (2,3). Projections indicate that by 2035, nearly 45% 
of the adult American population will have some type of 
cardiovascular disease – like CAD (4).

Cardiovascular disease is the leading cause of death in the 
United States, however cardiovascular disease is preventable 
(4). Prevention methods are primarily focused on controlling 
risk factors by maintaining a healthy diet lacking saturated 
fats and trans fats, getting physical exercise, and avoiding 
smoking (5). Controlling other risk factors such as tobacco 
use, obesity, smoking, and raised blood pressure can largely 
prevent cardiovascular disease (3). This emphasizes the need 
for identification of further causal risk factors of cardiovascular 
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weak associations with CAD. We were unable to identify 
uric acid as a causal or reversible risk factor of CAD, so 
further study is required. These results show that the MR 
methodology to identify causal risk factors recapitulates 
known traits that are causative of CAD, and that blood cell 
counts and uric acid levels may be causative risk factors for 
CAD. Identification of further risk factors for CAD will enable 
better patient diagnostics and potential therapeutics to 
manage CAD risk.

RESULTS
We performed a confirmatory study showing that 

Mendelian randomization methodology was able to identify 
known causal risk factors for CAD (Figure 1). The causal 
association was therefore more resistant to confounding 
variables because the Mendelian randomization protocol 
relies on genetic variations as instrumental variables, which 
are randomized at birth and cannot be affected by reverse 
causality. The results demonstrated the change in CAD risk 
for one standard deviation (SD) in the exposure. For example, 
one standard deviation of increased systolic blood pressure 
results in 0.51 (95% CI: 0.34-0.69, p-value: 5.4x10-9) odds 
ratio higher CAD risk. 

Traits which Increase the Risk of CAD
Diastolic blood pressure and cholesterol are strongly 
associated with increased CAD risk

Diastolic blood pressure is a measure of arterial pressure 
when the heart is resting in between beats (9). High blood 
pressure increases risk of CAD as this adds force to the 
arterial wall, leading to damage and contributing to plaque 
formation (10). Our association analysis identified a highly 
significant association between diastolic blood pressure and 

CAD risk, with a causal effect of 0.56 higher odds ratio of CAD 
for one standard deviation increased diastolic blood pressure 
(95% CI: 0.41-0.71, p-value: 7.44x10-14). Furthermore, we 
identified a strong association between higher cholesterol 
(LDL) and risk of CAD, with a causal effect of 0.54 higher 
odds ratio of CAD for one standard deviation increased LDL 
cholesterol level (95% CI: 0.47-0.6, p-value: 4.44x10-56). The 
buildup of such cholesterol in the walls of the arteries leads to 
the increased chances of CAD.

Uric acid promotes the risk of coronary artery disease 
Uric acid, a chemical waste product present in blood, 

is created when the body breaks down purines (11). High 
levels of uric acid can lead to systemic inflammation and 
preclinical atherosclerosis, which is associated with future 
cardiovascular disease risk (12). Our study identified a highly 
significant association between uric acid and CAD risk, with a 
causal effect of 0.13 higher odds ratio of CAD for one standard 
deviation increased uric acid levels (95% CI: 0.06-0.2, 
p-value: 4.35x10-4) (Figure 1). 

Current tobacco smoking increases risk of coronary artery 
disease

Tobacco smoke contains harmful chemicals, such as 
nicotine, hydrogen cyanide, arsenic, and ammonia, which 
can inflame and swell cells that line the interior surface of 
blood vessels, leading to their contraction (13). Such infection 
can lead to cardiovascular complications, primarily CAD. This 
condition occurs when the arteries that carry the blood to the 
heart muscle are narrowed by the buildup of plaque, and with 
the tobacco chemicals causing the blood to thicken and form 
clots inside the veins and arteries, the blockage can further 
lead to a heart attack (13). Tobacco smoking increases the 

Figure 1: Forest plot representing the change in odds ratio of coronary artery disease for one standard deviation unit increase 
in exposures. A forest plot of 12 distinct exposures and their individual association tests with coronary artery disease risk as studied 
by Mendelian randomization. Most exposures increased the risks of coronary artery disease: blood pressure readings systolic (OR 0.51, 
95% CI: 0.34-0.69, p-value = 5.4x10-9) and diastolic (OR 0.56, 95% CI: 0.41-0.71, p-value = 7.6x10-14), LDL cholesterol levels (OR 0.54, 
95% CI: 0.47-0.60), p-value = 4.4x10-56),  BMI (OR 0.41, 95% CI: 0.35-0.48, p-value = 6.30x10-33), uric acid (OR 0.13, 95% CI: 0.06-0.2, p-value 
= 4.35x10-4), and type 2 diabetes (OR 0.1, 95% CI: 0.03-0.17, p-value = 4.38x10-3). Only C-reactive protein (OR -0.09 (95% CI: -0.18-0.00), 
p-value = 0.05) levels protected against coronary artery disease. Blood cell counts had low associations with the disease but increased its 
risks, with an exception to eosinophil since it had a 0 change in odds ratio. Genetic variations for risk factor were studied in an independent 
analysis with varying sample size as listed in Table 1.



8 FEBRUARY 2023  |  VOL 6  |  3Journal of Emerging Investigators  •  www.emerginginvestigators.org

risks of CAD, with a causal effect of 0.44 higher odds ratio 
of CAD for one standard deviation increased current tobacco 
smoking levels (95% CI: -0.05-0.92, p-value: 7.9x10-2) 
(Figure 1). 

BMI and type 2 diabetes are associated with coronary artery 
disease

BMI is the measure of body fat calculated from height 
and weight. A high BMI falls within the obesity range and is 
associated with several complications, such as hypertension, 
dyslipidemia, diabetes mellitus, metabolic syndrome, and 
cardiovascular diseases (14). Based on our results, BMI 
was significantly associated with higher risks of CAD, with 
a causal effect of 0.41 higher odds ratio of CAD for one 
standard deviation increased BMI levels (95% CI: 0.35-0.48, 
p-value: 6.3x10-33). Weight loss and decreasing BMI, however, 
is associated with the alleviation of preexisting cardiovascular 
risk factors (15). Additionally, type 2 diabetes, the inability 
of cells to respond to insulin properly, can create high blood 
glucose and damage blood vessels and nerves, making the 
heart muscle stiffer (16). Such damage can result in heart 
diseases such as CAD. Type 2 diabetes increased the risks 
of CAD, with a causal effect of 0.1 higher odds ratio of CAD 
for one standard deviation increased type 2 diabetes levels 
(95% CI: 0.03-0.17, p-value: 4.38x10-3) (Figure 1). 

Traits which are Inconclusive or Decrease the Risk of 
CAD
CRP protects against the risk of coronary artery disease

C-Reactive Protein (CRP) is identified as a protein 
produced by the liver when white blood cells fight against 
inflammatory diseases and infection (17). Higher CRP levels 
indicate present inflammation in the body, which results in 
white blood cells fighting against bacterial agents created by 
the invading inflammatory disease, like CAD (18). Our study 
identified an association between CRP and CAD risk, with 
a causal effect of -0.09 higher odds ratio of CAD for one 
standard deviation increased CRP levels (95% CI: -0.18-0, 
p-value: 4.62x10-2) (Figure 1). The negative odds ratio value 
signifies CRP as a protective factor of CAD. 

Blood cell counts have weak relationships with coronary 
artery disease

The blood cell counts in Figure 1 (neutrophil, white 
blood, lymphocyte, red blood, monocyte, platelet, basophil, 
and eosinophil) are all weakly associated with CAD. Limited 
conclusions were made on the eosinophil, basophil, platelet, 
monocyte, and red blood cell counts due to the proximity of 
their respective odds ratios to 0. On the other hand, neutrophil, 
lymphocyte, and white blood cell counts may play roles in 
the development of CAD. The neutrophil-to-lymphocyte cell 
count ratio can act as a marker of inflammation that is directly 
associated with CAD (19). Moreover, high counts of white 
blood cells can indicate inflammation and developing CAD 
(20). While these three blood cell counts indicate increased 
risks of CAD, limited conclusions were made due to low 
associations (Figure 1). 

DISCUSSION
The causal risk factors, systolic and diastolic blood 

pressure readings, are observed to strongly increase the risk 
of CAD. This is well supported by a number of observational 

studies showing high blood pressure to be a major risk factor 
for coronary heart disease, indicating that low systolic and 
diastolic blood pressure readings are associated with a low 
risk for developing coronary heart disease (Figure 1) (10). 
Moreover, LDL cholesterol levels have been extensively 
shown to also increase the risk of CAD. The majority of 
the body’s cholesterol is LDL, and unhealthy lifestyles can 
produce excess amounts, leading to harmful effects such 
as the buildup of cholesterol in the walls of the arteries (21). 
Studies have investigated the relationships between LDL and 
high density lipoprotein (HDL) cholesterol levels and mortality 
among people 85 years and older (22). High LDL cholesterol 
and low HDL cholesterol concentrations were both linked with 
an increased mortality risk of infection, concluding that high 
LDL cholesterol levels can lead to the increased risks of CAD 
(22). 

Additionally, current tobacco smoking as an exposure 
increases the risk of CAD (Figure 1). Studies have found 
that smoking is a major risk factor for CAD as one particular 
experiment aimed to determine the relationship between 
smoking status and the risk of developing CAD (23). Findings 
specified that for smokers under the age of 50, the risk of 
developing CAD is ten times greater than for nonsmokers of 
the same age (23). In addition, smoking was found to double 
the risk of mortality from ischemic heart disease (also known 
as coronary artery disease), compared with a lifetime of not 
smoking (23). These studies supported the results obtained 
from the MR experiment (Figure 1).

Moreover, BMI and type 2 diabetes are observed to 
increase the risk of CAD. One particular study performed 
a retrospective study on a large group of patients who 
underwent cardiac catheterization and were experiencing 
chest pain, finding that a BMI over 30 – which indicates 
obesity – is a risk factor for early development of CAD (14). 
Likewise, type 2 diabetes, an exposure that is also promoted 
by obesity, is associated with cardiovascular complications 
(24). Specifically, the Centers for Disease Control (CDC) finds 
that high blood sugar can damage the heart's blood vessels 
and nerves (25). Another such study specifies that diabetes 
mellitus is associated with higher risks of cardiovascular 
diseases, such as CAD (25). 

Regarding the results of uric acid, several studies have 
debated the role of uric acid as a causal risk factor for CAD. 
Even though the plot indicates that uric acid promotes the risk 
of CAD, one study’s results reveal that increases in uric acid 
may protect against the progression of CAD (26). Several 
other studies proved the opposite, indicating that increased 
levels of serum uric acid lead to the development of CAD, but 
emphasized the need of clinical trials to confirm the results 
(27). Uric acid may act as a pathogen and enhance the 
harmful effects of cardiovascular risk factors on the vascular 
tissue and myocardium (28). However, a review determined 
that even though there is a considerable amount of evidence 
that associates uric acid with CAD, there is no evidence that 
uric acid acts a causal or reversible relationship to vascular 
diseases (29). This debate makes it unable to determine uric 
acid’s role as a risk factor. 

CRP level is the other exposure that seems to protect 
against the risk of CAD (Figure 1). One particular study’s 
findings indicated that CRP may increase in cardiovascular 
disease to respond to infectious agents generating 
inflammatory reactions in the coronary vessels (18). In terms 
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of CAD, another study plotted the risk ratios for CAD by 
CRP levels, obtaining a log-linear shape that indicates that 
CRP levels have associations with the risk of coronary heart 
disease (17). The MR experiment in Figure 1 denoted the 
protection of CAD from CRP levels, which is supported by the 
studies examined, since CRP levels do, in fact, increase to 
protect the immune system from bacterial agents originating 
from cardiovascular diseases.

We investigated several blood cell counts – neutrophil, 
white blood cell, lymphocyte, red blood cell, monocyte, platelet, 
basophil, and eosinophil – as risk factors for CAD. Due to 
the proximity of their change in odds ratio to 0, the blood cell 
counts have weak associations with CAD (Figure 1). White 
blood cell counts have shown to increase the risk of CAD, with 
evidence showing that white blood cell counts can indicate 
the progression of the disease (30). A study that attempted to 
determine the role of white blood cell counts as predictors for 
CAD discovered that increased levels of most types of white 
blood cell counts were associated with the increased risk of 
CAD (20). Our MR results successfully identified the role of 
white blood cells as exposures that increase the chances of 
CAD, even with a low association. While eosinophils are a 
type of white blood cell and have similar functions as disease-
fighting cells, eosinophil blood cell count has no role as a risk 
factor due to the nearly 0 change in odds ratio (Figure 1). 
Moreover, red blood cell count and platelet cell count have 
similar roles as white blood cell count in acting as a causal 
risk factor. However, due to such weak association with CAD 
in our study, strong conclusions cannot be made. Multiple 
studies support this decision as the need for more research 
studies is required for further assessment (31).

Moreover, our findings further support research that claims 
that blood pressure readings, LDL cholesterol levels, tobacco 
smoke, BMI, and type 2 diabetes increase risks of CAD. Our 
MR analysis also indicated that CRP levels protect against 
CAD, which is supported by several other outside studies, 
proving that our research was able to contribute to the need 
for causal risk factor identification of CAD. In the case of uric 
acid, we found that it promotes CAD, which differs from what 
other such studies have proved. Some studies claim that uric 
acid protects against CAD, while others agree with our results 
that it progresses the outcome. Our study, in fact, provides 
new insight by suggesting an association between uric acid 
and increased CAD. Blood cell counts provided unique results 
in our study. The counts of white blood cells, neutrophil cells, 
and lymphocyte cells are seen to increase risks of CAD, but 
with weak association. One particular study (30) indicates a 
causal relationship between white blood cells and CAD, but 
we believe that further research is required before making 
definitive conclusions, especially since results showed that 
white blood cells increase risks of CAD while a few specific 
types of white blood cells (eosinophils, monocytes, and 
basophils) have no such or weak relationships with CAD. 

Additionally, MR analysis relies on instrumental variables 
derived from genome-wide association analysis, which is 
reliant on study sample sizes, in particular disease case 
counts. Therefore, our analysis is limited to disease outcomes 
which are well studied and at higher incidence. The results 
may also not be generalizable to all ethnic groups as the 
data primarily involves participants of European ancestry. 
Furthermore, some studies focus specifically on coding 
variation in the genome, in our analysis the type 2 diabetes 

dataset by Mahajan et al., 2018 with 81,412 cases is a 
three-fold increase in effective sample size compared to 
the previous largest study but is limited in its focus on only 
studying coding variants in the genome (32). This limitation 
will reduce the power to detect causal associations as genetic 
variations in intergenic regions which could contribute to the 
Mendelian randomization analysis.

Overall, our results support the hypothesis that in a MR 
study, traits which are correlated with CAD outcomes will 
be causally associated with CAD risk. To further validate 
our findings a prospective study conducted to measure risk 
factor levels over time would provide further evidence for 
the influence of traits on CAD. Furthermore, studying other 
cardiovascular disease outcomes including myocardial 
infarction, ischemic and hemorrhagic stroke, and heart failure 
may show that individual risk factors associated with CAD risk 
more broadly influence other disease outcomes.

MATERIALS AND METHODS
Dataset
 Our analysis combined results from 28 genetic analyses 
from 12 unique studies, with data being collected from 
supplementary tables and repositories associated with the 
studies listed in Table 1.

Mahajan et al., 2018 collected coding variant data on 81,412 
type 2 diabetes cases and 370,832 control samples which 
were collected from the UK Biobank and GERA (Resource 
for Genetic Epidemiology on Adult Health and Aging) cohorts 
(32). Systolic blood pressure was recorded using an Omron 
device in over 317,754 individuals in the UK biobank cohort 
(33), recorded as the average of two measurements taken 
in the same visit. The blood pressure measurements were 
studied by an open data initiative by the Neale lab at the Broad 
Institute of MIT and Harvard; variants were filtered based 
on quality control metrics and expected Hardy-Weinberg 
equilibrium (HWE) (34). Van der Harst et al., 2017 executed 
a genome-wide association study in 34,541 CAD cases and 
261,984 control samples from the UK Biobank resource in 
order to expand the number of genome-wide significant loci. 
They were able to identify 64 novel genetic risk loci for CAD, 
broadening our knowledge of the genetic architecture of 
CAD (35). The data of blood cell counts such as eosinophils, 
basophils, neutrophils, monocytes, lymphocytes, platelets, 
and white blood cells were recorded from 563,085 individuals 
from the UK Biobank, which allowed for the discovery of 5,106 
new genetic variants that are independently associated with 
29 blood cell phenotypes (36). Ligthart et al., 2018 used data 
from 88 studies consisting of 204,402 European individuals to 
perform two genome-wide association studies of circulating 
amounts of CRP, revealing 58 distinct genetic loci for CRP 
(37). Yengo et al., 2018 performed genome-wide association 
studies of height and BMI that utilized 700,000 UK Biobank 
individuals. Around 941 single nucleotide polymorphisms 
(SNPs)– variation of a single position in a DNA sequence 
– were associated with BMI, and the study as a whole 
demonstrated that a high sample size results in increased 
prediction accuracy, which allows for additional understanding 
of complex trait biology (38). Klimentidis et al., 2020, performed 
a genome-wide association study of variants associated with 
lower LDL cholesterol and increased type 2 diabetes risk, 
using 431,167 UK Biobank individuals for LDL cholesterol and 
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Table 1: Sources for the genome-wide association study data that was utilized in our Mendelian randomization analysis. Genetic 
data for the 16 human phenotypes studied in our Mendelian randomization analysis were collected and integrated from multiple sources.
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898,130 Diabetes Genetics Replication And Meta-analysis 
consortium individuals for type 2 diabetes (39). They identified 
31 loci associated with lower LDL cholesterol and increased 
type 2 diabetes and broadened understanding of higher type 
2 diabetes risk among individuals with low LDL cholesterol 
(39). To test 29.5 million genetic variants for association with 
red blood cell, white blood cell, and platelet properties in 
173,480 individuals, Astle et al., 2016 performed a genome-
wide association analysis in the UK Biobank, resulting in the 
understanding of the properties of the allelic framework of 
traits (40). Elsworth et al., 2020 presented the OpenGWAS 
database which imports and publishes the summary datasets 
and metadata from genome-wide association studies in order 
to make the results from such studies more programmatically 
accessible. The database contains around 126 billion genetic 
associations from 14,582 genome-wide association study 
datasets, representing exposures and disease outcomes, 
including the current tobacco smoking exposure which was 
utilized in our study (41). Ishigaki et al., 2018 conducted 
a genome-wide association study of 58 quantitative traits 
in 162,255 Japanese individuals from the BioBank Japan 
Project – a hospital registry that collected clinical information 
– to broaden the understanding of the genetics of the studied 
traits. One of the 58 traits included uric acid, which was found 
to be genetically associated with ischemic stroke (42). 

The following acquisition data was compiled to prepare 
for MR analyses using the R programming language. For 
each genetic variation of interest, we obtained: a) the rsID, 
b) chromosome and base-pair position, c) reference and 
alternative alleles of the genetic variation, d) estimated effect 
of the genetic variation on the outcome, e) p-value for the 
estimated effect of the genetic variation on the outcome. 
Summary statistics were analyzed with the MR protocol using 
the TwoSampleMR package.

Mendelian Randomization Sensitivity Analyses
MR uses a large number of genetic variants in its 

application, which could potentially lead to pleiotropy – when 
one genetic variation influences several unrelated traits. 
When there are direct effects from the genetic variants to the 
disease outcome other than through the pathway mediated by 
the exposure, they produce false positives and biased causal 
results, demeaning the validity of the results (43). To combat 
pleiotropy, two MR methods can be used: MR Egger and 
Inverse Variance Weighted. MR Egger helps to provide a less 
biased causal estimate but lacks statistical power (43). The 
Inverse Variance Weighted method, on the other hand, infers 
the strength of the causal effect between an exposure and an 
outcome, while possessing significant statistical power (43).

Software Pipeline
RStudio (Build 351) was utilized to statistically compute 

the exposures and outcomes in the study and generate forest 
plots to visualize the potential relationships between the two. 
MR programs were created using the TwoSampleMR package 
for each disease outcome. The TwoSampleMR package 
was utilized to extract association statistics for the genetic 
variations associated with the exposure and their effect on 
the outcome in order to estimate the causal relationship. 
This process is referred to as a MR experiment – the use of 
genetic variations as instrumental variables to infer the causal 
effects of multiple risk factors on a single outcome – and is 

more efficient than the typical MR experiment that infers the 
causal effect of a single risk factor on a single outcome. After 
extraction, a loop was run on each exposure to receive its 
instruments and the effects of its instruments on the outcome. 
Within the loop, each exposure and outcome data was then 
harmonized to be on the same effect allele so that comparisons 
were able to be made. Finally, the MR was performed, and a 
scatter plot and dataset were generated to represent the data. 
This process was utilized for each outcome examined in the 
study. Regarding the visualization of the data, scatterplots 
were generated for each exposure as it plotted the SNP effect 
on the exposure against the SNP effect on the outcome. In a 
similar fashion, the datasets were created for each exposure 
as they provided data regarding the p-values of the exposure 
on outcome for each MR method performed (MR Egger and 
Inverse Variance Weighted). The values retrieved from the 
Inverse Variance Weighted method were favored due to its 
efficiency and ability to remain high powered. The p-values 
of each exposure on outcome from the Inverse Variance 
Weighted method were analyzed, and if it was found to be 
less than or equal to 0.05 at a 95% confidence interval, then 
it would be statistically significant, indicating the rejection of 
the null hypothesis and concluding that the exposure is a risk 
factor for the outcome. After analysis of p-values, forest plots 
were generated to represent the significant exposures and 
outcomes.
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