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diseases), inheritance patterns, and personalized health and 
treatment solutions (2). Because sequence accessibility is 
highly correlated to gene expression, understanding the 
underlying factors which influence sequence accessibility 
and therefore expression is critical (3).

The genome contains the DNA that codes for proteins, 
which perform nearly all biological tasks in the cell. The four 
nucleotides that compose DNA are adenosine (A), thymine 
(T), guanine (G), and cytosine (C). These nucleotides usually 
occur as base pairs with A pairing with T and G pairing with C 
in the double helix DNA structure. DNA exists as chromatin, 
which is condensed DNA, making up the entirety of the 
genome (4). Histones are proteins around which DNA is 
wrapped to pack the DNA, as their positive charge attracts 
negatively charged DNA (4). The coiled DNA and histone 
nucleoprotein complex is referred to as chromatin (3). The 
basic unit of the chromatin is a nucleosome which consists 
of nearly 147 base pairs of DNA wrapped around an octamer 
of histone proteins (4). Chromatin can be tightly bound or 
loosely bound. Tightly bound chromatin, or heterochromatin, 
composes the majority of chromatin in humans. Typically, 
the genes in heterochromatin are less accessible because of 
the tight binding and are less expressed. In contrast, loosely 
bound chromatin, known as euchromatin, contain genes that 
are more accessible and more likely to be expressed (5).

The process of gene expression involves the transcription 
of DNA. The process of transcription is the copying DNA to 
RNA. RNA polymerase and transcription factors (proteins) 
bind to certain sites on the chromatin, which must open—a 
process called chromatin remodeling (6). There are regulatory 
regions for the chromatin called enhancers and promoters 
within the chromatin. Once the transcription factor binds to 
the promoter site, the genes regulated by this promoter are 
transcribed into mRNA. The mRNA is later translated to 
proteins, which accomplish cellular functions (7). Accessible 
genes are more likely to be transcribed, and therefore more 
likely to be transcribed into proteins and express their intended 
function. Generally, accessible regions of chromatin are 
permissive for transcription factor binding and are therefore 
hotspots for regulation of gene expression; conversely, 
genomic regions that are highly occupied by histone proteins 
are not permissive for transcription factor binding and are less 
likely to be active regulatory regions. This impacts cellular 
function and expression of traits. As a result of its greater 
accessibility, euchromatin is more likely to be expressed (8).

Can the nucleotide content of a DNA sequence predict 
the sequence accessibility?

SUMMARY
Sequence accessibility is an important factor affecting 
gene expression. Sequence accessibility or openness 
impacts the likelihood that a gene is transcribed and 
translated into a protein and performs functions and 
manifests traits. The DNA, which carries the genes, 
is packaged as chromatin. There are two types 
of chromatin, heterochromatin and euchromatin. 
Heterochromatin tends to be inaccessible and thus is 
often not expressed. In contrast, euchromatin is more 
accessible and is expressed. Accessibility of a gene 
depends on the type of chromatin it is in, and with 
increased accessibility, there is a greater likelihood 
of gene transcription and expression. There are 
many potential factors that affect the accessibility 
of a gene. In this study, our hypothesis was that the 
content of nucleotides in a genetic sequence predicts 
its accessibility. Using a machine learning linear 
regression model, we studied the relationship between 
nucleotide content and accessibility. DNA sequences 
are made up of four nucleotides. We compared 
the quantity of each of these four nucleotides, 
adenosine, thymine, guanine, and cytosine either 
as single nucleotide or in specific combinations of 
two nucleotides with sequence accessibility using 
the K562 cell line. Of all the combinations tried, we 
discovered that the cytosine-guanine combination 
content had the highest positive correlation with 
accessibility, and therefore with gene expression. 
This correlation allows us to better predict which 
genetic sequences will be more frequently expressed 
based solely on the nucleotide content and sequence. 
Predicting gene expression through machine 
learning algorithms promises to catalyze our ability 
to understand the structure and function of specific 
gene sequences.

INTRODUCTION
The human genome consists of approximately 30,000 

genes and three billion base pairs (combination of two 
nucleotides on the two strands of the DNA double helix) (1). 
The human genome project sequenced the entire human 
genome by splicing it into parts and using bacterial artificial 
chromosomes (1). However, only a fraction of nearly 30,000 
genes are known to be expressed (1). The regulation of 
gene expression is dependent on multiple factors including 
sequence accessibility (which impacts mutations which cause 

Shreyes Balachandran1, Diwakar Balachandran2

1St. John’s School, Houston Texas 
2The University of Texas MD Anderson Cancer Center, Houston, Texas

Article



10 MARCH 2023  |  VOL 6  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

Prediction of accessibility is important for many reasons 
such as identifying which genetic sequences will be more 
represented in the cells, which sequences may be more 
prone to cause disease, and which sequences are targets 
for gene editing by CRISPR (9). Determining the genomic 
localization of chromatin-bound proteins is therefore essential 
in determining functional roles, sequence motifs important 
for factor binding, and regulatory networks controlling gene 
expression (10). The measurement of sequence accessibility 
is determined by several techniques including ChIP (chromatin 
immunoprecipitation), Formaldehyde-assisted Isolation of 
Regulatory Elements (FAIRE) sequencing, RNA-sequencing 
(RNA-seq), DNase hypersensitivity site sequencing, and 
Assay for Transposase Accessible Chromatin (ATAC-
seq) (10, 11). These techniques helped define the interplay 
between DNA sequence characteristics, histone occupancy, 
and transcription factor binding in the regulation of gene 
expression (12). Nucleotide content is one such characteristic 
of the DNA sequence that impacts gene expression which 
determines this complex interplay of factors and is the focus 
of this study.

The purpose of this study was to assess correlation of 
nucleotide content with sequence accessibility and thereby 
gene expression using a machine learning linear regression 
model for prediction. We predict that the machine learning 
model will show a correlation between nucleotide content 
and gene accessibility. Machine learning requires training 
of a dataset to validate the algorithm used. We employed a 
trained data set to create a model to formulate the correlation 
between the input variable (nucleotide content) and the 
dependent variable (sequence accessibility). We did this for 
nucleotide content which were comprised of a single or a pair 
of nucleotides. We then calculated the correlation coefficient 
(R-value) to determine which nucleotide sequences had the 
closest relationship with sequence accessibility. Our results 
demonstrated a correlation between the GC sequence and 
accessibility. These results demonstrate the utility of using 
machine learning models to predict gene expression in both 
health and disease.

RESULTS
Our machine learning model was based on the use of a 

well describe cell line to both train and then test the model 
to examine the ability of nucleotide content to predict gene 
expression. The K562 cell line (chronic myelogenous leukemia 
cell line), which is a continuous cell line, and accessibility 
data was derived using the DNase sequencing (DNase-seq) 
technique to fragment the DNA. This process is described 
in detail in the methods section. A training set consisting 
of all the chromosomes, except Chromosome 1, was used 
for training the machine learning model to perform a linear 
regression comparing the nucleotide content to the sequence 
accessibility. This was subsequently validated on the test set, 
the selected DNA sequences used to test our model, which 
consisted of Chromosome 1.

There were a total of 106,629 nucleotides for the training 
set. There were a total of 12,452 nucleotides for the test 
set which corresponded to Chromosome 1. The machine 
learning model for linear regression trained on the training 
set showed a positive slope between the G, C content and 
the accessibility of the peak, which suggests that a higher G, 
C content is conducive to accessibility (Figure 1). We then 
computed the Pearson correlation coefficient r between the 
nucleotide content and accessibility in the training set. This 
was then tested on the test set (Figure 2). When the model 
was tested, it yielded different correlations for each nucleotide 
group to which it was applied. 

The sequence CG (combined) correlated the most with 
the accessibility and openness of the chromatin (Table 3). 
The R-value for the CG sequence was positive 0.469 and 
showed the highest R-value for all the analyses and for the 
combination double base pairs. The next highest R-value was 
positive 0.429 and was for the triple base pair combination 
CGC. The R-values for the other nucleotides are shown in the 
following tables. Using this method to correlate the type of 
base nucleotide to accessibility and gene expression showed 
a moderate correlation for the CG content of the chromatin 

Figure 1: A scatterplot between the GC content of each peak and 
the accessibility of each peak over the training set. The trained 
linear regression model is in black (r = 0.397; MSE =3.837; Predicted 
openness = 7.600 * GC content – 2.772). Openness/accessibility is 
measured as a fraction of available DNA sites.

Figure 2: A scatterplot between the test set GC content of each 
peak and the accessibility of each peak over the test set (r = 
0.417; MSE = 5.119).
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(Table 3). Although the correlation was moderate, this was 
the highest association for all single nucleotides and double 
nucleotides sequences. 

These findings showed a moderate correlation between 
the CG nucleotide content and the sequence accessibility 
both in the training set and the test set (Figures 1,2). This 
was optimized to reduce the mean standard error (MSE) The 
correlation for other single nucleotides (A, T, G, C) and for 
double nucleotide combinations such as AT, TA were less 
correlated with sequence accessibility (Tables 2-5). Given the 
higher R-value with CG content, three nucleotide sequences 
were run in the predictive model for CGA, CGT, CGG, CGC 
and the R-values for these 3 nucleotide models were less 
than with the CG content correlation alone (Table 6).

DISCUSSION
We examined sequence accessibility and compared it with 

the nucleotide sequence of the gene to further understand 
if the preponderance and sequence of certain nucleotides 
is associated with increased accessibility. We created a 
machine learning model of linear regression between these 
two variables. We trained the model on a training set and 
then subsequently on a test set. The results between the 
two sets were similar indicating the high validity of this model 
and confirming the moderate correlation between the CG 
sequence and sequence accessibility. One possible reason 
for this is because DNA methylation occurs more frequently in 
areas where cytosine and guanine predominate (13).

Our study adds to the growing literature that uses machine 
learning linear regression model to evaluate nucleotide 
content and sequence and correlates this with the sequence 
accessibility (2). There are a few other studies on machine 
learning and sequence accessibility which address nucleotide 
content as a factor in determining gene expression (14-16). 
Most recently, Zrimec et al. describes a machine learning 
deep neural network model to determine the relationship 
between DNA protein binding site and gene expression (16).

Gene expression has been studied extensively. There 

are several factors that control gene expression. These 
include both intrinsic factors such as sequence accessibility 
and extrinsic factors such as availability of nutrients (17, 18). 
Gene expression is divided into transcription (conversion of 
the DNA to mRNA) and translation (conversion of the mRNA 
into protein). For initiation of transcription, several steps 
must occur, including the attaching of the RNA polymerase 
and mediator complex to the promoter portion of the DNA 
sequence, a small DNA segment which is just upstream of 
the gene. Gene and DNA accessibility can affect the gene 
expression by controlling the accessibility of the DNA strand 
to transcription factors and mediator and RNA polymerase 
complex (16). 

We calibrated the training set with GC (independent) 
content, exclusively, so calibrating it for different nucleotides 
may have reduced the MSE values we found, limiting the 
ability to generalize our findings. Furthermore, we did not 
isolate the promoter sequence for the genes and assess their 
nucleotide content. This may have independently impacted 
sequence accessibility. Lastly, we used only the K562 cell 
line as the large training set to study the predictive ability 
of the machine learning model. Future studies may employ 
other cell lines to see if the machine learning model can 
be improved. Future studies to predict the correlation of 
nucleotide content and sequence accessibility need to be 
performed including to determine if the nucleotide content of 
the specific promoter sequence for the genes correlates with 
sequence accessibility (19). Similarly, the enhancer sequence 
for genes could be isolated and correlation between the 
nucleotide content of the enhancer sequence and sequence 
accessibility could be assessed. In our study, nucleotide 
content was not found to directly affect gene expression, 
it was found to affect gene accessibility. In addition we 
recognize that while gene accessibility is correlated to gene 
expression, it is not precisely causal Finally, it is important to 
consider that nucleotides are not equally present in this cell 
line, which could cause further error (20). 

Our predictive machine learning model was able to find 

Table 1 Table 2

Table 3

Table 5

Table 4

Table 6

Tables 1-6: Correlation between nucleotide content and gene accessibility. R-values are correlation coefficients.
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a correlation between nucleotide content and sequence 
accessibility and expression. This novel tool of machine 
learning will continue to allow for further exploration of this 
and other factors of gene expression. Further studies with 
machine learning can explore the complex interplay of 
multiple factors which influence gene expression.

MATERIALS AND METHODS
The data used for this research was obtained from the 

ENCODE (Encyclopedia of DNA Elements) Consortium. 
ENCODE is an international collaborative effort which 
seeks to identify and build a comprehensive list of functional 
elements of the human genome (21). We used data from 
the K562 cell line which is a continuous cell line (20). 
Accessibility data was derived from a sample which used the 
deoxyribonuclease DNase-seq technique, which was used to 
fragment the DNA. In DNase-seq, the population of cells is 
treated with the DNase enzyme. The DNase cuts the DNA 
in the chromatin into smaller fragments by attaching to the 
hypersensitive regions of the DNA. This occurs to a far greater 
extent where the DNA is not too tightly bound by histones. 
The regions which were tightly bound by histones contribute 
only to large fragments (11). Regions which are particularly 
accessible are called peaks, and the accessibility varies 
across the peaks. We downloaded the accessible peaks in 
K562 from the ENCODE project. From the experiment with 
ID ENCSR000EOT, we downloaded the IDR-thresholded 
peaks with file ID ENCFF185XRG. Using the human genome 
alignment hg38, we extracted the underlying DNA sequence 
of each called peak using bedtools getfasta (22). We use the 
signal value column of the peak file as the accessibility of 
each peak. 

We used the DNase-seq peaks and computed the 
nucleotide sequence in each peak. We then split these 
peaks into two sets: the training set, which consists of peaks 
from all chromosomes except chromosome 1, and the test 
set, which consists of peaks in chromosome 1. We trained 
the machine learning model using the training set. On this 
machine learning regression model, we used the nucleotide 
content of each underlying peak as our input feature and the 
peak accessibility as our output target. The predictive model 
trained on the training set shows a positive slope between 
the GC content and the peak, which suggests that a higher 
GC content is conducive to sequence accessibility. We then 
computed the Pearson correlation between the peak’s GC 
content and accessibility in the training set. To calculate the 
GC content of each peak, we took the DNA sequence of the 
peak, searched for all G and C nucleotides, and found the 
ratio of that amount to the total amount of nucleotides in the 
DNA sequence of the peak. 

The following variables were determined in our model: x is 
the nucleotide content and y is the sequence accessibility. To 
train our linear regression model, we computed the slope and 
y-intercept of the training set model using these equations 1 
and 2.

To compute the coefficient of correlation, R-value, between 
GC content and peak accessibility, we used equation 3.

The equations were used to create a predictive equation 
and we calculated the R-value for the training set. Then, we 
found predicted Y values for the test set by using the X values 
into our training set equation, and compared them to the 
actual values of Y using equation 4 for MSE (mean squared 
error) with n being the number of peaks; x, the value of the 
GC content; y, the true accessibility; and ŷ, the predicted 
accessibility.

Additionally, we found equations and R-values for the test 
set using the equations 1–3 to see how well they could be 
independently predicted. The R-value and MSE determined 
the effectiveness of a correlation. We used DNAse seq along 
with linear regression as the method to assess sequence 
accessibility in this study. Linear regression was used to 
understand the relationship between the variables and 
the R-value was also evaluated. Linear regression using 
machine learning remains a novel tool in assessing the 
impact of nucleotide content of genes. The combination 
of the nucleotides is further classified as individualized or 
combined. Individualized refers to looking for each provided 
nucleotide separately, whereas, combined, is the opposite 
and means looking for their occurrences together in the order 
written. All possible double nucleotides (all combinations) 
were checked against the accessibility of the genes. The 
R-value of the different nucleotides sequences was tabulated 
and correlation with sequence accessibility was measured.
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