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Introduction
There has been notable success over the last decade 

in the development of domain-specific applications in 
Artificial Intelligence (AI). Examples of such successes 
include algorithms that excel at labeling objects in 
images (1), algorithms that surpass world champions at 
playing certain games such as Chess, Go or Jeopardy 
(2), algorithms for speech recognition, and many 
more. The neural network architectures responsible 
for those accomplishments consist of neural-like units 
interconnected via weights that dictate how signals are 
propagated and interpreted. Training such a network 
amounts to finding a suitable set of weights that will 
maximize a reward function, such as the score, when 
learning to play a game. 

An important algorithm to train such networks is 
based on the notion of reinforcement learning (3) (Figure 
1). An agent takes an observation from the environment 
(e.g., a video frame) and exerts a certain an action on 
the environment (e.g., moving an avatar in a certain 
direction). The environment provides a reward signal, 
which can be positive if the action leads to maximizing 
the target function and negative otherwise. The target 
or loss function is what the agent is trying to optimize 
while adjusting its algorithm. The reward signal is used 
to modify the weights in the algorithm. Reinforcement 
learning has been used to explain how humans learn in 
cognitive science models, and it has also been influential 
in the field of neuroscience, as neuronal connections 
can be strengthened or weakened in a manner that is 
dependent on reward signals. Following up on previous 
hierarchical reinforcement learning algorithms (5), there 
have been significant strides in connecting reinforcement 
learning and deep neural networks with the goal of 
mastering complex tasks (4). 

After training, all the information about how to 
perform the task is stored in the set of weights in the 
network. What would happen if the same architecture 
is then trained to perform a new task? Learning a new 
task amounts to altering the set of existing weights in the 
network and these changes can lead to forgetting how to 
adequately perform the original task. This problem has 
been referred to as catastrophic forgetting (6, 7). The 
ability to continuously learn new tasks without completely 
forgetting the old ones is a critical component of general 
intelligence. 

Summary
The ability to remember previous tasks while 

concomitantly building upon prior knowledge to acquire 
new skills is a vital aspect of human learning. Artificial 
Intelligence algorithms, however, have traditionally 
struggled in this respect, mastering a specific task but 
being unable to transfer this knowledge to new tasks or 
forgetting previous skills when learning new ones. We 
examine ways in which the weights in neural networks 
can be constrained to ensure that the networks can 
acquire new skills and also remember previous tasks, 
allowing them to learn multiple tasks sequentially. We 
test our approach by building a network that learns 
how to play two different Atari 2600 games. Although 
some approaches lead to varying amounts of forgetting, 
others yield successful results that even beat human 
performance on some games. 
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Figure 1. Reinforcement learning schema. Given an 
observation from the environment, the agent executes an 
action and the environment provides a positive or negative 
reward signal. The agent learns to execute actions that will 
maximize reward. 
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Here, we investigated different potential mechanisms 
to circumvent the problem of catastrophic forgetting. 
We hypothesized that selective modification of weights 
based on the strength of connections between units 
would allow the network to acquire new tasks without 
forgetting previous ones. We used a deep neural network 
trained via reinforcement learning to sequentially learn 
to perform two tasks. After training the network in the 
first task, we compared different possible constraints 
on the set of weights to prevent or at least ameliorate 
catastrophic forgetting while training the network in the 
second task. Freezing weights in individual layers did 
not prevent catastrophic forgetting, but elastic weight 
consolidation did allow the network to remember 
previous skills when training on new ones. 

Results
We investigated the problem of forgetting in neural 

network sequentially trained in two different tasks 
(Figure 2). We considered two video game tasks, 
Breakout and Atlantis, and used an 8-layer-deep 
convolutional neural network (Figure 3) that was trained 
via back propagation using the rewards from the game 
environment in a reinforcement learning setup (Figure 
1). As expected, the networks were successfully trained 
and could master each task individually. Upon training 
the second task after training the first task, the network 
exhibited catastrophic forgetting. We compared different 
algorithms in terms of their ability to remember the initial 
task after transferring learning to a new task. 
 
Catastrophic forgetting 

We implemented the network as illustrated in Figure 
3. We first verified that the network could successfully 
learn each of the tasks in isolation. The progression of 
game scores (or number of points) during the course of 
training the network separately in Breakout (Figure 4A) 
and Atlantis (Figure 4B) increases non-monotonically, 
since there is randomness in the agent implemented 
through the epsilon greedy algorithm. This randomness 
ensures that the agent can explore the whole 
environment. This random exploration is a hallmark of 
reinforcement learning algorithms and enables the agent 
to find novel solutions, precluding getting stuck in the 
wrong learning direction. The network quickly surpasses 
chance levels (dashed line in Figure 4, defined by random 
exploration of the environment, (4)) in both tasks. After 
approximately 2200 episodes in Task A and after about 
600 episodes in Task B, the agent’s performance begins 
to surpass human levels (horizontal red line in Figure 4). 
Human performance was defined by the values reported 
in (4), which are based on professional testers who had 
practiced the game for about 2 hours. In other words, a 
relatively simple architecture can rapidly achieve or even 

surpass expert human-level performance. 
We next investigated sequential training in the 

two tasks (Figure 5). After the network was trained 
in Task A (Breakout), training was switched to Task 
B (Atlantis). In this paradigm, after the switch, the 
network exclusively visits the Task B environment and 
the changes in the weights are purely dictated by the 
new Task. In the first evaluation, we did not impose 
any constraints on the weights. All the weights were 
allowed to change in order to enhance performance in 
Task B. As expected, performance in task B improved 
and quickly reached human levels (Figure 5). At this 

Figure 2. Two video game tasks. Screenshots from the 
Breakout video game (A) and the Atlantis video game (B). In 
the Breakout task, the agent controls the red paddle at the 
bottom of the screen. The agent loses a life if the ball falls off 
the bottom of the screen and gains points by hitting bricks with 
the ball. In the Atlantis task, the agent must defend its base 
by shooting down enemy ships. The agent gains points by 
shooting down the enemies and staying alive for as long as 
possible.

Figure 3. Network architecture. The model consists of an 
input layer (L0) of 80x105 pixels. The L0 input is conveyed to a 
series of three convolutional layers (conv1 through conv3; the 
number of filters is shown for each layer), followed up by 4 fully 
connected layers (fc4 through fc7; the number of units is 1024 
for all layers). In the case of Breakout, the output consists of 
4 possible actions (move right, move left, do nothing or fire). 
In the case of Atlantis, there are also 4 possible outputs: no 
operation, fire, right fire, left fire. 
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stage, we re-evaluated the network’s performance in 
the original task. The network’s performance in Task A 
had dropped to essentially the initial conditions (Figure 
5). This phenomenon is well known in the literature 
and is referred to as catastrophic forgetting (6). As the 
network’s weights are adjusted to improve performance 
in Task B, its performance in Task A quickly deteriorates. 

The simulations were arbitrarily stopped after 
a certain number of episodes (Figure 4), but the 
performance reported should not be interpreted as an 
upper bound. In fact, other investigators have reported 
more than 10x human level performance in these same 
tasks, using similar architectures (4). Training the system 
in both games with the current number of episodes 
requires approximately 12 hours of computation on 
a high-performance computing cluster with graphics 
processing units (GPUs). Here, we were particularly 
interested in the proof-of-principle evaluation of different 
algorithms to enable learning new tasks without forgetting 
previous ones, rather than in achieving maximum 
possible performance for each task. Therefore, once 
there was appreciable improvement above random 
performance in the first task, we switched training to 
the second task. Similarly, upon observing appreciable 
improvement above random performance in the second 
task, we stopped training and evaluated performance in 
the first task. Note that performance was still increasing 
in both tasks when the training was switched. Achieving 
maximum performance would require a more extensive 
amount of training in each task, at the expense of 
computational efficiency.

Figure 4. Reinforcement learning for each task separately. The model shown in Figure 3 was separately trained to perform 
Breakout (A) or Atlantis (B). As the agent plays more episodes (x-axis), the number of points accrued per game increases (y-axis) 
as a consequence of learning. The red line indicates the average human performance and the dashed line indicates chance levels 
according to (4). The maximum number of episodes in A corresponds to approximately 1,260,302 states and in b to 2,797,082 
states. At the end of this training, the model beats humans in both tasks. In subsequent figures, the model’s performance is reported 
as a percent of human performance.

Figure 5. Catastrophic forgetting. Simulation results when 
the network is sequentially trained in the two tasks without 
any constraints on the weights. The y-axis indicates the score 
as a percentage of human performance (100 corresponds to 
matching human performance, note that the model can surpass 
humans, Figure 4). The x-axis indicates the number of states: 
a “state” (plus reward) is the information that the environment 
passes to the agent after each action. In this case, the state 
is a motion blur of the last 3 frames. In general, a state can 
involve a high-dimensional matrix including multiple variables, 
depending on the environment. The model is first trained 
on Task A (blue) and improves performance on this task as 
shown in further detail in Figure 4. At the point marked by the 
first vertical dotted line, training is switched to Task B (red). 
During training for Task B, performance increases for Task 
B and there is no constraint imposed on the weights to avoid 
forgetting Task A. At the point marked by the second vertical 
dotted line, we tested the model’s performance on Task A 
again. Performance for Task A dropped essentially to the initial 
values, indicating that the model had forgotten how to perform 
this task. The dotted horizontal line shows the performance on 
Task A expected with zero forgetting. The horizontal dashed 
lines indicate chance performance for each game. 
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Solutions to catastrophic forgetting
We considered several alternatives to constrain 

the weights after training in Task A in an attempt to 
avoid the forgetting effect. The first approach was to 
selectively freeze the weights impinging on one of the 
layers (Figure 2). The idea behind this approach is that 
a certain fraction of the connections, specifically those 
at one of the hierarchical computational stages in the 
algorithm, are not allowed to change after training on a 
given task. While this may not be a general solution, as it 
would require different tasks to be mapped onto different 
layers, it was a useful first step towards exploring the 
possibility of limiting training within the network. Upon 
freezing weights in each of several layers in the network, 
these networks still forgot how to perform the first task 
after re-training them on the second task (Figures 6-8). 
A variation of these results could involve combining 
different constraints by freezing weights in multiple 
layers. Because of the computational cost of these 
simulations, it is challenging to explore all possible 
combinations of constraints. As a proof of principle, we 
ran an additional simulation where we froze the weights 
in the first two layers, but this was not effective, either, 
and the network still forgot what it had learnt during the 
initial training (Figure 9). 

The next approach that we examined was Elastic 
Weight Consolidation, whereby the probability of 
changing a certain weight is governed by how important 
the weight was in the first task, based on the Fisher 

Information Criterion. The Fisher Information Criterion 
essentially measures the change (derivative) of the 
algorithm’s loss function with respect to those weights, 
thereby identifying weights that are more relevant to 
the task and that could lead to larger impairment in 
performance if modified. Intuitively, “important” weights 
are not allowed to change as much as less-relevant 
weights. After applying elastic weight consolidation to 
our problem, the network retained the ability to perform 
the first task, essentially with no forgetting, despite 
extensive training in the second task (Figure 7). 

We also evaluated the consistency of the findings by 
reporting the variation (or error) in performance (Figure 
7). Performance improved during training (comparing the 
last time point in each epoch versus the initial time point 
in each epoch yielded p<10-6 for Task A and p<10-8 for 
Task B, n=30, two-tailed t-test). In addition, performance 
after re-testing in Task A was significantly above chance 
levels (p<10-4, n=30, two-tailed t-test).

The results presented thus far involve evaluating 
performance in the originally trained task (Task A), after 
training in Task B. In principle, the current framework 
allows for the evaluation of multiple different possible 
training regimes with different amounts of training in 
both tasks. As an alternative training framework, we 
considered a paradigm where we alternated between 
training in Task A and Task B (Figure 8). We used 
Elastic Weight Consolidation to dictate the probability 
of changing weights. Because of the extensive 

Figure 6. Freezing weights in some of the layers does 
not ameliorate the catastrophic forgetting problem. After 
training in the network in the first task (Breakout), we froze the 
weights in one of the layers (B: conv1, C: conv2, D: conv3, 
E: fc4, F: fc7; see Figure 2 for a graphical schematic of each 
layer). Subplot A (no constraint) is a copy of Figure 5 and is 
reproduced here for comparison purposes. The format in this 
figure follows the conventions in Figure 5. The dotted dashed 
line is the time at which the tasks were switched and the weights 
in one of the layers was frozen. 

Figure 7. Elastic weight consolidation. This figure follows the 
same format and conventions as Figure 5. In this case, when 
training is switched, the elastic weight consolidation constraint 
is imposed on the weights to avoid catastrophic forgetting. 
When the model is re-tested on Task A (point marked “re-
testing”), the model shows essentially the same performance 
that it had at the end of training Task A, indicating that it did not 
forget how to perform the previous task despite achieving high 
performance on Task B. Error bars denote standard deviation. 
The “*” in the “re-testing” point indicates that performance was 
significantly above chance (p<10-4, n=30, two-tailed t-test). 
Note the discontinuity introduced in the y-axis to better illustrate 
the results.
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computations involved, we used a smaller number of 
states than in the previous figures. During each training 
epoch, performance in the trained task improved, as 
expected (shown here by using a linear regression). What 
is particularly relevant here is to consider what happens 
after switching tasks. In the first task-switching transition, 
a new task (Task B) is introduced, then in the second 
transition, the network goes back to training in Task A 
(Figure 8). In this simulation, the network essentially 
has forgotten everything it has learnt about Task A and 
needs to start training from the initial state (first dotted 
arrow, comparison between first retesting point and 
initial training point for Task A, p>0.3, two-tailed t-test). 
These results stand in contrast to those earlier and 
demonstrate that the amount of training and expertise is 
important to maintaining expertise after training in a new 
task. Similar conclusions can be reached by examining 
the third task-switching event from Task A back to Task 
B (second dotted arrow, comparison between first 
retesting point and initial training point for Task B, p>0.2, 
two-tailed t-test). Because there was more extensive 
training in Task B, the network more rapidly recovers and 
even rapidly improves upon what it had learnt for Task B 
during the first training epoch. 

Discussion
Here we compared different constraints on the set of 

weights initially trained on one task, such that a network 
could be trained in a second task without forgetting the 
first one. Elastic Weight Consolidation proved effective 

in preventing catastrophic forgetting whereas selective 
freezing of layers did not solve this challenge.

Humans can learn a seemingly boundless number of 
tasks with the same architecture (11, 12). While there is 
clear forgetting of tasks that have not been rehearsed in 
a long time, such forgetting is not catastrophic: subjects 
often still retain above chance performance in old tasks, 
and they are typically substantially faster to master again 
those tasks upon re-training. Part of the ability to learn 
old tasks quickly might be implemented through different 
mechanisms that supplement reinforcement learning (for 
example, by creating and storing a high-level abstract 
model of the task). 

There are multiple additional potential mechanisms to 
avoid or ameliorate forgetting of previously learned tasks. 
One possibility is that strong weights in the network could 
be associated with a lower probability of modification 
compared to weak weights. Thus, after training in Task 
A, some of the stronger weights would be less likely to 
be modified during subsequent training in other tasks. It 
should be noted that this constraint is distinct from the 
elastic weight consolidation methodology discussed in 
the text where weights are modified depending on how 
much they contribute to the previous task according 
to the Fisher information criterion. Some of these 
alternative possibilities are not mutually exclusive. For 
example, it is possible to keep practicing old tasks while 
at the same time tagging certain weights for enhanced 
probability of modification.

With the goal of achieving general AI, it is crucial for 

Figure 8. Game alternation. This figure follows the same 
format and conventions as Figure 7. Here the network 
alternates between training in Task A (blue points) and Task B 
(red points). Error bars denote standard deviation. The dotted 
lines denote task switching. The solid lines show a linear 
regression fit, positive slopes are indicative of improvement. 
Comparison between first retesting point in Task A and initial 
value in Task A yielded p>0.3, two-tailed t-test. Comparison 
between first re-testing point in Task B and initial value in Task 
B yielded p>0.2, two-tailed t-test.

Figure 9. Combination of constraints. This figure follows 
the same format and conventions of previous figures. Here we 
extend the results of Figure 6 by considering a combination 
of freezing constraints. We freeze the weights in the first 
two layers. As shown by the dotted arrow, this combination 
of freezing constraints does not ameliorate the problem of 
catastrophic forgetting. Comparison between first re-testing 
point in Task A and initial value in Task A yielded p>0.4, two-
tailed t-test. 



6October 26, 2018Journal of Emerging Investigators

     Journal of
Emerging Investigators

an algorithm to learn a variety of tasks. For instance, 
imagine a network that can learn to block spam email and 
also reply to emails based on a user’s natural language. 
Traditional neural networks have excelled at specific 
domains, such as playing chess or classifying images; 
however, these networks have limited performance 
when tested on other tasks. By using the same neural 
structure to learn different skills, algorithms could more 
closely emulate human learning, thus taking a step 
towards continuous learning. A flexible neural network 
that remembers old knowledge and applies it to new 
problems, much like the brain, is a step towards general 
AI, improving upon the current domain-specific networks 
that dominate the field.  

The same neural hardware controlling the movement 
of the fingers in motor cortex is responsible for the ability 
to play piano, grab a cup of coffee, throw a ball, type 
on a keyboard and numerous other tasks. An adult can 
rapidly learn how to use a new device, such as an iPad, 
without completely forgetting how to grab a cup of coffee. 
The ability to create neural networks that can perform a 
variety of generic tasks, flexibly reusing the same neural 
circuitry, is one of the central challenges towards the 
next generation of machine-based learning algorithms 
and realizing the dream of achieving general AI.

Materials and Methods
Tasks 

We considered the following two video game tasks: 
Breakout (referred to as Task A) and Atlantis (referred 
to as Task B). Both are Atari 2600 video games where 
the goal is to accrue as many points as possible by 
surviving. In Breakout, the user controls a paddle at the 
bottom of the screen and attains points by keeping a ball 
in the air while destroying bricks. In Atlantis, the agent 
must defend its base by shooting down enemy ships. In 
the case of Breakout, there are 4 possible actions: move 
right, move left, do nothing, or fire. In the case of Atlantis, 
there are also 4 possible actions: no operation, fire, right 
fire, left fire. 

Reinforcement Learning 
Reinforcement learning is a successful training 

method whereby an agent explores its environment 
while receiving rewards and/or penalties in response to 
its actions (3). The agent learns from the rewards and 
penalties to master the task (Figure 1). As an analogy, 
one could think of learning to play tennis through practice. 
Hitting the ball out of bounds or into the net leads to 
penalties and thus the player learns to avoid those 
actions. In contrast, accurate shots lead to rewards, 
which the player seeks and learns to reproduce. 

Network architecture
We used a multi-layer deep convolutional network 

inspired by the work in (4) but with several modifications 
described next. A scheme of the network architecture 
is shown in Figure 1. The network consists of 8 layers: 
3 convolutional layers, 4 fully connected layers, and 1 
output layer. The network takes as input a grayscale 
image of size 80 x 105 pixels with values between 0 and 
255. This input image was computed as motion blurring 
of the video sequence by averaging the last 3 frames 
of the video game in order to capture movement in the 
tasks. Each unit performs a rectifying linear unit (ReLU) 
operation. The size of each layer is indicated in Figure 
1. The output of the network is the expected reward of 
taking each action in the game at the current state. For 
Task A, there are 4 actions, and hence the output of the 
network consists of 4 scalar values. For Task B, there 
are 4 valid actions, as well (but they are different from 
the actions in Breakout), and hence the output of the 
network consists of 4 scalar values. The role of learning 
is to establish the set of weights in the network which 
accurately predict the rewards for a given action at a 
given state.

Training procedure
The network starts with random weights and uses 

an epsilon-greedy algorithm. Let epsilon (ε) be the 
probability that the agent will perform a random action, 
instead of following the network’s suggested action. The 
higher ε, the more random performance is. The lower ε, 
the more the agent’s behavior is governed by the trained 
network. Initially, ε is set to 1 (a high value) and thus the 
agent more or less randomly explores the environment 
through the relationship between actions and rewards/
penalties. The agent continuously stores the frames, 
actions and rewards in a “replay memory” module. At the 
beginning, the agent will train the network by adjusting 
the weights and reduce the value of ε after 20,000 images 
(10% of the maximum replay memory storage). As the 
agent gains more experience, the replay memory has to 
fill up more to commence training, eventually requiring 
the full 200,000 images. The weights are changed using 
backpropagation according to the ADAM optimizer (8). 
ε is decreased linearly starting at 1 and ending at 0.1 
after 1,000,000 images, and the replay memory module 
is emptied so that a new cycle begins. 

The architecture thus combines reinforcement 
learning (through the reward/punishment given by the 
game score) and backpropagation (to learn the series 
of weights in the deep convolutional network that map 
the frames onto the corresponding actions. The merging 
of backpropagation and reinforcement learning is 
described by Mnih et al (4). Intuitively, the model aims 
to select actions that maximize total reward where total 
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reward is the future cumulative reward integrated over 
the simulation. Under traditional supervised learning 
algorithms, the network produces an output, which is 
compared with a desired output. The difference between 
the network’s output and the desired output is the error. 
By computing the derivative of the error with respect to 
the weights, we can estimate the gradients along which 
the algorithm will move the weights to minimize the error. 
Here, instead of labels for each different input, we have a 
reward/punishment prediction; this predicted reward can 
be used to guide the weight changes in a fashion similar 
to the error defined under supervised regimes. 

Transfer learning approaches
The central goal of this project was to evaluate 

serial training in two different tasks, A and B. This is 
usually referred to as transfer learning in the machine 
learning field. The network was first trained in Task A, 
generating a set of weights θ*A that yielded an adequate 
performance in the task. After this, ε was reset to 1, 
the replay memory was emptied and the agent began 
training in Task B.  We examined different ways in which 
the set of weights learned after training in Task A (θ*A) 
could be remembered and modified during the course of 
training in Task B. 

Freezing individual layers
One method that we considered for constraining the 

weights consists of freezing the values in certain layers 
of the neural network. Using this approach, after training 
on Task A, the weights in specific layers of the neural 
network, such as the first convolutional layer, were 
prevented from changing in future training iterations. As 
the agent learned to play Task B, all of the other weights 
in the neural network changed freely except for the 
weights in the frozen layer. Ideally, the frozen weights 
would allow the agent to play Task A even after training 
on Task B.  

Elastic Weight Consolidation (EWC)
One novel approach used to constrain the weights 

is called Elastic Weight Consolidation (9). After learning 
the weights that succeeded in playing Task A, the loss 
function of the neural network was updated according to 
the following equation: 

  
where LB(θ) represents the normal L2 loss for Task 
B, θ*A,I represents the best weights for Task A, θi  
represents the current weights of the neural network, 
Fi represents the Fisher information matrix, and λ 
represents the importance of the previous game. The 

Fisher information matrix encapsulates the importance 
of weights for the previous task, Task A; therefore, in lay 
terms, important weights for playing Task A are unlikely 
to change significantly because a large deviation from 
their original value will greatly increase the loss of 
the neural network. The Fisher information matrix for 
the weights is calculated using values in the ADAM 
optimizer according to (10). The goal for this approach 
is to remember important weights for the first task while 
allowing other weights to adapt to the new task.

Implementation details 
The network was trained on a GPU computer using 

the MIT Polestar cluster. It took approximately twelve 
hours to train the network for both tasks. It would take 
considerably longer to run any of these algorithms on a 
CPU. The video game frames are generated in a CPU, 
which passes the frames onto the neural network. The 
network (implemented in the GPUs) decides on an 
action and this decision is conveyed back to the CPU to 
generate the next frame. Passing information between 
the CPU and GPU constitutes a bottleneck for this 
approach. In order to speed up training, we ran multiple 
instantiations of the game in parallel. 
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