
1October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

Introduction
There has been notable success over the last decade

in the development of domain-specific applications in
Artificial Intelligence (AI). Examples of such successes
include algorithms that excel at labeling objects in
images (1), algorithms that surpass world champions at
playing certain games such as Chess, Go or Jeopardy
(2), algorithms for speech recognition, and many
more. The neural network architectures responsible
for those accomplishments consist of neural-like units
interconnected via weights that dictate how signals are
propagated and interpreted. Training such a network
amounts to finding a suitable set of weights that will
maximize a reward function, such as the score, when
learning to play a game.

An important algorithm to train such networks is
based on the notion of reinforcement learning (3) (Figure
1). An agent takes an observation from the environment
(e.g., a video frame) and exerts a certain an action on
the environment (e.g., moving an avatar in a certain
direction). The environment provides a reward signal,
which can be positive if the action leads to maximizing
the target function and negative otherwise. The target
or loss function is what the agent is trying to optimize
while adjusting its algorithm. The reward signal is used
to modify the weights in the algorithm. Reinforcement
learning has been used to explain how humans learn in
cognitive science models, and it has also been influential
in the field of neuroscience, as neuronal connections
can be strengthened or weakened in a manner that is
dependent on reward signals. Following up on previous
hierarchical reinforcement learning algorithms (5), there
have been significant strides in connecting reinforcement
learning and deep neural networks with the goal of
mastering complex tasks (4).

After training, all the information about how to
perform the task is stored in the set of weights in the
network. What would happen if the same architecture
is then trained to perform a new task? Learning a new
task amounts to altering the set of existing weights in the
network and these changes can lead to forgetting how to
adequately perform the original task. This problem has
been referred to as catastrophic forgetting (6, 7). The
ability to continuously learn new tasks without completely
forgetting the old ones is a critical component of general
intelligence.

Summary
The ability to remember previous tasks while

concomitantly building upon prior knowledge to acquire
new skills is a vital aspect of human learning. Artificial
Intelligence algorithms, however, have traditionally
struggled in this respect, mastering a specific task but
being unable to transfer this knowledge to new tasks or
forgetting previous skills when learning new ones. We
examine ways in which the weights in neural networks
can be constrained to ensure that the networks can
acquire new skills and also remember previous tasks,
allowing them to learn multiple tasks sequentially. We
test our approach by building a network that learns
how to play two different Atari 2600 games. Although
some approaches lead to varying amounts of forgetting,
others yield successful results that even beat human
performance on some games.

Received: May 7, 2018; Accepted: October 17, 2018;
Published: October 26, 2018

Copyright: (C) 2018 Kreiman et al. All JEI articles are
distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/). This means that anyone is free to
share, copy and distribute an unaltered article for non-
commercial purposes provided the original author and
source is credited.

Tobias Kreiman1,3, Tomotake Sasaki2,3,4, Xavier Boix3,4,5

1Newton North High School, Newton, MA 4Center for Brains, Minds and Machines, Cambridge, MA
2Fujitsu Laboratories Ltd., Kanagawa, Japan 5Boston Children’s Hospital, Harvard Medical School, Boston, MA
3McGovern Institute for Brain Research at MIT, Cambridge, MA

Artificial Intelligence Networks Towards Learning Without
Forgetting

Figure 1. Reinforcement learning schema. Given an
observation from the environment, the agent executes an
action and the environment provides a positive or negative
reward signal. The agent learns to execute actions that will
maximize reward.

2October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

Here, we investigated different potential mechanisms
to circumvent the problem of catastrophic forgetting.
We hypothesized that selective modification of weights
based on the strength of connections between units
would allow the network to acquire new tasks without
forgetting previous ones. We used a deep neural network
trained via reinforcement learning to sequentially learn
to perform two tasks. After training the network in the
first task, we compared different possible constraints
on the set of weights to prevent or at least ameliorate
catastrophic forgetting while training the network in the
second task. Freezing weights in individual layers did
not prevent catastrophic forgetting, but elastic weight
consolidation did allow the network to remember
previous skills when training on new ones.

Results
We investigated the problem of forgetting in neural

network sequentially trained in two different tasks
(Figure 2). We considered two video game tasks,
Breakout and Atlantis, and used an 8-layer-deep
convolutional neural network (Figure 3) that was trained
via back propagation using the rewards from the game
environment in a reinforcement learning setup (Figure
1). As expected, the networks were successfully trained
and could master each task individually. Upon training
the second task after training the first task, the network
exhibited catastrophic forgetting. We compared different
algorithms in terms of their ability to remember the initial
task after transferring learning to a new task.

Catastrophic forgetting

We implemented the network as illustrated in Figure
3. We first verified that the network could successfully
learn each of the tasks in isolation. The progression of
game scores (or number of points) during the course of
training the network separately in Breakout (Figure 4A)
and Atlantis (Figure 4B) increases non-monotonically,
since there is randomness in the agent implemented
through the epsilon greedy algorithm. This randomness
ensures that the agent can explore the whole
environment. This random exploration is a hallmark of
reinforcement learning algorithms and enables the agent
to find novel solutions, precluding getting stuck in the
wrong learning direction. The network quickly surpasses
chance levels (dashed line in Figure 4, defined by random
exploration of the environment, (4)) in both tasks. After
approximately 2200 episodes in Task A and after about
600 episodes in Task B, the agent’s performance begins
to surpass human levels (horizontal red line in Figure 4).
Human performance was defined by the values reported
in (4), which are based on professional testers who had
practiced the game for about 2 hours. In other words, a
relatively simple architecture can rapidly achieve or even

surpass expert human-level performance.
We next investigated sequential training in the

two tasks (Figure 5). After the network was trained
in Task A (Breakout), training was switched to Task
B (Atlantis). In this paradigm, after the switch, the
network exclusively visits the Task B environment and
the changes in the weights are purely dictated by the
new Task. In the first evaluation, we did not impose
any constraints on the weights. All the weights were
allowed to change in order to enhance performance in
Task B. As expected, performance in task B improved
and quickly reached human levels (Figure 5). At this

Figure 2. Two video game tasks. Screenshots from the
Breakout video game (A) and the Atlantis video game (B). In
the Breakout task, the agent controls the red paddle at the
bottom of the screen. The agent loses a life if the ball falls off
the bottom of the screen and gains points by hitting bricks with
the ball. In the Atlantis task, the agent must defend its base
by shooting down enemy ships. The agent gains points by
shooting down the enemies and staying alive for as long as
possible.

Figure 3. Network architecture. The model consists of an
input layer (L0) of 80x105 pixels. The L0 input is conveyed to a
series of three convolutional layers (conv1 through conv3; the
number of filters is shown for each layer), followed up by 4 fully
connected layers (fc4 through fc7; the number of units is 1024
for all layers). In the case of Breakout, the output consists of
4 possible actions (move right, move left, do nothing or fire).
In the case of Atlantis, there are also 4 possible outputs: no
operation, fire, right fire, left fire.

3October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

stage, we re-evaluated the network’s performance in
the original task. The network’s performance in Task A
had dropped to essentially the initial conditions (Figure
5). This phenomenon is well known in the literature
and is referred to as catastrophic forgetting (6). As the
network’s weights are adjusted to improve performance
in Task B, its performance in Task A quickly deteriorates.

The simulations were arbitrarily stopped after
a certain number of episodes (Figure 4), but the
performance reported should not be interpreted as an
upper bound. In fact, other investigators have reported
more than 10x human level performance in these same
tasks, using similar architectures (4). Training the system
in both games with the current number of episodes
requires approximately 12 hours of computation on
a high-performance computing cluster with graphics
processing units (GPUs). Here, we were particularly
interested in the proof-of-principle evaluation of different
algorithms to enable learning new tasks without forgetting
previous ones, rather than in achieving maximum
possible performance for each task. Therefore, once
there was appreciable improvement above random
performance in the first task, we switched training to
the second task. Similarly, upon observing appreciable
improvement above random performance in the second
task, we stopped training and evaluated performance in
the first task. Note that performance was still increasing
in both tasks when the training was switched. Achieving
maximum performance would require a more extensive
amount of training in each task, at the expense of
computational efficiency.

Figure 4. Reinforcement learning for each task separately. The model shown in Figure 3 was separately trained to perform
Breakout (A) or Atlantis (B). As the agent plays more episodes (x-axis), the number of points accrued per game increases (y-axis)
as a consequence of learning. The red line indicates the average human performance and the dashed line indicates chance levels
according to (4). The maximum number of episodes in A corresponds to approximately 1,260,302 states and in b to 2,797,082
states. At the end of this training, the model beats humans in both tasks. In subsequent figures, the model’s performance is reported
as a percent of human performance.

Figure 5. Catastrophic forgetting. Simulation results when
the network is sequentially trained in the two tasks without
any constraints on the weights. The y-axis indicates the score
as a percentage of human performance (100 corresponds to
matching human performance, note that the model can surpass
humans, Figure 4). The x-axis indicates the number of states:
a “state” (plus reward) is the information that the environment
passes to the agent after each action. In this case, the state
is a motion blur of the last 3 frames. In general, a state can
involve a high-dimensional matrix including multiple variables,
depending on the environment. The model is first trained
on Task A (blue) and improves performance on this task as
shown in further detail in Figure 4. At the point marked by the
first vertical dotted line, training is switched to Task B (red).
During training for Task B, performance increases for Task
B and there is no constraint imposed on the weights to avoid
forgetting Task A. At the point marked by the second vertical
dotted line, we tested the model’s performance on Task A
again. Performance for Task A dropped essentially to the initial
values, indicating that the model had forgotten how to perform
this task. The dotted horizontal line shows the performance on
Task A expected with zero forgetting. The horizontal dashed
lines indicate chance performance for each game.

4October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

Solutions to catastrophic forgetting
We considered several alternatives to constrain

the weights after training in Task A in an attempt to
avoid the forgetting effect. The first approach was to
selectively freeze the weights impinging on one of the
layers (Figure 2). The idea behind this approach is that
a certain fraction of the connections, specifically those
at one of the hierarchical computational stages in the
algorithm, are not allowed to change after training on a
given task. While this may not be a general solution, as it
would require different tasks to be mapped onto different
layers, it was a useful first step towards exploring the
possibility of limiting training within the network. Upon
freezing weights in each of several layers in the network,
these networks still forgot how to perform the first task
after re-training them on the second task (Figures 6-8).
A variation of these results could involve combining
different constraints by freezing weights in multiple
layers. Because of the computational cost of these
simulations, it is challenging to explore all possible
combinations of constraints. As a proof of principle, we
ran an additional simulation where we froze the weights
in the first two layers, but this was not effective, either,
and the network still forgot what it had learnt during the
initial training (Figure 9).

The next approach that we examined was Elastic
Weight Consolidation, whereby the probability of
changing a certain weight is governed by how important
the weight was in the first task, based on the Fisher

Information Criterion. The Fisher Information Criterion
essentially measures the change (derivative) of the
algorithm’s loss function with respect to those weights,
thereby identifying weights that are more relevant to
the task and that could lead to larger impairment in
performance if modified. Intuitively, “important” weights
are not allowed to change as much as less-relevant
weights. After applying elastic weight consolidation to
our problem, the network retained the ability to perform
the first task, essentially with no forgetting, despite
extensive training in the second task (Figure 7).

We also evaluated the consistency of the findings by
reporting the variation (or error) in performance (Figure
7). Performance improved during training (comparing the
last time point in each epoch versus the initial time point
in each epoch yielded p<10-6 for Task A and p<10-8 for
Task B, n=30, two-tailed t-test). In addition, performance
after re-testing in Task A was significantly above chance
levels (p<10-4, n=30, two-tailed t-test).

The results presented thus far involve evaluating
performance in the originally trained task (Task A), after
training in Task B. In principle, the current framework
allows for the evaluation of multiple different possible
training regimes with different amounts of training in
both tasks. As an alternative training framework, we
considered a paradigm where we alternated between
training in Task A and Task B (Figure 8). We used
Elastic Weight Consolidation to dictate the probability
of changing weights. Because of the extensive

Figure 6. Freezing weights in some of the layers does
not ameliorate the catastrophic forgetting problem. After
training in the network in the first task (Breakout), we froze the
weights in one of the layers (B: conv1, C: conv2, D: conv3,
E: fc4, F: fc7; see Figure 2 for a graphical schematic of each
layer). Subplot A (no constraint) is a copy of Figure 5 and is
reproduced here for comparison purposes. The format in this
figure follows the conventions in Figure 5. The dotted dashed
line is the time at which the tasks were switched and the weights
in one of the layers was frozen.

Figure 7. Elastic weight consolidation. This figure follows the
same format and conventions as Figure 5. In this case, when
training is switched, the elastic weight consolidation constraint
is imposed on the weights to avoid catastrophic forgetting.
When the model is re-tested on Task A (point marked “re-
testing”), the model shows essentially the same performance
that it had at the end of training Task A, indicating that it did not
forget how to perform the previous task despite achieving high
performance on Task B. Error bars denote standard deviation.
The “*” in the “re-testing” point indicates that performance was
significantly above chance (p<10-4, n=30, two-tailed t-test).
Note the discontinuity introduced in the y-axis to better illustrate
the results.

5October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

computations involved, we used a smaller number of
states than in the previous figures. During each training
epoch, performance in the trained task improved, as
expected (shown here by using a linear regression). What
is particularly relevant here is to consider what happens
after switching tasks. In the first task-switching transition,
a new task (Task B) is introduced, then in the second
transition, the network goes back to training in Task A
(Figure 8). In this simulation, the network essentially
has forgotten everything it has learnt about Task A and
needs to start training from the initial state (first dotted
arrow, comparison between first retesting point and
initial training point for Task A, p>0.3, two-tailed t-test).
These results stand in contrast to those earlier and
demonstrate that the amount of training and expertise is
important to maintaining expertise after training in a new
task. Similar conclusions can be reached by examining
the third task-switching event from Task A back to Task
B (second dotted arrow, comparison between first
retesting point and initial training point for Task B, p>0.2,
two-tailed t-test). Because there was more extensive
training in Task B, the network more rapidly recovers and
even rapidly improves upon what it had learnt for Task B
during the first training epoch.

Discussion
Here we compared different constraints on the set of

weights initially trained on one task, such that a network
could be trained in a second task without forgetting the
first one. Elastic Weight Consolidation proved effective

in preventing catastrophic forgetting whereas selective
freezing of layers did not solve this challenge.

Humans can learn a seemingly boundless number of
tasks with the same architecture (11, 12). While there is
clear forgetting of tasks that have not been rehearsed in
a long time, such forgetting is not catastrophic: subjects
often still retain above chance performance in old tasks,
and they are typically substantially faster to master again
those tasks upon re-training. Part of the ability to learn
old tasks quickly might be implemented through different
mechanisms that supplement reinforcement learning (for
example, by creating and storing a high-level abstract
model of the task).

There are multiple additional potential mechanisms to
avoid or ameliorate forgetting of previously learned tasks.
One possibility is that strong weights in the network could
be associated with a lower probability of modification
compared to weak weights. Thus, after training in Task
A, some of the stronger weights would be less likely to
be modified during subsequent training in other tasks. It
should be noted that this constraint is distinct from the
elastic weight consolidation methodology discussed in
the text where weights are modified depending on how
much they contribute to the previous task according
to the Fisher information criterion. Some of these
alternative possibilities are not mutually exclusive. For
example, it is possible to keep practicing old tasks while
at the same time tagging certain weights for enhanced
probability of modification.

With the goal of achieving general AI, it is crucial for

Figure 8. Game alternation. This figure follows the same
format and conventions as Figure 7. Here the network
alternates between training in Task A (blue points) and Task B
(red points). Error bars denote standard deviation. The dotted
lines denote task switching. The solid lines show a linear
regression fit, positive slopes are indicative of improvement.
Comparison between first retesting point in Task A and initial
value in Task A yielded p>0.3, two-tailed t-test. Comparison
between first re-testing point in Task B and initial value in Task
B yielded p>0.2, two-tailed t-test.

Figure 9. Combination of constraints. This figure follows
the same format and conventions of previous figures. Here we
extend the results of Figure 6 by considering a combination
of freezing constraints. We freeze the weights in the first
two layers. As shown by the dotted arrow, this combination
of freezing constraints does not ameliorate the problem of
catastrophic forgetting. Comparison between first re-testing
point in Task A and initial value in Task A yielded p>0.4, two-
tailed t-test.

6October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

an algorithm to learn a variety of tasks. For instance,
imagine a network that can learn to block spam email and
also reply to emails based on a user’s natural language.
Traditional neural networks have excelled at specific
domains, such as playing chess or classifying images;
however, these networks have limited performance
when tested on other tasks. By using the same neural
structure to learn different skills, algorithms could more
closely emulate human learning, thus taking a step
towards continuous learning. A flexible neural network
that remembers old knowledge and applies it to new
problems, much like the brain, is a step towards general
AI, improving upon the current domain-specific networks
that dominate the field.

The same neural hardware controlling the movement
of the fingers in motor cortex is responsible for the ability
to play piano, grab a cup of coffee, throw a ball, type
on a keyboard and numerous other tasks. An adult can
rapidly learn how to use a new device, such as an iPad,
without completely forgetting how to grab a cup of coffee.
The ability to create neural networks that can perform a
variety of generic tasks, flexibly reusing the same neural
circuitry, is one of the central challenges towards the
next generation of machine-based learning algorithms
and realizing the dream of achieving general AI.

Materials and Methods
Tasks

We considered the following two video game tasks:
Breakout (referred to as Task A) and Atlantis (referred
to as Task B). Both are Atari 2600 video games where
the goal is to accrue as many points as possible by
surviving. In Breakout, the user controls a paddle at the
bottom of the screen and attains points by keeping a ball
in the air while destroying bricks. In Atlantis, the agent
must defend its base by shooting down enemy ships. In
the case of Breakout, there are 4 possible actions: move
right, move left, do nothing, or fire. In the case of Atlantis,
there are also 4 possible actions: no operation, fire, right
fire, left fire.

Reinforcement Learning
Reinforcement learning is a successful training

method whereby an agent explores its environment
while receiving rewards and/or penalties in response to
its actions (3). The agent learns from the rewards and
penalties to master the task (Figure 1). As an analogy,
one could think of learning to play tennis through practice.
Hitting the ball out of bounds or into the net leads to
penalties and thus the player learns to avoid those
actions. In contrast, accurate shots lead to rewards,
which the player seeks and learns to reproduce.

Network architecture
We used a multi-layer deep convolutional network

inspired by the work in (4) but with several modifications
described next. A scheme of the network architecture
is shown in Figure 1. The network consists of 8 layers:
3 convolutional layers, 4 fully connected layers, and 1
output layer. The network takes as input a grayscale
image of size 80 x 105 pixels with values between 0 and
255. This input image was computed as motion blurring
of the video sequence by averaging the last 3 frames
of the video game in order to capture movement in the
tasks. Each unit performs a rectifying linear unit (ReLU)
operation. The size of each layer is indicated in Figure
1. The output of the network is the expected reward of
taking each action in the game at the current state. For
Task A, there are 4 actions, and hence the output of the
network consists of 4 scalar values. For Task B, there
are 4 valid actions, as well (but they are different from
the actions in Breakout), and hence the output of the
network consists of 4 scalar values. The role of learning
is to establish the set of weights in the network which
accurately predict the rewards for a given action at a
given state.

Training procedure
The network starts with random weights and uses

an epsilon-greedy algorithm. Let epsilon (ε) be the
probability that the agent will perform a random action,
instead of following the network’s suggested action. The
higher ε, the more random performance is. The lower ε,
the more the agent’s behavior is governed by the trained
network. Initially, ε is set to 1 (a high value) and thus the
agent more or less randomly explores the environment
through the relationship between actions and rewards/
penalties. The agent continuously stores the frames,
actions and rewards in a “replay memory” module. At the
beginning, the agent will train the network by adjusting
the weights and reduce the value of ε after 20,000 images
(10% of the maximum replay memory storage). As the
agent gains more experience, the replay memory has to
fill up more to commence training, eventually requiring
the full 200,000 images. The weights are changed using
backpropagation according to the ADAM optimizer (8).
ε is decreased linearly starting at 1 and ending at 0.1
after 1,000,000 images, and the replay memory module
is emptied so that a new cycle begins.

The architecture thus combines reinforcement
learning (through the reward/punishment given by the
game score) and backpropagation (to learn the series
of weights in the deep convolutional network that map
the frames onto the corresponding actions. The merging
of backpropagation and reinforcement learning is
described by Mnih et al (4). Intuitively, the model aims
to select actions that maximize total reward where total

7October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

reward is the future cumulative reward integrated over
the simulation. Under traditional supervised learning
algorithms, the network produces an output, which is
compared with a desired output. The difference between
the network’s output and the desired output is the error.
By computing the derivative of the error with respect to
the weights, we can estimate the gradients along which
the algorithm will move the weights to minimize the error.
Here, instead of labels for each different input, we have a
reward/punishment prediction; this predicted reward can
be used to guide the weight changes in a fashion similar
to the error defined under supervised regimes.

Transfer learning approaches
The central goal of this project was to evaluate

serial training in two different tasks, A and B. This is
usually referred to as transfer learning in the machine
learning field. The network was first trained in Task A,
generating a set of weights θ*A that yielded an adequate
performance in the task. After this, ε was reset to 1,
the replay memory was emptied and the agent began
training in Task B. We examined different ways in which
the set of weights learned after training in Task A (θ*A)
could be remembered and modified during the course of
training in Task B.

Freezing individual layers
One method that we considered for constraining the

weights consists of freezing the values in certain layers
of the neural network. Using this approach, after training
on Task A, the weights in specific layers of the neural
network, such as the first convolutional layer, were
prevented from changing in future training iterations. As
the agent learned to play Task B, all of the other weights
in the neural network changed freely except for the
weights in the frozen layer. Ideally, the frozen weights
would allow the agent to play Task A even after training
on Task B.

Elastic Weight Consolidation (EWC)
One novel approach used to constrain the weights

is called Elastic Weight Consolidation (9). After learning
the weights that succeeded in playing Task A, the loss
function of the neural network was updated according to
the following equation:

where LB(θ) represents the normal L2 loss for Task
B, θ*A,I represents the best weights for Task A, θi
represents the current weights of the neural network,
Fi represents the Fisher information matrix, and λ
represents the importance of the previous game. The

Fisher information matrix encapsulates the importance
of weights for the previous task, Task A; therefore, in lay
terms, important weights for playing Task A are unlikely
to change significantly because a large deviation from
their original value will greatly increase the loss of
the neural network. The Fisher information matrix for
the weights is calculated using values in the ADAM
optimizer according to (10). The goal for this approach
is to remember important weights for the first task while
allowing other weights to adapt to the new task.

Implementation details
The network was trained on a GPU computer using

the MIT Polestar cluster. It took approximately twelve
hours to train the network for both tasks. It would take
considerably longer to run any of these algorithms on a
CPU. The video game frames are generated in a CPU,
which passes the frames onto the neural network. The
network (implemented in the GPUs) decides on an
action and this decision is conveyed back to the CPU to
generate the next frame. Passing information between
the CPU and GPU constitutes a bottleneck for this
approach. In order to speed up training, we ran multiple
instantiations of the game in parallel.

Acknowledgements
We would like to thank Tommy Poggio for giving us

the opportunity to pursue this research and the Center
for Brains, Minds, and Machines for the computational
resources.

References
1. Krizhevsky, Alex, et al. “ImageNet Classification

with Deep Convolutional Neural Networks.” Neural
Information Processing Systems Conference, 3-8
December 2012, Lake Tahoe, NV.

2. Silver, David, et al. “Mastering the Game of Go with
Deep Neural Networks and Tree Search.” Nature,
Vol. 529, No. 7587, 2016, pp. 484–489, doi:10.1038/
nature16961.

3. Sutton, Richard and Barto, Andrew. Reinforcement
Learning: An Introduction. Cambridge, MIT Press,
2nd Ed, 2017.

4. Mnih, Volodymyr, et al. “Human-level control through
deep reinforcement learning.” Nature, Vol. 518, No.
7540, 2015, pp. 529-533, doi:10.1038/nature14236.

5. Barto, Andrew and Mahadevan, Sridhar. “Recent
Advances in Hierarchical Reinforcement Learning”.
Discrete Event Dynamic Systems, Vol. 13, No. 4,
2003, pp.341-379.

6. French, Robert. “Catastrophic forgetting in
connectionist networks.” Trends Cogn. Sci., Vol.
3, No. 4, 1999, pp. 128-135, doi: 10.1016/S1364-
6613(99)01294-2.

8October 26, 2018Journal of Emerging Investigators

 Journal of
Emerging Investigators

7. Hasselmo, Michael. “Avoiding Catastrophic
Forgetting.” Trends Cogn. Sci., Vol. 21, No. 6, 2017,
pp.407-408, doi: 0.1016/j.tics.2017.04.00.

8. Kingma, Diederik and Ba, Jimmy. “Adam: A Method
for Stochastic Optimization.” arXiv:1412.6980, 2014.

9. Kirkpatrick, James, et al. “Overcoming catastrophic
forgetting in neural networks.” PNAS, Vol. 114, No. 13,
2017, pp.3521-3526, doi:10.1073/pnas.1611835114.

10. Martens, James. “New insights and perspectives on
the natural gradient method.” arXiv:1412.1193, 2014.

11. Damos, Daniel. Multiple task performance. London,
Taylor and Francis, 1991.

12. Robertson, Edwin, et al. “Current concepts
in procedural consolidation.” Nature Reviews
Neuroscience, Vol 5, 2004, pp.576–582, doi:
10.1038/nrn1426.

