
1May 22, 2015Journal of Emerging Investigators

 Journal of
Emerging Investigators

Received: July 4, 2014; Accepted: March 4, 2015;
Published: May 22, 2015

Copyright: (C) 2015 Wildenhain and Sacco. All
JEI articles are distributed under the attribution
non-commercial, no derivative license (http://
creativecommons.org/licenses/by-nc-nd/3.0/). This
means that anyone is free to share, copy and distribute
an unaltered article for non-commercial purposes
provided the original author and source is credited.

Introduction
The traveling salesman problem (TSP) is defined as:

given a complete graph with n vertices, find the lowest-
cost path that starts from one vertex, visits all the other
vertices exactly once, and returns to the original vertex
(1). Though traveling logistics is an obvious application
for the TSP, it can also be applied to genome mapping,
aiming telescopes, improving industrial efficiency (e.g.
drilling circuit boards), and even clustering data points
(3). Because of the broad applications of the TSP,
even modest improvements in the solutions can lead
to dramatic savings in time or money (3). Furthermore,
thanks to the existence of a large body of sample
instances, the TSP is a useful tool to measure the relative
performance of various general algorithms applicable to

other optimization problems (2).
Ant colony optimization (ACO) is a class of

optimization algorithms inspired by nature. Simulated
ants move from vertex to vertex on a graph. They develop
solutions and coordinate their simulated actions through
stigmergy, or indirect communication by modifying their
environment, just as real ants will communicate optimal
paths from nest to food source by laying pheromone
trails (4). A general application of ACO to the TSP is as
follows: “ant” agents are arbitrarily distributed among the
vertices of a complete graph. In every iteration of the
simulation, each ant constructs its tour in a probabilistic,
step-by-step fashion; an ant is more likely to choose
to move along an edge from one vertex to another if
that edge has a lower cost weight (a shorter length) or
has a higher pheromone weight. After the ants have
constructed their tours, the pheromone weights of the
edges comprising the whole colony’s best-so-far tour
(i.e. the tour of the best-performing ant “to date”) are
increased. Pheromone is added in inverse proportion
to the total cost of the tour; shorter tours receive more
pheromone. The amount of pheromone on each edge
decays by a constant percentage after each iteration.
Over the course of several iterations, the edges that
tend to be part of shorter tours receive more pheromone,
and ants are gradually encouraged to explore tours
that use “better” edges. This process leads to steady
improvement in the quality of solutions generated to
the TSP instance until an optimal or near-optimal tour is
reached—depending, of course, on the amount of time
allotted to the simulation to run (5).

While ACO algorithms are intuitively applied to the
TSP, making the TSP an effective testing ground for
innovative algorithms of that type, ACO algorithms
are among the best-performing algorithms for other
optimization problems. These include the sequential
ordering problem, similar to the TSP except that it finds a
minimum-cost path rather than circuit; the vehicle routing
problem, in which n customers must be served from one
central depot, with the aim of satisfying the customers’
demand for merchandise while minimizing travel time
between customers; and the quadratic assignment
problem, in which one must assign a set of facilities to
a set of locations with given distances between each
location and flows between the facilities, with the goal of
minimizing the sum of the products between flows and
distances (2).

The objective of this experiment is to develop a

Ant colony optimization algorithms with multiple simulated
colonies offer potential advantages for solving the traveling
salesman problem and, by extension, other optimization
problems
M. Evan Wildenhain1 and Ian Sacco1

1 Scripps Ranch High School, San Diego, California.

Summary
The traveling salesman problem (TSP) is a classic
problem in optimization, frequently used for measuring
the performance of optimization algorithms. The goal
in solving the TSP is to determine the lowest-cost circuit
through a set of cities on a graph. Ant colony optimization
(ACO) algorithms, inspired by nature, use simulated
ants that modify their environment through laying and
removing pheromone, represented by weights on the
edges of the graph connecting each city. In this study,
a novel algorithm is developed, Multi-Colony System
(MCS), which uses multiple colonies of simulated ants
in combination to produce superior solutions to the TSP.
In comparison with Ant Colony System (ACS), a standard
well-performing ACO algorithm, MCS has displayed
improved performance, producing tours up to 19.4%
shorter than those of ACS in the same amount of time.
The performance of MCS in this study presents potential
advantages in applications beyond the TSP, including
the ability of multiple colonies to both develop a greater
number of solutions simultaneously and to more
efficiently avoid local maxima in the search space.

2May 22, 2015Journal of Emerging Investigators

 Journal of
Emerging Investigators

novel form of ACO that utilizes multiple unique colonies
in parallel to construct superior solutions to the TSP;
this algorithm is the Multi-Colony System (MCS). A
ubiquitous challenge with ACO algorithms is striking the
proper balance between exploitation of already good
solutions and exploration of a wider set of solutions. Too
much of the former can lead to premature convergence
of the pheromone matrix towards favoring a suboptimal
solution, preventing improvement, while too much of
the latter can slow the optimization of solutions already
found. This study seeks to produce an ACO algorithm
that runs multiple colonies based on ACS, an existing
“standard” ACO algorithm (2), with unique parameters,
allowing each colony to have a different degree of focus
on exploitation and exploration. The individual colonies
can then share their best solutions with each other in
order to cooperate in searching for solutions more
efficiently. This delegation of tasks to separate colonies
has the potential to result in superior solutions in a
shorter timeframe.

Three algorithms were tested in this study: ACS, a
standard ACO algorithm, which served as a reference for
comparing MCS variants; Asymmetric MCS, which was
composed of two ACS colonies – one with parameters
focused on exploitation of known good edges and the
other colony focused on broader exploration of less-
used edges; and Symmetric MCS, which has both
colonies focused on exploitation of known good edges.
It is important to note that ACS with “recommended”
parameters is tuned, relative to the parameters used
in this experiment, toward exploitation of known good
edges (5). A previous study that has made a similar
attempt at a parallelized ACO algorithm for the TSP
failed to significantly improve upon standard algorithms
by using a multiple-colony setup (6); however, that study
used a base algorithm, Elitist Ant System, that is not as
well-suited to parallelization as ACS. The distinction is
that ACS only reinforces the edges of the best-so-far
tour in each iteration (5), making sharing the best tours
across colonies more effective for coordinating the
colonies’ search for solutions. Thus, our hypothesis was
that MCS (Asymmetric and Symmetric) would construct
tours shorter than tours constructed by ACS on easy

(101-city), moderate (198-city), and difficult (442-city,
1002-city) TSP instances within the same amount of
time.

Results
This experiment compared the performance of two

variations of MCS, a novel ACO algorithm proposed in
this study, to that of ACS, an established ACO algorithm
for generating TSP solutions. The two variations of MCS
tested, Asymmetric MCS and Symmetric MCS, differed
only in the q0 parameter; q0 represents the probability of
an ant automatically choosing the single most probable
edge according to the transition rule instead of choosing
its next edge probabilistically. A higher q0 makes an ant
more likely to pick the “best” available edge, leading
to more exploitation of known good edges rather than
exploration of a more diverse range of possible paths.
Asymmetric MCS was run with two colonies, one with q0
= 0.8 and the other with q0 = 0.2, and Symmetric MCS
was run with two colonies, each with q0 = 0.8. The setting
of the q0 parameter was, in fact, the only difference
between the MCS variants. Four TSP instances with
known optimal solutions were used for testing: eil101,
a 101-city problem (Table 1); d198, a 198-city problem
(Table 2); pcb442, a 442-city problem (Table 3); and
pr1002, a 1002-city problem (Table 4). Each algorithm
was run 10 times against each of the problems for 5040
seconds per trial.

In order to determine statistical significance, a one-
tailed t-test with a 95% confidence level was used. The
null hypothesis was that the performances of the MCS
variants were equal to the performance of ACS; the
alternate hypothesis was that the MCS variants would
improve upon ACS (produce shorter tours).

Tables 1-4 display the trial results. The first row
indicates the algorithm to which the row’s data belongs.
Rows 2–11 display the shortest tour achieved by the
algorithm during their respective trials. Row 12 displays
the mean of rows 2–11. Row 13 lists the shortest tour
achieved out of all of the trials. Row 14 is the standard
deviation of the trials, and row 15 is the average error:

Average Error = (Mean - Optimal)/Optimal [1]

Table 1. Data for the eil101 TSP instance (Optimal: 629,
n = 101)

Table 2. Data for the d198 TSP instance (Optimal: 15780,
n = 198)

3May 22, 2015Journal of Emerging Investigators

 Journal of
Emerging Investigators

With eil101, Asymmetric MCS (one colony with q0 =
0.8, the other with q0 = 0.2) generated tours that were,
on average, 0.56% longer than tours generated by ACS
(Table 1). In d198, Asymmetric MCS generated tours
0.08% longer on average than those of ACS. The data
indicates that Asymmetric MCS does not significantly
outperform ACS at smaller TSP instances (p > 0.05)
(Table 2). However, there was a significant difference
in the results for pcb442 and pr1002 (Tables 3 and 4,
respectively). For pcb442, Asymmetric MCS generated
tours that were on average 16.18% shorter than tours
generated by ACS, as well as tours that were 4.80%
shorter for pr1002 compared to those of ACS. Both of
these differences were significant (p < 0.05). These
results indicate that ACS and MCS are similar in
performance for the two smaller TSP instances, but
Asymmetric MCS is superior for larger TSP instances.

In contrast, Symmetric MCS (with two colonies, each
with q0 = 0.8) performed slightly better than ACS and
Asymmetric MCS at eil101 and d198 (Tables 1 and
2, respectively), and significantly outperformed them
at pcb442 and pr1002 (Tables 3 and 4, respectively).
Symmetric MCS generated tours 0.74% shorter than
ACS’s tours for eil101, 0.69% shorter for d198, 19.54%
shorter for pcb442, and 13.94% shorter for pr1002. All of
these differences were significant (p < 0.05).

The hypothesis was that MCS could construct tours
shorter than tours constructed by ACS on easy (101-
city), moderate (198-city), and difficult (442-city, 1002-
city) TSP instances within the same amount of time.
The data indicates that Asymmetric MCS’s improvement
over ACS was significant for only the two larger TSP
instances, while Symmetric MCS provided significant
improvement over ACS for all four instances (p < 0.05).

Discussion

This study demonstrated that both Asymmetric
and Symmetric MCS can outperform ACS on larger
TSP instances. For the TSP instances pcb442 and
pr1002 (442 cities and 1002 cities, respectively), both
Asymmetric MCS and Symmetric MCS produced tours
significantly shorter than those produced by ACS.

However, in the smaller TSP instances eil101 and
d198, the performance of ACS, Asymmetric MCS, and
Symmetric MCS were all comparable. It is possible that
MCS appears to be a superior algorithm for the larger
TSP instances because of the tremendous difference in
the size of the solution space between d198 and pcb442.
The number of possible solutions to a symmetric TSP
instance is the number of cities factorial divided by two
(a symmetric TSP instance’s edges have the same travel
cost in both directions). The difference between 442! / 2
and 198! / 2 is gigantic—a factor of approximately 5.5
x 10608. When operating in a significantly larger search
space, the ability of MCS to pursue potentially twice as
many solutions as ACS and maintain two distinct but
cooperative pheromone maps is more advantageous.

Symmetric MCS, with two colonies focused on
exploitation, outperformed Asymmetric MCS, with
one colony focused on exploitation and the other on
exploration, in all four TSP instances. One potential
explanation is that the primary advantage of MCS is the
ability of multiple colonies to explore multiple solutions
semi-independently, and having the focus on exploitation
afforded by q0 = 0.8 is simply a better-performing
parameter for the transition rule (7). The transition rule,
a probabilistic formula through which a simulated “ant”
selects the next city to visit in its tour, is explained further
in the Materials and Methods section. Exploitation allows
for more rapid improvement of solutions, and avoidance
of local maxima can be handled by the presence of
multiple colonies.

Symmetric MCS appears to be a promising
alternative to ACS. Delivering significantly improved
performance with the 442-city instance and the 1002-
city instance, Symmetric MCS has the potential to be
a superior algorithm for solving even more challenging
TSP instances. While Symmetric MCS has yet to be
compared to other ACO algorithms such as Best-Worst
Ant System, with further testing and development,
Symmetric MCS can become a leading ACO algorithm
for solving the TSP.

Future research similar to the experiments carried out
here could be beneficial to furthering the understanding

Table 3. Data for the pcb442 TSP instance (Optimal: 50778,
n = 442)

Table 4. Data for the pr1002 TSP instance (Optimal: 259045,
n = 1002)

4May 22, 2015Journal of Emerging Investigators

 Journal of
Emerging Investigators

of these algorithms. Asymmetric MCS and Symmetric
MCS were run with only two colonies, and the only
parameter that differed between the colonies was q0
(only in Asymmetric MCS); other parameters and more
colonies could be used to better tune the algorithm.
Symmetric MCS outperformed Asymmetric MCS in
a two-colony configuration, but with more colonies,
it is possible that having different parameters or even
algorithms for each colony could improve performance.
“Local search” is a term used to describe algorithms
that slightly modify existing solutions by searching for
better similar solutions—solutions “local” to the existing
one in the problem graph. To improve upon new global-
best tours, ACS and both MCS variants used 2-opt local
search, an algorithm that reorders a tour in order to
eliminate points where the tour crosses over itself. 2-opt
local search could be applied differently: it was used
only in this study to improve new global-best tours, but it
could be used as part of the construction of every tour.
This would increase the resulting computation costs. A
better local search algorithm could be applied, such as
2.5-opt or 3-opt—or conversely, a less computationally
expensive algorithm such as greedy 2-opt. Modifications
to the control group of ACS could be made to result
in better comparisons; multiple ACS colonies run
independently parallel during a trial would be more
comparable to MCS, although the consistency of results
in this study suggests that this would not significantly
change the outcome. For pcb442 and pr1002, the best
tour lengths achieved by ACS were longer than the mean
tour lengths for both Asymmetric MCS and Symmetric
MCS. In fact, for pcb442 and pr1002, every Symmetric
MCS trial outperformed the best ACS trial, indicating
that MCS still presents a significant improvement.

Methods
MCS shares much of its basic function with ACS. All

ACO algorithms are based on stigmergy, a process by
which ant agents leave pheromone on a graph in order
to communicate and influence other ants’ construction

of solutions. In the case of the TSP, ants communicate
and gradually improve their solutions by modifying the
amounts of pheromone on a graph of edges between
the cities of a TSP instance. At the beginning of the run,
each edge has a low initial amount of pheromone. At
the start of every iteration, the ants of each colony are
placed at random starting cities (Figure 1).

The ants construct their tours in the same way as
ants do in ACS. At each step of an ant’s tour, a random
number q between 0 and 1 is compared with a parameter
q0, where 0 < q0 < 1:

[2]

where s is the next city the ant will visit, r is the current
city the ant is on, Jk is the set of cities not yet visited
by the ant on its tour, τ is the amount of pheromone on
an edge, η is visibility, or (the length of the edge)-1, and
β is a parameter determining the relative importance of
pheromone and visibility. This rule determines whether
the ant will build its tour according to exploitation
or exploration. If q ≤ q0, the “best” edge (i.e. the one
with the highest probability of being selected) is taken.
Otherwise, S is found via the probabilistic transition rule
of AS:

[3]

where pk(r, s) is the edge between cities r and s. Informally,
shorter edges with more pheromone are more likely to
be traveled than longer edges with less pheromone.
A higher q0 thus leads to increased selection of the
“best” edges, while a lower q0 makes the selection of
other edges more likely. In MCS, the colonies can have
differing q0 values, so a high-q0 colony has a higher
probability of exploitation of the “best” edges, while

Figure 1. A 48-city TSP instance. At the beginning, every path
from each city to all the other cities has the same initial amount
of pheromone, set based on a nearest-neighbor heuristic.

Figure 2. After all of a colony’s ants have completed their tours,
this is found to be the colony’s best tour of the iteration—or
rather, the best tour after it is improved via a 2-opt local search
algorithm. This tour will be reinforced according to the global
pheromone update rule.

5May 22, 2015Journal of Emerging Investigators

 Journal of
Emerging Investigators

low-q0 colonies’ ants are more likely to construct tours
that differ from the best-so-far tour.

After all the ants in a colony have completed their
tours for the iteration, the local pheromone update rule
is applied to an edge once for each time it was visited by
an ant that iteration:

τ(r,s)←(1-ρ)*τ(r,s)+ρ*τ0 [4]

where ρ is the pheromone decay parameter and τ0 is
the initial amount of pheromone, set to be the same for
all edges at the beginning of the run. τ0 is set as the
number of cities, multiplied by 1 / (Cnn), where Cnn is
the length of a tour constructed by a nearest-neighbor
heuristic (Figure 2).

After the application of the local pheromone update
rule, the lowest-cost, or shortest, tour of the iteration is
compared to the shortest tour the colony has recorded
since the beginning of the run. If the former is shorter
than the latter, the iteration-best tour is run through a
2-opt local search algorithm, and the resulting optimized
tour replaces the previous colony-best tour. The colony-
best tour is then allocated pheromone according to the
following global pheromone update rule:

τ(r,s)←(1-α)*τ(r,s)+α* 1/Lgb [5]

where α is a tuning parameter and Lgb is the length of
the colony-best tour. After each colony has completed
this process, it reports its colony-best tour. If a colony’s
best tour is shorter than the global-best tour across all
colonies previously recorded, it replaces the global-best
tour (Figure 3).

In each iteration, the edges of global-best tour are
allocated pheromone in all colonies according to the
same global pheromone update rule. This step allows
the colonies to share their best tours and thus work

to construct solutions in parallel. In the colony that
produced the global-best tour, the edges of the global-
best tour are reinforced twice, while they are reinforced
once in the other colony. The above process is repeated
every iteration until the program either reaches a
predetermined number of iterations or a time limit
(Figure 4).

The algorithms tested in this experiment were all
implemented entirely by the student researcher in Java.
The trials were run on an Intel Core i5-3450 CPU at 3.10
GHz with 8 GB DDR3 RAM, within the Java Eclipse IDE.
The TSP instances tested (eil101, d198, pcb442, and
pr1002) were obtained from TSPLIB, an online library of
sample TSP instances (8).

References
1. Lin, Shen. “Computer solutions of the traveling

salesman problem.” Bell System Technical
Journal 44.10 (1965): 2245-2269.

2. Dorigo, Marco, and Thomas Stutzle. Ant Colony
Optimization. Cambridge, MA: Massachusetts
Institute of Technology, 2004. Print.

3. Cook, William. In Pursuit of the Traveling Salesman:
Mathematics at the Limits of Computation.
Princeton: Princeton University Press, 2012. Print.

4. Dorigo, Marco, Vittorio Maniezzo, and Alberto
Colorni. “Ant system: optimization by a colony o f
cooperating agents.” Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on
26.1 (1996): 29-41.

5. Dorigo, Marco, and Luca Maria Gambardella. “Ant
colony system: A cooperative learning approach
to the traveling salesman problem.” Evolutionary
Computation, IEEE Transactions on 1.1
(1997): 53-66.

6. Alonso, Sergio, Oscar Cordón, Iñaki
Fernández de Viana, and Francisco Herrera.
“Integrating evolutionary computation components
in ant colony optimization.” Recent Developments i n

Figure 3. The two colonies of the run have reported their
best-so-far tours. Paths shared are in black, paths unique to
the colony from Figure 2 are in red, and paths unique to the
other colony are in green. Only the best tour between the two
colonies (in this case, the tour with edges highlighted in green)
will have its paths reinforced, again according to the global
pheromone update rule.

Figure 4. As the iterations progress, the pheromone map will
favor increasingly shorter tours. Eventually, given enough time
and iterations, an ant from one of the colonies will reach an
optimal or near-optimal tour for the TSP instance, as seen
here.

6May 22, 2015Journal of Emerging Investigators

 Journal of
Emerging Investigators

Biologically Inspired Computing, L. Nunes de Castro,
FJ Von Zuben (Eds.), Idea Group Publishing
(2004): 48-180.

7. García, Oscar Cordón, I. Fernández de Viana, and
Francisco Herrera Triguero. “Analysis of the
best-worst Ant System and its variants on the TSP.”
Mathware & soft computing 9.3 (2002): 177-192.

8. “TSPLIB.” TSPLIB. Heidelberg University, 6 Aug.
2008. Web. 30 Nov. 2013. <http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/>.

