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Introduction
The traveling salesman problem (TSP) is defined as: 

given a complete graph with n vertices, find the lowest-
cost path that starts from one vertex, visits all the other 
vertices exactly once, and returns to the original vertex 
(1). Though traveling logistics is an obvious application 
for the TSP, it can also be applied to genome mapping, 
aiming telescopes, improving industrial efficiency (e.g. 
drilling circuit boards), and even clustering data points 
(3). Because of the broad applications of the TSP, 
even modest improvements in the solutions can lead 
to dramatic savings in time or money (3). Furthermore, 
thanks to the existence of a large body of sample 
instances, the TSP is a useful tool to measure the relative 
performance of various general algorithms applicable to 

other optimization problems (2). 
Ant colony optimization (ACO) is a class of 

optimization algorithms inspired by nature. Simulated 
ants move from vertex to vertex on a graph. They develop 
solutions and coordinate their simulated actions through 
stigmergy, or indirect communication by modifying their 
environment, just as real ants will communicate optimal 
paths from nest to food source by laying pheromone 
trails (4). A general application of ACO to the TSP is as 
follows: “ant” agents are arbitrarily distributed among the 
vertices of a complete graph. In every iteration of the 
simulation, each ant constructs its tour in a probabilistic, 
step-by-step fashion; an ant is more likely to choose 
to move along an edge from one vertex to another if 
that edge has a lower cost weight (a shorter length) or 
has a higher pheromone weight. After the ants have 
constructed their tours, the pheromone weights of the 
edges comprising the whole colony’s best-so-far tour 
(i.e. the tour of the best-performing ant “to date”) are 
increased. Pheromone is added in inverse proportion 
to the total cost of the tour; shorter tours receive more 
pheromone. The amount of pheromone on each edge 
decays by a constant percentage after each iteration. 
Over the course of several iterations, the edges that 
tend to be part of shorter tours receive more pheromone, 
and ants are gradually encouraged to explore tours 
that use “better” edges. This process leads to steady 
improvement in the quality of solutions generated to 
the TSP instance until an optimal or near-optimal tour is 
reached—depending, of course, on the amount of time 
allotted to the simulation to run (5). 

While ACO algorithms are intuitively applied to the 
TSP, making the TSP an effective testing ground for 
innovative algorithms of that type, ACO algorithms 
are among the best-performing algorithms for other 
optimization problems. These include the sequential 
ordering problem, similar to the TSP except that it finds a 
minimum-cost path rather than circuit; the vehicle routing 
problem, in which n customers must be served from one 
central depot, with the aim of satisfying the customers’ 
demand for merchandise while minimizing travel time 
between customers; and the quadratic assignment 
problem, in which one must assign a set of facilities to 
a set of locations with given distances between each 
location and flows between the facilities, with the goal of 
minimizing the sum of the products between flows and 
distances (2). 

The objective of this experiment is to develop a 
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Summary
The traveling salesman problem (TSP) is a classic 
problem in optimization, frequently used for measuring 
the performance of optimization algorithms. The goal 
in solving the TSP is to determine the lowest-cost circuit 
through a set of cities on a graph. Ant colony optimization 
(ACO) algorithms, inspired by nature, use simulated 
ants that modify their environment through laying and 
removing pheromone, represented by weights on the 
edges of the graph connecting each city.  In this study, 
a novel algorithm is developed, Multi-Colony System 
(MCS), which uses multiple colonies of simulated ants 
in combination to produce superior solutions to the TSP. 
In comparison with Ant Colony System (ACS), a standard 
well-performing ACO algorithm, MCS has displayed 
improved performance, producing tours up to 19.4% 
shorter than those of ACS in the same amount of time. 
The performance of MCS in this study presents potential 
advantages in applications beyond the TSP, including 
the ability of multiple colonies to both develop a greater 
number of solutions simultaneously and to more 
efficiently avoid local maxima in the search space.
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novel form of ACO that utilizes multiple unique colonies 
in parallel to construct superior solutions to the TSP; 
this algorithm is the Multi-Colony System (MCS). A 
ubiquitous challenge with ACO algorithms is striking the 
proper balance between exploitation of already good 
solutions and exploration of a wider set of solutions. Too 
much of the former can lead to premature convergence 
of the pheromone matrix towards favoring a suboptimal 
solution, preventing improvement, while too much of 
the latter can slow the optimization of solutions already 
found. This study seeks to produce an ACO algorithm 
that runs multiple colonies based on ACS, an existing 
“standard” ACO algorithm (2), with unique parameters, 
allowing each colony to have a different degree of focus 
on exploitation and exploration. The individual colonies 
can then share their best solutions with each other in 
order to cooperate in searching for solutions more 
efficiently. This delegation of tasks to separate colonies 
has the potential to result in superior solutions in a 
shorter timeframe. 

Three algorithms were tested in this study: ACS, a 
standard ACO algorithm, which served as a reference for 
comparing MCS variants; Asymmetric MCS, which was 
composed of two ACS colonies – one with parameters 
focused on exploitation of known good edges and the 
other colony focused on broader exploration of less-
used edges; and Symmetric MCS, which has both 
colonies focused on exploitation of known good edges. 
It is important to note that ACS with “recommended” 
parameters is tuned, relative to the parameters used 
in this experiment, toward exploitation of known good 
edges (5). A previous study that has made a similar 
attempt at a parallelized ACO algorithm for the TSP 
failed to significantly improve upon standard algorithms 
by using a multiple-colony setup (6); however, that study 
used a base algorithm, Elitist Ant System, that is not as 
well-suited to parallelization as ACS. The distinction is 
that ACS only reinforces the edges of the best-so-far 
tour in each iteration (5), making sharing the best tours 
across colonies more effective for coordinating the 
colonies’ search for solutions. Thus, our hypothesis was 
that MCS (Asymmetric and Symmetric) would construct  
tours shorter than tours constructed by ACS on easy 

(101-city), moderate (198-city), and difficult (442-city, 
1002-city) TSP instances within the same amount of 
time. 

Results
This experiment compared the performance of two 

variations of MCS, a novel ACO algorithm proposed in 
this study, to that of ACS, an established ACO algorithm 
for generating TSP solutions. The two variations of MCS 
tested, Asymmetric MCS and Symmetric MCS, differed 
only in the q0 parameter; q0 represents the probability of 
an ant automatically choosing the single most probable 
edge according to the transition rule instead of choosing 
its next edge probabilistically. A higher q0 makes an ant 
more likely to pick the “best” available edge, leading 
to more exploitation of known good edges rather than 
exploration of a more diverse range of possible paths. 
Asymmetric MCS was run with two colonies, one with q0 
= 0.8 and the other with q0 = 0.2, and Symmetric MCS 
was run with two colonies, each with q0 = 0.8. The setting 
of the q0 parameter was, in fact, the only difference 
between the MCS variants. Four TSP instances with 
known optimal solutions were used for testing: eil101, 
a 101-city problem (Table 1); d198, a 198-city problem 
(Table 2); pcb442, a 442-city problem (Table 3); and 
pr1002, a 1002-city problem (Table 4). Each algorithm 
was run 10 times against each of the problems for 5040 
seconds per trial. 

In order to determine statistical significance, a one-
tailed t-test with a 95% confidence level was used. The 
null hypothesis was that the performances of the MCS 
variants were equal to the performance of ACS; the 
alternate hypothesis was that the MCS variants would 
improve upon  ACS (produce shorter tours). 

Tables 1-4 display the trial results. The first row 
indicates the algorithm to which the row’s data belongs. 
Rows 2–11 display the shortest tour achieved by the 
algorithm during their respective trials. Row 12 displays 
the mean of rows 2–11. Row 13 lists the shortest tour 
achieved out of all of the trials. Row 14 is the standard 
deviation of the trials, and row 15 is the average error:

Average Error = (Mean - Optimal)/Optimal             [1]

Table 1. Data for the eil101 TSP instance (Optimal: 629,             
n = 101)

Table 2. Data for the d198 TSP instance (Optimal: 15780,         
n = 198)
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With eil101, Asymmetric MCS (one colony with q0 = 
0.8, the other with q0 = 0.2) generated tours that were, 
on average, 0.56% longer than tours generated by ACS 
(Table 1). In d198, Asymmetric MCS generated tours 
0.08% longer on average than those of ACS. The data 
indicates that Asymmetric MCS does not significantly 
outperform ACS at smaller TSP instances (p > 0.05) 
(Table 2). However, there was a significant difference 
in the results for pcb442 and pr1002 (Tables 3 and 4, 
respectively). For pcb442, Asymmetric MCS generated 
tours that were on average 16.18% shorter than tours 
generated by ACS, as well as tours that were 4.80% 
shorter for pr1002 compared to those of ACS. Both of 
these differences were significant (p < 0.05). These 
results indicate that ACS and MCS are similar in 
performance for the two smaller TSP instances, but 
Asymmetric MCS is superior for larger TSP instances. 

In contrast, Symmetric MCS (with two colonies, each 
with q0 = 0.8) performed slightly better than ACS and 
Asymmetric MCS at eil101 and d198 (Tables 1 and 
2, respectively), and significantly outperformed them 
at pcb442 and pr1002 (Tables 3 and 4, respectively). 
Symmetric MCS generated tours 0.74% shorter than 
ACS’s tours for eil101, 0.69% shorter for d198, 19.54% 
shorter for pcb442, and 13.94% shorter for pr1002. All of 
these differences were significant (p < 0.05). 

The hypothesis was that MCS could construct tours 
shorter than tours constructed by ACS on easy (101-
city), moderate (198-city), and difficult (442-city, 1002-
city) TSP instances within the same amount of time. 
The data indicates that Asymmetric MCS’s improvement 
over ACS was significant for only the two larger TSP 
instances, while Symmetric MCS provided significant 
improvement over ACS for all four instances (p < 0.05).

 
Discussion

This study demonstrated that both Asymmetric 
and Symmetric MCS can outperform ACS on larger 
TSP instances. For the TSP instances pcb442 and 
pr1002 (442 cities and 1002 cities, respectively), both 
Asymmetric MCS and Symmetric MCS produced tours 
significantly shorter than those produced by ACS. 

However, in the smaller TSP instances eil101 and 
d198, the performance of ACS, Asymmetric MCS, and 
Symmetric MCS were all comparable. It is possible that 
MCS appears to be a superior algorithm for the larger 
TSP instances because of the tremendous difference in 
the size of the solution space between d198 and pcb442. 
The number of possible solutions to a symmetric TSP 
instance is the number of cities factorial divided by two 
(a symmetric TSP instance’s edges have the same travel 
cost in both directions). The difference between 442! / 2 
and 198! / 2 is gigantic—a factor of approximately 5.5 
x 10608. When operating in a significantly larger search 
space, the ability of MCS to pursue potentially twice as 
many solutions as ACS and maintain two distinct but 
cooperative pheromone maps is more advantageous. 

Symmetric MCS, with two colonies focused on 
exploitation, outperformed Asymmetric MCS, with 
one colony focused on exploitation and the other on 
exploration, in all four TSP instances. One potential 
explanation is that the primary advantage of MCS is the 
ability of multiple colonies to explore multiple solutions 
semi-independently, and having the focus on exploitation 
afforded by q0 = 0.8 is simply a better-performing 
parameter for the transition rule (7). The transition rule, 
a probabilistic formula through which a simulated “ant” 
selects the next city to visit in its tour, is explained further 
in the Materials and Methods section. Exploitation allows 
for more rapid improvement of solutions, and avoidance 
of local maxima can be handled by the presence of 
multiple colonies.  

Symmetric MCS appears to be a promising 
alternative to ACS. Delivering significantly improved 
performance with the 442-city instance and the 1002-
city instance, Symmetric MCS has the potential to be 
a superior algorithm for solving even more challenging 
TSP instances. While Symmetric MCS has yet to be 
compared to other ACO algorithms such as Best-Worst 
Ant System, with further testing and development, 
Symmetric MCS can become a leading ACO algorithm 
for solving the TSP.

Future research similar to the experiments carried out 
here could be beneficial to furthering the understanding 

Table 3. Data for the pcb442 TSP instance (Optimal: 50778, 
n = 442)

Table 4. Data for the pr1002 TSP instance (Optimal: 259045, 
n = 1002)
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of these algorithms. Asymmetric MCS and Symmetric 
MCS were run with only two colonies, and the only 
parameter that differed between the colonies was q0 
(only in Asymmetric MCS); other parameters and more 
colonies could be used to better tune the algorithm. 
Symmetric MCS outperformed Asymmetric MCS in 
a two-colony configuration, but with more colonies, 
it is possible that having different parameters or even 
algorithms for each colony could improve performance. 
“Local search” is a term used to describe algorithms 
that slightly modify existing solutions by searching for 
better similar solutions—solutions “local” to the existing 
one in the problem graph. To improve upon new global-
best tours, ACS and both MCS variants used 2-opt local 
search, an algorithm that reorders a tour in order to 
eliminate points where the tour crosses over itself. 2-opt 
local search could be applied differently: it was used 
only in this study to improve new global-best tours, but it 
could be used as part of the construction of every tour. 
This would increase the resulting computation costs. A 
better local search algorithm could be applied, such as 
2.5-opt or 3-opt—or conversely, a less computationally 
expensive algorithm such as greedy 2-opt. Modifications 
to the control group of ACS could be made to result 
in better comparisons; multiple ACS colonies run 
independently parallel during a trial would be more 
comparable to MCS, although the consistency of results 
in this study suggests that this would not significantly 
change the outcome. For pcb442 and pr1002, the best 
tour lengths achieved by ACS were longer than the mean 
tour lengths for both Asymmetric MCS and Symmetric 
MCS. In fact, for pcb442 and pr1002, every Symmetric 
MCS trial outperformed the best ACS trial, indicating 
that MCS still presents a significant improvement.

Methods
MCS shares much of its basic function with ACS. All 

ACO algorithms are based on stigmergy, a process by 
which ant agents leave pheromone on a graph in order 
to communicate and influence other ants’ construction 

of solutions. In the case of the TSP, ants communicate 
and gradually improve their solutions by modifying the 
amounts of pheromone on a graph of edges between 
the cities of a TSP instance. At the beginning of the run, 
each edge has a low initial amount of pheromone. At 
the start of every iteration, the ants of each colony are 
placed at random starting cities (Figure 1). 

The ants construct their tours in the same way as 
ants do in ACS. At each step of an ant’s tour, a random 
number q between 0 and 1 is compared with a parameter 
q0, where 0 < q0 < 1:

          
[2]

where s is the next city the ant will visit, r is the current 
city the ant is on, Jk is the set of cities not yet visited 
by the ant on its tour, τ is the amount of pheromone on 
an edge, η is visibility, or (the length of the edge)-1, and 
β is a parameter determining the relative importance of 
pheromone and visibility. This rule determines whether 
the ant will build its tour according to exploitation 
or exploration. If q ≤ q0, the “best” edge (i.e. the one 
with the highest probability of being selected) is taken. 
Otherwise, S is found via the probabilistic transition rule 
of AS:
              

[3]

where pk(r, s) is the edge between cities r and s. Informally, 
shorter edges with more pheromone are more likely to 
be traveled than longer edges with less pheromone. 
A higher q0 thus leads to increased selection of the 
“best” edges, while a lower q0 makes the selection of 
other edges more likely. In MCS, the colonies can have 
differing q0 values, so a high-q0 colony has a higher 
probability of exploitation of the “best” edges, while 

Figure 1. A 48-city TSP instance. At the beginning, every path 
from each city to all the other cities has the same initial amount 
of pheromone, set based on a nearest-neighbor heuristic.

Figure 2. After all of a colony’s ants have completed their tours, 
this is found to be the colony’s best tour of the iteration—or 
rather, the best tour after it is improved via a 2-opt local search 
algorithm. This tour will be reinforced according to the global 
pheromone update rule.
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low-q0 colonies’ ants are more likely to construct tours 
that differ from the best-so-far tour.  

After all the ants in a colony have completed their 
tours for the iteration, the local pheromone update rule 
is applied to an edge once for each time it was visited by 
an ant that iteration:  

τ(r,s)←(1-ρ)*τ(r,s)+ρ*τ0                 [4] 
 
where ρ is the pheromone decay parameter and τ0 is 
the initial amount of pheromone, set to be the same for 
all edges at the beginning of the run. τ0 is set as the 
number of cities, multiplied by 1 / (Cnn), where Cnn is 
the length of a tour constructed by a nearest-neighbor 
heuristic (Figure 2). 

After the application of the local pheromone update 
rule, the lowest-cost, or shortest, tour of the iteration is 
compared to the shortest tour the colony has recorded 
since the beginning of the run. If the former is shorter 
than the latter, the iteration-best tour is run through a 
2-opt local search algorithm, and the resulting optimized 
tour replaces the previous colony-best tour. The colony-
best tour is then allocated pheromone according to the 
following global pheromone update rule:  

τ(r,s)←(1-α)*τ(r,s)+α*  1/Lgb                [5]

where α is a tuning parameter and Lgb is the length of 
the colony-best tour. After each colony has completed 
this process, it reports its colony-best tour. If a colony’s 
best tour is shorter than the global-best tour across all 
colonies previously recorded, it replaces the global-best 
tour (Figure 3). 

In each iteration, the edges of global-best tour are 
allocated pheromone in all colonies according to the 
same global pheromone update rule. This step allows 
the colonies to share their best tours and thus work 

to construct solutions in parallel. In the colony that 
produced the global-best tour, the edges of the global-
best tour are reinforced twice, while they are reinforced 
once in the other colony. The above process is repeated 
every iteration until the program either reaches a 
predetermined number of iterations or a time limit 
(Figure 4).

The algorithms tested in this experiment were all 
implemented entirely by the student researcher in Java. 
The trials were run on an Intel Core i5-3450 CPU at 3.10 
GHz with 8 GB DDR3 RAM, within the Java Eclipse IDE. 
The TSP instances tested (eil101, d198, pcb442, and 
pr1002) were obtained from TSPLIB, an online library of 
sample TSP instances (8).
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