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decay quickly, while the fundamental mode and the harmonic 
overtones (frequencies that are part of the harmonic series 
i.e., are integer multiples of the fundamental mode) persist. 

The modes whose frequencies are multiples of the 
fundamental frequency are called the higher harmonics. 
When we calculate the wave frequency using wave speed 
and wavelength, the result is only the fundamental frequency. 
However, in a string with closed ends, this is not a complete 
representation of the frequencies that can be supported. 
For the complete picture, the fundamental frequency can 
be used to find the higher harmonic frequencies. This is 
done by multiplying the fundamental mode by consecutive 
integers. This paper explores patterns existing in these higher 
harmonics of standing waves that can help us predict the 
resonant frequencies in a given system. This knowledge can 
be essential in many engineering applications from electrical 
power systems (1) to acoustics.

First, we derive a relationship between the frequency of the 
fundamental mode and its harmonics and then experimentally 
test that hypothesis. Figure 1A represents the fundamental 
mode of the open guitar string. The wavelength is twice the 
length of the oscillating string. Figure 1B, 1C and 1D show 
the 2nd, 3rd, and 4th harmonics of this string. The 2nd harmonic 
has a wavelength that is equal to half of the wavelength of 
the fundamental. The 3rd harmonic has a wavelength that is 
a third of the wavelength of the fundamental, and this pattern 
repeats for higher-order harmonics.

In this way, the wavelength of the nth harmonic in the 
series is given by λn = 1/n × λ. Here, λ is the wavelength of 
the fundamental excited mode. Using the general relationship 
between wavelength, frequency, and the constant velocity of 
the string wave v = λnfn, we can calculate the frequency for all 
the higher harmonics on this string using Equation 1,

        fn = nv/λ = nf.                 (1)

Using this method, we see that the frequencies of the 
harmonics are multiples of the fundamental frequency, as n is 
an integer. This is consistent with the idea that the frequency 
of higher harmonics of a string are the whole number multiples 
of the fundamental frequency. 

If we examine the two nodes in Figure 1A we see they 
are placed such that every other wave has its nodes at these 
points. Therefore, all the three waves (part B, C and D) may 

INTRODUCTION
When we pluck a string in tension, a series of frequencies 

greater than the fundamental frequency is observed. Here the 
fundamental frequency is calculated using the string’s wave 
speed and the string length. Theoretically, however, exciting 
the fundamental mode (the lowest or the “true” frequency) of 
a string in tension should not produce overtones (any higher 
frequency standing waves). In practice a range of overtones are 
produced, from which the non-resonant modes (frequencies 
that are not an integer multiple of the fundamental mode) 

SUMMARY
This study examines the higher harmonics in an 
oscillating string by analyzing the sound produced by 
a guitar with a spectrum analyzer. Higher harmonics 
of a string are simultaneously oscillating modes 
which have frequencies that are integer multiples 
of the fundamental frequency of the string. These 
harmonics can be viewed on an audio spectrum 
analyzer. They are always present in an oscillating 
string and contribute to its timbre and tonal quality. 
Specific higher harmonics can be produced directly 
by placing nodes (points where the string cannot 
oscillate) at different lengths along a string. The 
tone thus produced lacks the fundamental frequency 
but also has a very different harmonic structure. 
In a guitar string, for example, it is this harmonic 
structure which gives rise to the very different 
tonal quality of a plucked harmonic as compared 
to the directly excited pitch of the same frequency. 
We mathematically hypothesized that the higher 
harmonics in the series of the directly excited 2nd 
harmonic contain the alternate frequencies of the 
fundamental series, the higher harmonics of the 
directly excited 3rd harmonic series contain every 
third frequency of fundamental series, and so on. 
We also verify a simple mathematical relationship 
between two different harmonic series arising from 
two different boundary conditions that feature the 
same fundamental mode. To test our hypotheses, 
we enforced artificial nodes to excite the 2nd, 3rd, and 
4th harmonics directly, and analyzed the resulting 
spectrum to verify the mathematical hypothesis. The 
data analysis corroborates both hypotheses. 
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propagate without any destructive interference from nodes of 
the fundamental frequency in Figure 1.

Now, consider the 2nd and 3rd harmonics. In addition to 
appearing when the fundamental mode is excited, the 2nd 
and 3rd harmonics can be excited by enforcing a “node” at 
the locations given. However, enforcing an artificial node 
can cause problems for other modes in the system. The 
point labeled “enforced node” in the 2nd harmonic's graph is 
at the antinode of the 3rd harmonic (Figure 1). When the 2nd 
harmonic is produced, the artificial node does not permit the 
antinode to form at that point for the 3rd harmonic. Meanwhile, 
the node for the 4th harmonic is in line with the enforced node 
of the 2nd harmonic; thus, the 4th harmonic propagates without 
any restrictions from the enforced node of the 2nd harmonic.

In terms of integers, when we enforce the node for the 2nd 

harmonic, the 4th harmonic is also present in the series, while 
the 3rd harmonic is not. We can extrapolate this principle to 
higher order modes, as shown in Table 1, which shows that 
when the 2nd harmonic is excited using an enforced node, 
the harmonic frequencies and the alternate frequencies of the 

higher harmonics of the fundamental mode are the same. 
We can derive these relationships mathematically from 

the fundamental properties of waves. Before doing so, it is 
important to define the terms that we will use. Modes refer 
to solutions of the wave equation on a string with specific 
boundary conditions. The fundamental mode of a guitar string 
is the lowest frequency mode of a string that is clamped at 
two ends. The higher-order modes are solutions to the wave 
equation with the same boundary conditions. When another 
node is enforced somewhere on the string, this additional 
boundary condition would result in a different set of solutions 
for the wave equation, even though they might have the same 
frequency as harmonics of the string with no enforced node. 
Therefore, in the following text, we will refer to harmonics of 
the excited mode as the series with the additional boundary 
condition to distinguish between these different sets of 
solutions.

Consider when an enforced node is used to excite the 
3rd harmonic of the base mode with a frequency of 300 Hz. 
Integer multiples of the frequency would be 300 Hz, 600 Hz, 

Figure 1. Schematic of the string of a guitar clamped on both ends (neck and bridge) without any artificially enforced nodes. These 
ends offer no lateral movement of the string, enforcing fixed nodes and providing the boundary conditions for the lowest frequency in the 
study. Part A, B, C and D are the 1st, 2nd , 3rd, and 4th harmonics respectively. The point labelled “enforced node” shows the point where the 
artificial node was enforced. This is half the length of the string from the neck for the 2nd harmonic, one third the length of the string for the 3rd 

harmonic, and one fourth the length of the string for the 4th harmonic. The dotted line is a projection of the nodes onto the other modes. When 
an enforced node of one mode lines up with a node of another mode, the modes can co-exist when the node is enforced. When this is not the 
case, the modes cannot co-exist when the node is enforced.
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900 Hz, and so on. These are all 3rd multiples of the higher 
harmonic frequencies of the fundamental or base mode of 
100 Hz. This can be generalized as follows: the relationship 
of the harmonics arising from different excited modes to a 
related fundamental mode can be found for two different 
boundary conditions, where the frequency of the fundamental 
mode from one set of boundary conditions is divisible by the 
frequency of the fundamental mode of another set of boundary 
conditions by a factor of n. In this case, the harmonic series 
with the higher fundamental frequency will contain harmonics 
which are every nth multiple of the lower frequency.

For example, enforcing a node in the center of the string 
gives a fundamental excited mode with a frequency of 200 Hz. 
The second harmonic of the excited mode has a frequency 
of 400 Hz. With no enforced node, the fundamental excited 
frequency is 100 Hz, with the 2nd and 4th harmonics having 
frequencies of 200 Hz and 400 Hz, respectively. Thus, the 
fundamental frequency with the added boundary condition, 
which is twice the fundamental frequency in the original 
string, has a harmonic series comprising every second (or 
every alternate) frequency of the harmonic series of the 
original string.

We will now explore how the harmonics of the string 
with no enforced node are related to the harmonics of the 
same string with an enforced node. The relationship between 
the harmonics arising from different excited modes can be 
explained as follows: for any fundamental frequency, f, the 
frequency of the nth harmonic of the mth mode excited using 
an enforced node for the mth mode is the same as the mth 
harmonic of the nth mode excited using an enforced node for 
the nth node. A mathematical derivation is shown in Equations 
2-4. For the fundamental or base mode, f1, the frequency, fn, 
of its nth harmonic is 

             fn = f1n.            (2)

If we excite the nth harmonic directly by using an artificially 
enforced node, then the frequency, fmn, of the mth harmonic of 
that nth mode excited using an enforced node is 

           fmn = fnm.            (3)

Now, substituting fn in the equation we get

           fmn = f1nm.            (4)

Notice that for the multiplication of f1, the numbers n and m 
can be switched without making a difference to the product. 
This means that fmn = fnm. As a result, we may say, for example, 
that the frequency of the 2nd harmonic of the fundamental 
mode excited with an enforced node at the position of a 
node of the 3rd harmonic of the string’s fundamental mode 
(with no enforced nodes) is the same as the 3rd harmonic 
of the fundamental mode excited with an enforced node 
at the position of a node of the 2nd harmonic of the string’s 
fundamental mode. Through data analysis of the harmonic 
series produced using a guitar string, we found that both 
these theoretical patterns are valid in scenarios where the 
wave equation applies, and therefore can be used to predict 
the resonant frequencies in other systems. 

RESULTS
We performed an experiment to validate the hypothesis 

derived above. The data was collected with a guitar and a 
phone-based frequency spectrum analyzer.  

To verify the presence of the alternating pattern, we 
excited the harmonics directly, using the frets of a guitar 
as markers. Frets are metal bars on the guitar fingerboard 
used to control pitch. First, the high E string was tuned to a 
base mode of 330 Hz. The 2nd harmonic was produced by 
enforcing a node on the 12th fret, halfway through the string. 
This did not allow the string to oscillate at that point. The 3rd 
harmonic was produced by enforcing a node at the 9th fret, 
one-third of the string length. The 4th harmonic was produced 
by enforcing a node at the 7th fret, a quarter of the length 
of the string. The frequencies at which there were peaks in 
the graph were recorded in three separate trials. Table 2 
shows the average of these three trials to the nearest whole 
number. The theoretical values in Table 2 were computed 
using the following calculation. The measured length of the 
string between the two ends was 0.648 m, and the speed 
of the wave is given by v = λf. λ here was twice the distance 
between the two ends of the string 1.296 m. The wave speed 
was therefore equal to 427.68 ms-1. The speed of a wave on 
a string is dependent only on the tension and linear density 
of the string (2). Since both of these parameters are constant, 
the wave speed is constant for all harmonic frequencies. We 
can then determine the wavelength of each wave by using the 
wave speed.

Figure 2 is a screenshot of the spectrum analyzer from 
the phone, showing a graph of frequency (Hz) on the x-axis 

Table 1. Hypothetical harmonic series to explain the hypothesis.

Note: Summary of data collected compared to the theoretically 
derived frequencies. Three sets of trials were conducted for each 
boundary condition, and each frequency value given in this table is 
the average of these three trials. The frequencies are the peak values 
discussed in Figure 3 and are the overtones for each boundary 
condition. The data has been placed alongside the theoretically 
predicted values in such a way that a frequency value in the empirical 
data that is close to or the same as the theoretically predicted value 
are in the same row. 
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Figure 2. Graph of frequency against loudness for a standing wave as given by the spectrum analyzer app, showing how the data in 
Table 2 was collected. Each peak here is the overtone of the respective harmonic series, and we used a graph tracing feature to determine 
the frequency at these peaks. The ‘peak hold’ records initial graph as the sound fades away with time. This was used as a guiding graph to 
trace. The pause button allowed us to stop the application from collecting further samples, giving enough time to record the peak frequencies 
accurately.

Note: Three sets of trials were conducted for each boundary condition, and each frequency value given in this table is the average of these 
three trials. The frequencies are the peak values discussed in Figure 2 and are the overtones for each boundary condition. The data has 
been placed alongside the theoretically predicted values so that a frequency value in the empirical data that is close to or the same as the 
theoretically predicted value is in the same row.

Table 2. Summary of data collected compared to the theoretically derived frequencies. 
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against loudness (dB) on the y-axis. A tracking feature was 
used to manually find the loudest frequency, corresponding 
to the peak. The frequency at these ‘peaks’ were recorded. 

The spectrum in Figure 2 has peaks at frequencies greater 
than 330 Hz. This verifies the presence of higher harmonics 
in a vibrating string. Table 2 summarizes the data collected 
(loudest frequencies), including the theoretical values and 
the average values for fundamental, 2nd, 3rd and 4th harmonic 
series, placed such that the same frequency is in the same 
row. The empirical frequencies were entered into the chart in 
the row that had the closest theoretical harmonic frequency.

With this approach, we can see that every other box in 
the 2nd harmonic column is filled, every third box in the 3rd 
harmonic column is filled, and every fourth box in the 4th 
harmonic column is filled. This agrees with the results of our 
theoretical analysis. Moreover, if we consider the common 
frequencies, the frequency of the 3rd harmonic (row 6) in the 
2nd harmonic peak frequency column is the same value as the 
2nd harmonic in the 3rd harmonic peak frequency column. This 
example corroborates the hypothesis that fmn = fnm.

DISCUSSION
Our data analysis verifies the presence of higher 

harmonics generated by a plucked string. It also shows that 
there is a pattern in different harmonic series, provided they 
stem from the same fundamental series.  

The deviation from the theoretical values increased at 
higher frequencies because the amplitude of the harmonics 
was much lower. As a result, background noise lead to 
measurement errors for these frequencies. To avoid this 
error, the background noise spectrum was initially noted, and 
once the spectra approached the loudness of the background 
noise, the peak frequencies were not recorded. Since the 
plot was analyzed for the peaks over time, the background 
noise was too soft to affect the peaks at lower frequencies. 
Furthermore, the limitations posed by the phone’s microphone 
and operating system (OS) would enhance this uncertainty. 
Most smartphone microphones and OS’s are optimized for 
human voice and features like automatic gain control aim to 
reduce any deviations from a normal human voice. Therefore, 
the higher frequencies, which were not in a normal person’s 
vocal range, may be altered by the operating system or may 
not be captured accurately by the microphone, since they lay 
beyond its required standards (3).

For the discrepancies in the peaks, a source for this 
could be the plot tracing technique, which was manual and 
not computerized, leaving scope for human error. Another 
potential source is the tuning of the string. While the 
instrument was tuned, and the sound was analyzed using 
the same device to prevent differences in the hardware, the 
device’s scope for inaccuracy in both the hardware and the 
two applications – the tuning app and the spectrum analyzing 
app – could have resulted in these errors.

There were two ways of considering the error propagation: 
the error in theoretical values and the error in the measured 

values. The uncertainty in a theoretical fundamental frequency 
(A) of ΔA can be propagated for harmonic frequency f, where 
f = kA, as Δf = k × ΔA.

Here, k is an integer that takes the value of the harmonic. 
(for example, for the 3rd harmonic k = 3).

This way, if the first harmonic had an uncertainty of 1 Hz, 
the second would be predicted to have an uncertainty of 2 Hz, 
the third would be predicted to have an uncertainty of 3 Hz, 
and so on for the theoretical values. In this way, the theoretical 
model predicts higher uncertainty at higher frequencies.

The theoretical value was based on the idea that the guitar 
tuner tunes the instrument to 330 Hz. The uncertainty in this 
value could not be determined. However, if we considered 
the uncertainty in the fundamental frequency of the first data 
set, we could get a decent approximation of the margin of 
error of this 330 Hz fundamental value. The three values for 
the fundamental frequency were measured as 328 Hz, 331 
Hz and 328 Hz. This gave a mean value of 329 Hz with a 
standard deviation of 1.73 Hz – this was the uncertainty. This 
uncertainty was used to predict the uncertainty of the 29th 
harmonic using equation 5. We calculated an uncertainty of 
50.17 Hz, which can be taken as the approximate uncertainty 
in the theoretical frequency value of the 29th harmonic (9570 
Hz). Consequently, the theoretically calculated frequency 
is 9570 ± 25.09 Hz, and the measured frequency is 9608 ± 
10.21 Hz. Thus, the mean measured value is very close to 
what was predicted. The remaining discrepancy might be 
attributable to nonlinearities of the physical string, but this is 
outside the scope of the present study.

The uncertainty in the peak width needs consideration as 
well. The peaks were not exactly sharp, but instead showed a 
short flat region when zoomed in. The approximate middle of 
these peaks was taken, and the corresponding frequency was 
noted, leading to additional error that is not directly assessed 
in the calculation above. 

While the methodology focused on string harmonics, 
instrument strings are not the only application of higher 
harmonics. In practice, standing waves occur almost 
everywhere, from electrical systems to wind blowing 
through a narrow tunnel. Being able to predict all resonant 
frequencies, which can potentially harm an electronic device 
or the structure of a tunnel, is key to successful engineering. 
As for music, musicians capitalize on higher harmonics for 
better, more varied tones, which can be utilized to create 
dynamic songs. 

METHODS AND MATERIALS
Node enforcer

To ensure consistency in the excited mode created by 
enforcing a node, we designed a node-enforcer. The node 
enforcer uses the concept of dampening strings to enforce 
points where oscillation is restricted.

The enforcer (see Figure 3) was 3D printed in Acrylonitrile 
butadiene styrene (ABS) plastic. After this, the side with the 
central cut was covered in paper tape. The cut in the base 
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allowed it to be clipped onto a fret without any change in 
the height of the string (and thus maintain constant length, 
tension, and wave speed). Then, a thin piece of foam was 
stuck to the other upper end, such that it reached the lower 
end. The foam acted as a dampener and prevented any 
oscillation at the point of contact by absorbing the energy at 
that point, enforcing a node. 

Spectrum analyzer
We found the loudest frequencies in the spectrum by 

‘pausing’ the sampling of the spectrum in time and then using 
the inbuilt tracing feature to trace the plot and determine the 
individual frequencies for each peak manually.

The spectrum analyzer used was the Advanced Spectrum 
analyzer PRO by Vuche. This FFT (Fast Fourier transform) 
software, with the input samples set at 16384, the averaging 
factor at 3, and the sampling frequency at 48000 Hz, 
converted sound into a logarithmic scale graph. The app 
had “peak hold” and “graph tracing” features, which allowed 
for both identifying and quantitively obtaining the loudest 
frequencies - the higher harmonics. 

 
Guitar

The sound was produced using a mahogany body guitar 
with a 25.5-inch-long scale (scale is the string length), walnut 
fingerboard, stainless steel frets, walnut bridge, and a crème 
plastic nut (4). The string used was a bronze string with a 
gauge size of 0.10 (diameter of 2.542 mm). The manufacturer 
states that these bronze strings were formed by wrapping an 
80% copper and 20% zinc wire around hex shaped, brass 
plated steel core wire (5). The high E string was played using 
a Duralin, 1.00 mm thick plectrum. The frequencies were 
recorded with relative loudness, as loudness is subject to 
how hard one plucks the string, and this varies from human 
to human. Moreover, the exact position of the node is subject 
to error, thus repetitions were performed to minimize this 

random error. 
In summary, the method to record harmonic peaks was as 

follows: 1) note the background noise, 2) enable peak hold, 3) 
play a note, 4) pause the spectrum, and 5) use the tracer to 
find the frequencies of the peaks (loudest) in the spectrum. 
This was performed thrice for each boundary condition, and 
the average of these was taken for Table 2 and the standard 
deviation of these three values was the uncertainty in the 
measurement.
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