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and metastatic than GBM, which is grade 4 (2,3). Based 
on integrative genomic analyses involving gene expression 
levels and copy number event analysis, gliomas have further 
been divided into four transcriptional subtypes (proneural, 
neural, mesenchymal, and classical) and two mutational 
subtypes based on IDH 1/2 mutation status (wildtype and 
mutant) (4,5). Mutations in IDH1 and IDH2 are used to define 
distinct subtypes of gliomas and are associated with better 
prognosis. The wildtype subtype is associated with a worse 
prognosis compared to the mutant subtype (7). IDH mutations 
are associated with DNA hypermethylation, malignancy, 
and tumor cell multipotency; even though IDH-mutant is 
associated with a better prognosis, it is also associated with 
higher chances of recurrence and malignant transformation 
to a higher grade of glioma (8,9).

The transcriptional subtypes for glioblastoma and lower-
grade glioma are characterized by mutations in PDGFRA, 
IDH1, EGFR, and NF1 (4,6). The classical subtype is 
characterized by the best response to aggressive treatment 
and consists of the most common mutations seen in gliomas, 
including chromosome 7 amplifications and chromosome 10 
deletions, EGFR amplification, and lNK4A/ARF locus deletion 
(4). It is also characterized by a lack of additional mutations in 
TP53, NF1, PDGFRA, or IDH1, which is why it was used as the 
control level in gene expression analysis (4). The proneural 
subtype is associated with and has a similar mutational profile 
to secondary GBM, which involves PDGFRA, IDH1, and TP53 
and reduced efficacy of aggressive treatment (4). Despite 
being resistant to treatment, this subtype is also associated 
with greater survival as age increases (4). The mesenchymal 
subtype in glioma is associated with the expression of 
mesenchymal markers which indicate an epithelial-to-
mesenchymal transition and a propensity for metastasis. 
This subtype is also characterized by the overexpression of 
genes in the tumor necrosis pathway (4). The neural subtype 
in glioma is associated with a gene expression pattern most 
similar to normal gene expression in the brain, mirroring the 
expression signature of differentiated cells (like astrocytes 
and oligodendrocytes) (4).

The complement system, a branch of the innate immune 
system, is a proteolytic, self-activating cascade of various 
proteins, which traditionally has been thought to have a 
role in fighting cancer. There are three major pathways of 
the complement system: the classical pathway (activated 
by antigen-antibody complexes), the alternative pathway 
(activated by permissive surfaces), and the lectin pathway 
(activated by mannose-binding lectins). These pathways 
converge to the formation of C3 convertase, which is cleaved 
into C3a, an anaphylatoxin, and C3b, an opsonin. Further 
activation results in the formation of the membrane attack 
complex (MAC), which initiates the process of cell lysis and 
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SUMMARY
Glioma is a malignant and poorly understood cancer 
that occurs in the glial cells of the brain. Gliomas 
consist of two clinical subcategories: low-grade 
glioma (LGG) and glioblastoma (GBM). Based on gene 
expression profile analysis, gliomas are also divided 
into four transcriptional subtypes and two mutational 
subclasses based on IDH expression. These subtypes 
are associated with differing prognoses, histology, 
and gene profiles. The complement system, a branch 
of the innate immune system traditionally associated 
with inflammation and opsonization, has various 
pro-tumor effects, including immunosuppression, 
maintenance of glial stem cells, and hypoxic signaling. 
We analyzed the expression of complement system 
genes across the transcriptional and IDH-mutational 
subtypes of LGG and GBM to determine whether 
these genes are differentially expressed concerning 
mutation status and transcriptional subclasses. We 
performed differential gene expression analysis and 
analyzed the results for gene set enrichments and 
correlations with outcome status. The results showed 
that complement system genes are differentially 
expressed with varying outcomes across different 
glioma subtypes. Within the transcriptional 
subtypes, the complement system genes tended to 
be overexpressed in subtypes with poor response 
to treatment or increased tumor malignancy. 
These results suggest that dysregulation of the 
complement system may significantly contribute to 
the categorization of transcriptional subtypes and 
further, may play a role in treatment response and/
or overall patient outcome, although more research 
is needed to confirm this. These findings could help 
elucidate the interplay between the immune system, 
gene expression, and glioma pathogenesis.

INTRODUCTION
Glioma is a highly malignant and poorly understood 

cancer that develops in the glial cells of the brain. Patients 
with glioma typically have poor survival: a dismal 40% of 
patients survive a year post-diagnosis, and only 17% survive 
through a second year. Current treatment options involve 
surgery, radiation, and chemotherapy, which often involve 
many dangerous side effects (1).

There are two clinically defined subcategories of gliomas: 
low-grade glioma (LGG) and glioblastoma (GBM). LGG is 
defined as grade 2 or grade 3 glioma and is less aggressive 
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death. The complement system’s role in immune surveillance 
and cytotoxicity initially pointed to an anti-tumor role of the 
complement system (9).

In addition to the well-characterized role of the complement 
system in innate immunity, recent studies have discovered 
potential pro-tumor roles of the complement system, which 
refuted its proposed anti-tumor role (10). In tumor cells, the 
complement system is involved in immunosuppression and 
is mutated in various cancers (11). Hypoxic gene signatures 
are more enriched in patients with complement system 
mutations, resulting in poorer prognoses (11). In gliomas, the 
complement system is involved in the maintenance of glial 
stem cells (GSCs) and promoting metastasis by influencing 
GSC-mediated angiogenesis, increasing tumor proliferation 
in the tumor microenvironment, and promoting the epithelial-
mesenchymal transition (10,12). The complement system has 
also been shown to impact the efficacy of cancer treatment 
by nanoparticle drug-induced complement activation, which 
interferes with the drug’s efficacy (13).

Here, we analyzed the expression of complement system 
genes across the transcriptional and IDH-mutational status 
subtypes of LGG and GBM to determine whether these 
genes are differentially expressed across mutational and/or 
transcriptional subclasses. We hypothesized that there would 
be a correlation between increased levels of complement 

system gene expression and prognosis across the different 
glioma subtypes. All primary sample data analyzed were 
publicly available and accessed from The Cancer Genome 
Atlas (TCGA) database. Overall, the proneural subtype had 
the most genes associated with a worse prognosis, while the 
mesenchymal subtype had the most differentially expressed 
genes overall. Compared with IDH-mutant, IDH-wildtype 
had the most complement system genes overexpressed and 
associated with a worse prognosis.

RESULTS
DESeq2 Results Reveal Varying Levels of Complement 
System Gene Expression across Different Subtypes

Initial analysis of gene expression changes was supervised 
using outcome status to determine whether there were 
any overall trends in complement system gene expression 
across outcomes. The outcome status was based on the last 
contact the investigator had with the patient. Overall, genes 
were defined as upregulated if they had an LFC (Log2 Fold 
Change) greater than 0 and downregulated if they had an 
LFC less than 0. First, the data was cleaned by removing 
any NAs, resulting in a dataset with 122 dead patients and 27 
alive patients. For GBM, we identified only a small number of 
differentially expressed genes (n = 8) and only 1 gene (CD36) 
from the complement system gene set (adjusted p < 0.01). For 

Figure 1: Differential gene expression across transcriptional subtypes. MAplots compare normalized counts data (x-axis) with log fold 
change (LFC, y-axis) for all genes (A-C) or just complement system genes (D-F). Upregulated genes have LFC > 0 and downregulated genes 
have LFC < 0. Generated by the DESeq2 package. Points with an adjusted p-value ≤ 0.01 are marked blue.
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LGG (n=122 dead vs n=27 alive), there were 75 differentially 
expressed genes (n =8) and only 2 genes (CD36 and F5) from 
the complement system gene set (adjusted p < 0.01). Since 
complement gene expression could be dependent on other 
factors, like transcriptional subtype, comparing the overall 
complement gene expression by outcome might not reveal 
significant differences. 

We next compared gene expression of the transcriptional 
subtypes within GBM (neural, mesenchymal, and proneural) 
with the expression profile of the classical subtype (n=40 dead 
vs n=8 alive) to determine whether transcriptional subtype 
could supervise complement system gene expression. 
Comparing the expression levels of proneural (n=15 dead 
vs n=3 alive) and classical subtypes revealed a total of 
6331 differentially expressed genes (Figure 1A), including 
67 complement system genes (adjusted p-value < 0.01). Of 
the significantly differentially expressed complement system 
genes, 27 were upregulated and 40 were downregulated in 
proneural GBM compared to classical GBM (Figure 1D). 
Comparison of expression levels in neural (n=5 dead 
vs n=0 alive) and classical subtypes identified a total of 
4029 differentially expressed genes (Figure 1C) with 27 
complement system genes (adjusted p-value < 0.01). Of the 
significantly differentially expressed complement system 
genes, 20 were upregulated and 7 were downregulated in 

neural GBM compared to classical GBM (Figure 1E). When 
comparing the expression levels of mesenchymal (n=54 dead 
vs n=12 alive) and classical subtypes, there were a total of 
8629 differentially expressed genes (Figure 1B) of which 
107 were complement system genes. Of the significantly 
differentially expressed complement system genes, 92 were 
upregulated and 15 were downregulated in mesenchymal 
GBM compared to classical GBM (adjusted p-value < 0.01) 
(Figure 1F). 

We also analyzed gene expression differences between 
IDH-wildtype (IDH-wt) samples and IDH-mutant samples in 
GBM and LGG to determine whether IDH mutation status 
could supervise complement system gene expression. In 
GBM, there were a total of 1392 genes differentially expressed 
with 21 complement system genes (adjusted p-value < 0.01). 
Of the significantly expressed complement system genes in 
GBM, 20 were upregulated and 1 was downregulated in IDH-
mutant compared to IDH-wt samples (Figure 2A-B). In LGG, 
there were a total of 2520 genes differentially expressed with 
33 complement system genes (adjusted p-value < 0.01). Of 
the significantly expressed complement system genes in 
LGG, 27 were upregulated and 6 were downregulated in IDH-
mutant compared to IDH-wt samples (Figure 2C-D).

Overall, we found that many genes in the complement 
system gene set were differentially expressed with respect 

Figure 2: Differential gene expression across IDH mutation status. MAplots compare normalized counts data (x-axis) with log fold 
change (LFC, y-axis) for all genes (A-B) or just complement system genes (C-D). Upregulated genes have LFC > 0 and downregulated genes 
have LFC < 0. Generated by the DESeq2 package. Points with an adjusted p-value ≤ 0.01 are marked blue.
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to glioma subtypes and IDH mutation status. Overall, the 
mesenchymal subtype had the most upregulated complement 
system genes, followed by proneural and neural subtypes 
when compared with the classical subtype. Compared 
with GBM, LGG had more complement system genes 
overexpressed across IDH-mutant versus IDH-wt subtypes.

Hierarchical Clustering of Complement System Gene 
Expression Supervises Glioma Subtypes

We performed hierarchical clustering of complement 
system gene expression in GBM, annotated with IDH 
mutation status, survival in months, vital status when the 
patient was in the last contact with the doctor, Karnofsky 
Performance Score, and transcriptome subtype to assess 
patterns of patient segregation from gene expression data 
from our DESeq studies. The Karnofsky Performance Score 
assesses disease progression by a scale that evaluates a 
patient’s ability to perform day-to-day tasks on a scale of 
0-100, with a higher score indicating a better prognosis (14). 
We determined where to cut the dendrogram tree by plotting 
the SSE (sum of squared error) across the number of cluster 
solutions and cutting where the SSE stopped decreasing 
exponentially. We observed clustering of patient samples 
sharing the same transcriptional subtype across three 
predominant clusters: a proneural cluster, which included 
all proneural cases, a classical cluster, which included 43% 
of all classical cases, and a mesenchymal cluster, which 
included 58% of all mesenchymal cases. The proneural 
cluster was composed of 48% proneural cases, 23% classical 
cases, 26% mesenchymal cases, and 3% neural cases. The 
classical cluster was composed of 100% classical cases. The 
mesenchymal cluster was composed of 76% mesenchymal 
cases and 24% classical cases. There was no discernible 
pattern for the other annotations included (Figure 3A).

We also conducted hierarchical clustering of complement 
system gene expression in LGG, annotated with IDH mutation 
status, survival in months, vital status, Karnofsky Performance 
Score, and transcriptome subtype. Again, we determined the 
number of times the heatmap would be cut by plotting the 
SSE (sum of squared error) across the number of cluster 
solutions. Similar to the GBM cases, clustering was observed 

to correlate with transcriptional subtypes defining 3 clusters: 
a proneural cluster (35% of all proneural cases), a classical 
cluster (43% of all classical cases), and a mesenchymal 
cluster (64% of all mesenchymal cases). The proneural 
cluster was composed of 67% proneural cases, 22% classical 
cases, and 11% mesenchymal cases. The classical cluster 
was composed of 100% classical cases. The mesenchymal 
cluster was composed of 66% mesenchymal cases, 25% 
classical cases, 11% proneural cases, and 1% neural cases. 
(Figure 3B). This data suggests that complement system 
gene expression can partially supervise transcriptional factor 
clustering.

GSEA Reveals Highest Pathway Enrichment Scores in 
Mesenchymal Subtype

We performed GSEA to assess whether the complement 
system pathway itself was differentially enriched across 
different subtypes. First, we performed Gene Set Enrichment 
Analysis (GSEA) to assess pathway enrichment between 
outcome groups (dead vs. alive) for GBM across 50 pathways 
defined by the hallmark dataset. In GSEA, the enrichment 
score shows the degree the genes in that specific gene set, 
which are ranked based on differential gene expression levels, 
are clustered at either the top of the list (overexpressed) or 
the bottom of the list (underexpressed). A non-enriched gene 
set would have its genes distributed evenly. This analysis 
revealed that the complement system pathway was the 11th 
most enriched pathway with the alive outcome as the control, 
with an adjusted p-value of 3.82E-01 and an enrichment 
score of 0.26 (Figure 4A).

We then performed GSEA to assess pathway enrichment 
between transcriptome subtypes (Figure 4B-D). When 
comparing both proneural and neural subtypes to classical, 
the complement system pathway was the 11th most enriched 
pathway with the classical subtype as the control, with an 
adjusted p-value of 0.0061 and an enrichment score of 0.34. 
In the analysis of mesenchymal versus classical enrichment, 
with the classical subtype as a control, the complement 
system pathway was the 11th most enriched pathway, with 
an adjusted p-value of 5.24E-18 and an enrichment score of 
0.57.

Figure 3: Annotated heatmap with complement system gene expression data. Heatmap of complement system gene count data 
normalized using variance stabilizing transformation for GBM (A), with proneural (Ai), classical (Aii), and mesenchymal (Aiii) clusters, and 
LGG (B) with proneural (3Bi), classical (Bii), and mesenchymal (Biii) clusters. Generated using counts data with the pheatmap package. 
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We also performed GSEA testing for pathway enrichment 
between IDH mutation subclasses (IDH-mutant vs IDH-wt). 
Similarly, the complement system pathway was the 11th most 
enriched pathway with IDH-wt as the control, with an adjusted 
p-value of 3.50E-05 and an enrichment score of -0.44. 
Analysis was then performed comparing the outcome (dead 
vs alive) amongst the subtypes for GBM. For the IDH-wt, 
the complement system pathway was the 11th most enriched 
pathway, with an adjusted p-value of 1.97E-05 and an 
enrichment score of -0.44. For IDH-mutant, the complement 
system pathway was the 11th most enriched pathway, with 
an adjusted p-value of 0.41 and an enrichment score of 0.27 
across dead versus alive outcomes (Figure 5A-C).

We performed GSEA comparing pathway enrichment 
with the outcome (dead vs alive (control)) amongst LGG 
samples. The complement system pathway was the 11th most 

enriched pathway with the alive outcome as the control, with 
an adjusted p-value of 1.38E-06 and an enrichment score of 
0.40 compared with the control of alive samples (Figure 6A).

Finally, we performed GSEA comparing pathway 
enrichment with IDH mutation status (IDH-mutant vs IDH-wt) 
of LGG samples, with IDH-wt as the control. This analysis 
revealed the complement system pathway as the 11th most 
enriched pathway, with an adjusted p-value of 1.79E-05 and 
an enrichment score of -0.41. Analysis was then performed 
comparing the outcome (dead vs alive) amongst the subtypes 
for LGG with the alive outcome as the control. For the IDH-wt, 
the complement system pathway was the 11th most enriched 
pathway, with an adjusted p-value of 2.40E-06 and an 
enrichment score of 0.40. For IDH-mutant, the complement 
system pathway was the 11th most enriched pathway, with 
an adjusted p-value of 4.42E-06 and an enrichment score of 

Figure 4: Complement system enrichment in GBM. GSEA enrichment plot comparing the complement system enrichment across outcome 
(Dead vs Alive) (A) and Subtypes (B-D). Generated with the FGSEA package.

Figure 5: Complement system enrichment and IDH mutation status in GBM. GSEA enrichment plot showing gene enrichment comparing 
IDH-mt vs IDH-wt (A) and comparing outcome (Dead vs Alive) across IDH Mutation Status (B-C). Generated with the FGSEA package.
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0.40 (Figure 6B-D).
Overall, this reveals that the complement system pathway 

is differentially expressed across different subtypes of 
glioma. Compared with the other transcriptional subtypes, 
the mesenchymal subtype has the most complement system 
pathway enrichment. Across IDH mutation status in GBM, 
IDH-wt was negatively enriched compared with IDH-mt, 
which was positively enriched when comparing the outcome 
(dead vs. alive). Across IDH mutation status in LGG, both 
IDH-wt and IDH-mt were positively enriched comparing the 
outcome (dead vs. alive).

SAMR Survival Analysis Reveals Differences in the 
Number of Genes Associated with Prognosis across 
Subtypes

We performed a Significance Analysis of Microarrays 
(SAMR) survival analysis, focusing on the genes of the 
complement system, to determine whether complement 
system genes were associated with patient outcome. For 
GBM samples overall, 25 complement system genes were 
found to be associated with poorer prognosis (Figure 7A).

We next performed survival analysis on the four 
transcriptional subtypes in GBM. The proneural subtype had 
27 complement system genes associated with decreased 
prognosis. The neural subtype had 15 complement system 
genes associated with poorer prognosis. The mesenchymal 

subtype had 4 complement system genes associated 
with increased prognosis. The classical subtype had 22 
complement system genes associated with increased 
prognosis (Figure 7B-E). We also performed this analysis 
on IDH mutation status categories. IDH-wt samples had 
62 complement system genes associated with decreased 
prognosis. IDH-mutant samples had 62 complement system 
genes associated with decreased prognosis (Figure 8A-B).

For LGG samples overall, 55 complement system genes 
were found to be associated with decreased prognosis. 
The analysis was also performed on IDH mutation status 
categories for LGG samples. IDH-wt samples had 76 
complement system genes associated with decreased 
prognosis. IDH-mutant samples had 18 complement system 
genes associated with decreased prognosis (Figure 8C-E).

Overall, we determined that complement system genes 
are potentially associated with varying patient outcomes 
across different subtypes, as evidenced by the differing 
number of complement system genes associated with worse 
prognosis across subtypes.

DISCUSSION
In this analysis, we found that complement system genes 

were differentially expressed across the various subtypes 
of gliomas with variations in expression levels that could 
correlate with phenotype. Hierarchical clustering analysis 

Figure 6: Complement System Enrichment in LGG. GSEA enrichment plot comparing the complement system enrichment across outcome 
(Dead vs Alive) (A), across IDH mutation status (B), and comparing outcome (Dead vs Alive) across IDH Mutation Status (C-D). Generated 
with the FGSEA package.

Figure 7: Complement system gene expression vs survival for GBM. Q-Q Plot shows genes associated with worse prognosis (red) and 
genes associated with better prognosis (green) for overall GBM (A), and across subtypes (B-D). Generated using SAMR.



17 MAY 2023  |  VOL 6  |  7Journal of Emerging Investigators  •  www.emerginginvestigators.org

also suggested that the expression of the complement system 
genes may in part supervise sub-clustering of glioma patients 
based on mutational and global transcriptional subtypes. 

Overall, the proneural subtype has the most genes 
associated with a worse prognosis, while the mesenchymal 
subtype had the most differentially expressed genes. 
When the gene expression levels of the proneural subtype 
were compared with the classical subtype (which does 
respond to aggressive treatment), the proneural subtype 
had 27 overexpressed complement system genes and 40 
underexpressed complement system genes, making it the only 
subtype with more underexpressed genes than overexpressed 
genes in the complement pathway. The proneural subtype 
also had a positive enrichment score across the complement 
system based on GSEA compared with the classical subtype, 
and 27 genes in which increased expression were associated 
with worse prognosis. This was the highest number of genes 
associated with worse prognosis. This analysis suggests the 
greater number of underexpressed genes can potentially be 
associated with the proneural subtype’s greater survival rates 
as age increases, as complement system gene expression 
has been associated with a poor prognosis due to increased 
expression of hypoxic gene signatures (10).

In the mesenchymal subtype, there were 107 complement 
system genes differentially expressed (the most out of the 
subtypes), with most of the genes being upregulated. This 
subtype also had the highest enrichment score across 
the complement system compared with the other subtype 
comparisons. This might suggest a correlation between the 
phenotypes observed with this subtype and gene expression. 
Surprisingly, there were only four complement system genes 
that were associated with a poorer prognosis. This is an 
unusual result considering the mesenchymal subtype had 
the most differentially expressed complement system genes, 
and it would be expected that the differentially expressed 
complement system genes would result in a worse prognosis. 
Further investigation is needed to fully determine the role of 
the complement system in this subtype.

The neural subtype was associated with the lowest 
level of complement system gene expression across the 
subtypes, which could be due to its small sample size. It 
also had a positive enrichment in the complement pathway 
when compared with the classical subtype. It had 15 genes 
associated with a higher prognosis. 

The varying gene expression across the proneural 
subtype, which had the most genes associated with poor 
prognosis, and the mesenchymal subtype, which had the 

most genes differentially expressed overall, with a less clear 
correlation with the outcome, could potentially indicate a 
correlation between complement system gene expression 
and the proneural-mesenchymal transition associated with 
recurrence, metastasis, and poor prognosis (15). This could 
suggest a correlation between metastasis and complement 
system gene expression, which should be further investigated.

Additionally, IDH-wt had the most complement system 
genes overexpressed and is associated with a worse 
prognosis. The IDH mutation status of glioma is known to 
be associated with prognosis, with IDH-wt being associated 
with a worse prognosis than the IDH-mutant subtype. In 
LGG overall, there were 33 complement system genes 
differentially expressed across IDH-wt and IDH-mutant, most 
of which were upregulated, with the baseline being IDH-wt. 
There was negative complement gene set enrichment in 
the mutant vs wildtype. When comparing gene enrichment 
across outcomes, there were more complement system 
genes associated with a worse prognosis in the wildtype 
subtype versus the mutant subtype. In GBM, there were 21 
complement system genes differentially expressed across 
the wildtype subtype versus the mutant subtype, with most 
of the genes being upregulated. When considering patient 
outcomes alone (dead vs alive), there was the same number 
of genes associated with a worse prognosis in both IDH-
mutant and IDH-wildtype. This indicates that there might be 
a correlation between the expression of complement system 
genes and the different phenotypes of the subtypes in LGG.

Overall, this analysis shows that the role of complement 
system gene expression is mixed and should be investigated 
further. Our results do indicate that there might be a correlation 
between complement system gene expression and prognosis 
amongst the different subtypes. 

Further studies should be conducted to determine if there 
are any actionable targets in the complement system for 
treatment. Additional analysis should also be performed to 
determine if there is any correlation between complement 
system gene expression and metastasis and/or recurrence.

Overall, this research found that the genes of the 
complement system were differentially expressed across 
the various subtypes of gliomas in our dataset. Within 
the transcriptional subtypes, the complement system 
genes were more overexpressed in subtypes associated 
with a worse response to treatment or increased tumor 
malignancy. Comparing the IDH mutation subtype status, 
most complement system genes were overexpressed when 
comparing the wildtype subtype, associated with a worse 

Figure 8: Complement system gene expression vs survival across IDH mutation status. Q-Q Plot shows genes associated with worse 
prognosis (red) and genes associated with better prognosis (green) IDH Mutation Status for GBM (A-B), for the overall LGG gene expression 
(C), and comparing outcome (Dead vs Alive) across IDH Mutation Status (D-E). Generated using SAMR.
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prognosis, with the mutant subtype, associated with a better 
prognosis. This suggests a potential connection between 
outcomes of the glioma subtypes with the expression of 
complement system genes, although more research needs to 
be done to confirm this.

MATERIALS AND METHODS
All data were collected from the TCGA database and is 

publicly available. The TCGA project is a genomics project that 
has sequenced the genome, transcriptome, epigenome, and 
proteome of 33 cancer types characterized by poor prognosis 
and far-reaching impact on public health. A total of 326 RNASeq 
Data samples were downloaded using TCGABiolinks (16), a 
Bioconductor package, in the form of HTSeq Counts, which 
were then compiled into a RangedSummarizedExperiment, 
an R object, for downstream analysis in R.

Patient Cohort for GBM Samples
There was a total of 174 samples in the GBM cohort, all of 

which came from patients diagnosed with GBM. There was a 
total of 109 male patients (62.6%), 59 female patients (33.9%), 
and 6 patients whose gender was not reported (0.03%). This 
data set contained 4 Hispanic or Latino patients, 136 non-
Hispanic or Latino patients, and 34 patients whose ethnicities 
were not reported. There were 5 patients of Asian descent, 
11 patients of African American descent, 150 white patients, 
and 8 patients whose races were not reported. Overall, 30 
patients were reported as being alive upon the last contact 
with a physician, 136 patients were reported as dead, and 8 
patients did not have a vital status reported.

Patient Cohort of LGG Samples
There was a total of 152 patient samples in this cohort, 

all of whom were diagnosed with LGG. There was a total of 
99 male patients, 52 female patients, and 1 patient whose 
gender was not reported. This data set contained 1 Hispanic 
or Latino patient, 125 non-Hispanic or Latino patients, and 
26 patients whose ethnicities were not reported. There were 
5 patients of Asian descent, 10 patients of African American 
descent, 135 white patients, and 2 patients whose races were 
not reported. Overall, 27 patients were alive, 122 patients 
were dead, and 3 patients did not have a vital status reported. 

Statistical Analysis Software
R and Bioconductor packages were used to perform 

the data analysis and statistical tests. Bioconductor is a 
free, open-source software repository based on the R 
programming language (17). The packages used for this 
analysis are DESeq2 (18), pheatmap (19), FGSEA (20), and 
SAMR (21).

Complement System Gene Set
The complement system gene set was downloaded from 

the Hallmark Pathways Gene Sets (22) in the Molecular 
Signatures Database. There was a total of 200 genes in the 
complement system gene set used. 

DESeq2
The DESeq2 package calculates differential gene 

expression using negative binomial generalized linear 
models. A DESeq2 dataset was generated with estimates 
of dispersion, logarithmic fold changes (LFC), and p-values 

for each gene. Low-count genes (counts ≤ 10) were filtered 
out before performing the analysis. Apeglm LFC shrinkage 
(23) was used to control statistical noise across replicates by 
shrinking LFC estimates to zero for low-count genes. This 
dataset was used to compare gene expression between the 
four different transcriptional subtypes (proneural vs classical, 
mesenchymal vs classical, and neural vs classical) and IDH 
subtypes (IDH-wt vs IDH-mutant), the two outcomes (dead 
vs alive), and the outcomes within the subtypes. This analysis 
was used to generate an MA (log ratio (M) and log average 
(A)) plot with all the genes and with the subset of complement 
system genes.

pheatmap
This package was used to generate a heatmap with 

hierarchical clustering, focusing on the complement system 
genes. The count matrix from the DESeq Object generated 
by the DESeq functions first underwent a variance stabilizing 
transformation. A matrix of the sample-to-sample distances 
was created from the transformed matrix. This matrix then 
underwent hierarchical clustering, which grouped the samples 
based on similarities with each other. Finally, a heatmap 
was generated with the sample distances, the clustered 
dendrogram, and the heatmap annotations with the outcome 
(alive vs dead), transcriptional subtype, IDH mutation status, 
Karnofsky Performance Score, and survival in months. The 
number of times the tree would be cut was determined by 
plotting the sum of squared errors (SSE) across the cluster 
solutions and choosing the number of clusters based on 
when there was a dramatic change in the slope of the SSE 
(‘the elbow’). Based on that, the heatmap was cut 5 times. 
The clusters were grouped into ‘proneural’, ‘mesenchymal’, 
and ‘classical’ groups based on the number of transcriptional 
subtype cases in each cluster.

SAMR (Significance Analysis of Microarrays)
This package was used to correlate complement gene 

expression patterns with survival. The gene expression 
matrix was extracted from the Summarized Experiment (an 
R Object) using the assay function, with only the rows with 
the complement genes selected. The survival in months was 
used as the outcome analysis, with the vital status (alive vs 
dead) used as the censoring status. The list of significant 
genes associated with better/poor prognosis was plotted on 
a Q-Q Plot. The expected score refers to the average gene 
expression distribution. The observed score refers to the 
actual distribution of gene expression data. Downregulated 
and upregulated genes were determined based on the False 
Discovery Rate (FDR < 0.2) and the respective delta values. 
This analysis was done across the glioma subtypes. 
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