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energy, and while this contributes to clean energy and climate 
change goals, it also contributes to variability in energy 
generation as renewable energy cannot be generated in 
certain regions at all times of the year (3). Governments can 
combat this by using load forecasting to understand how such 
variable energy production can be integrated with battery 
storage, and how that energy can be delegated to maximize 
energy security. One example of using load forecasting for 
renewable energy is in Kazakhstan, where the Power the 
Future program predicted energy production of 22 different 
plants. Through load forecasting, the program was able to 
predict renewable energy consumption accurately and aims 
to increase renewable energy generation to 50% by 2050 (4).
 To predict power consumption, time series models such 
as AutoRegressive Integrated Moving Average (ARIMA) 
can be used. These models input past energy consumption 
data from utilities, such as power substations, and output a 
prediction of power consumption at a specific time interval. 
ARIMA is made of two different models, AutoRegressive and 
Moving Average, which are integrated using differencing. 
There are three parameters in the ARIMA model: The lag 
order p represents the number of previous data points that 
are used to predict the load at the next time, the moving 
average window q, which tells how the data is smoothed over 
time to increase accuracy, and differencing term d, which is 
used because it increases stationarity, which is necessary 
for ARIMA (5). Variations of ARIMA are also used, such 
as Seasonal AutoRegressive Integrated Moving Average 
(SARIMA) and Seasonal AutoRegressive Integrated Moving 
Average with eXogenous factors (SARIMAX). SARIMA 
incorporates seasonality trends in the model, which are 
denoted by the letter s in the model parameters. In addition to 
s, SARIMA contains three extra parameters for the seasonal 
data: P, Q, and D, which represent the seasonal counterparts 
of p, q, and d (6). SARIMAX also contains an extra parameter 
for an exogenous variable, such as temperature, which is 
used along with the p, q, and d parameters to create a more 
optimal model (7). Another model that can be used is GARCH 
(General AutoRegressive Conditional Heteroskedasticity), 
which predicts the conditional variance of the dataset. 
GARCH models assume that the conditional variance of the 
dataset is not constant, also known as heteroskedasticity, 
which is often the case with time series data but can only 
have an input of the residuals after another time series model, 
such as ARIMA, has forecasted the data (8). One problem 
with variations of ARIMA is that conditional variance can lead 
to inaccurate results, as the model is not equipped to handle 
heteroskedasticity well. To combat conditional variance, 
many models combine the results from ARIMA and GARCH 
to create a more reliable output (9). 

An analysis of the feasibility of SARIMAX-GARCH 
through load forecasting

SUMMARY
Load forecasting is critical for energy sector planners 
and generation companies to predict the level 
of energy that should be generated to maximize 
energy security. Accurate predictions of future 
energy consumption and supply capacity increase 
public confidence in energy sector planners, and 
help make informed decisions on power generation 
infrastructure to reduce capital costs. To forecast 
load, energy sector planners have used variations 
of the AutoRegressive Integrated Moving Average 
(ARIMA) model, such as Seasonal AutoRegressive 
Integrated Moving Average with eXogenous factors 
(SARIMAX). However, the accuracy of these models is 
limited due to heteroskedasticity, where the variance 
of data is not constant. Consequently, ARIMA can be 
combined with General AutoRegressive Conditional 
Heteroskedasticity (GARCH), a model that forecasts 
variance, in the SARIMAX-GARCH model. We 
hypothesized that SARIMAX-GARCH will be more 
accurate in predicting load than SARIMAX, a variant of 
ARIMA. We trained SARIMAX-GARCH and SARIMAX 
and selected the best models using Akaike Information 
Criterion (AIC) and Bayes Information Criterion (BIC), 
resulting in a Mean Absolute Percentage Error (MAPE) 
of 13.2% for SARIMAX and 11.0% for SARIMAX-
GARCH. This shows that SARIMAX-GARCH is more 
accurate than SARIMAX for load forecasting data. 
The results indicate that SARIMAX-GARCH could 
potentially be improved through ensemble techniques 
and other exogenous variables. The results of our 
study will help energy sector planners and generation 
companies in forecasting energy consumption with 
more accurate predictions.

INTRODUCTION
 Energy sector planners across countries strive to 
maintain energy security for all people. One of the factors 
that contributes to energy security is load forecasting, which 
predicts energy consumption in advance so that electrical 
utilities and generation companies can plan and make 
decisions regarding the amount of power produced at specific 
periods (1). Energy security risk has been exacerbated by 
the ongoing Russia-Ukraine crisis, so it is paramount that 
load forecasting on energy consumption and delegation are 
accurate (2).
 Additionally, there has been a global increase in renewable 
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 In this study, we used both SARIMAX and SARIMAX-
GARCH models to forecast electric load, with the seasonality 
trend as the exogenous variable. We hypothesized that the 
SARIMAX-GARCH model would have a lower MAPE (mean 
absolute percent error) than the SARIMAX model. In this 
research, our team pre-processed the training and testing 
datasets of load forecasting in Panama, in which the training 
dataset had 36,000 data points and the testing dataset had 
2,300 data points. We used this dataset to create both the 
SARIMAX model and the SARIMAX-GARCH model, which 
we compared using MAPE. We found that the SARIMAX-
GARCH model had an MAPE of 11.0%, whereas the 
SARIMAX model had an MAPE of 13.2%, which signifies that 
SARIMAX-GARCH is a more accurate model.

RESULTS
 Before training the SARIMAX and SARIMAX-GARCH 
models, we checked for stationarity by using the Augmented 
Dickey-Fuller (ADF) and Kwiatkowski–Phillips–Schmidt–
Shin (KPSS) tests. Stationarity is a property that the mean, 
variance, and covariance do not change with time. The 
ADF test has a null hypothesis that the training data is non-
stationary and an alternative hypothesis it is stationary (11). 
The KPSS has the opposite null hypothesis and alternative 
hypothesis and was run to further test for stationarity (12). 
The ADF test returned a p-value of 0.56 and the KPSS test 
returned a p-value of 0.0017, showing that the data is non-
stationary. However, since the SARIMAX and SARIMAX-
GARCH models are variations of ARIMA, they have 
differencing parameters to transform non-stationary data into 
stationary data. This means that non-stationary data will not 
significantly affect the output of either model. 
 We trained both the SARIMAX and SARIMAX-GARCH 
models on the Panama dataset, which contains load 
consumption data from 2015-2019. We used 70% of the 
preprocessed dataset for training and the remainder for 
testing. Next, we generated all permutations of model 
parameters with values of either 0 or 1 and selected the 
model with the lowest Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) for training. Typically, 
model parameters are generated with a larger range, but this 
would significantly increase the amount of time required to 
select the best model based on AIC and BIC, so parameters 
had values of either 0 or 1.
 The results from training each type of model revealed 
that SARIMAX(1, 1, 0, 1, 0, 1, 12) and SARIMAX(1, 0, 1, 1, 
0, 0, 12)-GARCH(1, 1) had the lowest Information Criterion. 
SARIMAX (1, 1, 0, 1, 0, 1, 12) had an AIC of 525.634 and a 
BIC of 551.672 and SARIMAX(1, 0, 1, 1, 0, 0, 12)-GARCH(1, 
1) had an AIC of 511.357 and a BIC of 528.299. We forecasted 
energy loads using these models on the testing dataset and 
compared their accuracy using Mean Absolute Percentage 
Error (MAPE), since it is a percentage of the total error 
between the forecasted values and the data points and allows 
us to compare the error between different models.
 The results of our study indicated that SARIMAX-GARCH 
had a MAPE of 11.0%, while SARIMAX had a MAPE of 13.2%, 
showing that SARIMAX-GARCH is the more accurate model 
(Figure 1). Thus, energy sector planners and generation 
companies could enhance their accuracy in forecasting 
by using SARIMAX-GARCH in their electrical utilities to 
maximize energy security. However, even with the additional 

computational power and reduction of heteroskedasticity, 
there was not a significant decrease in the MAPE. 

DISCUSSION
 After analyzing the models, the results showed that 
SARIMAX-GARCH was a better predictor than SARIMAX 
for energy load time series data, based on a lower MAPE. 
Since many energy sector planners use variants of ARIMA 
such as SARIMAX in load forecasting in addition to other 
models such as Artificial Neural Networks (ANN) and Support 
Vector Machines (SVM), SARIMAX-GARCH may be a viable 
alternative (13). Our results agrees with our initial hypothesis 
that SARIMAX-GARCH would be more accurate, but the 
error for the SARIMAX-GARCH model could be reduced to 
offset the additional computational cost.
 One possible way to decrease the error would be to 
transform the data to make it more stationary. Many time-
series models, including variants of ARIMA, assume that each 
data point is independent of the previous lag values, which is 
not the case in non-stationary datasets. While stationarity was 
not needed to train both SARIMAX and SARIMAX-GARCH, 
as differencing would reduce non-stationarity to an extent, 
any increase in stationarity of the data would result in higher 
accuracy (14). To achieve this, we could take the natural 
logarithm of the data to remove any skews and exponential 
trends first, and then use the differencing operator (15). 
However, we also would have to run ADF tests and KPSS 
tests on the data to ensure stationarity.
 Incorporating other exogenous variables could also 
improve the results of the load forecasting model. For 
example, factors such as weather patterns, temperature, and 
wind speeds affect the amount of load needed and may be 
impactful factors than solely the seasonal trend. The next step 
would be to include multiple exogenous factors, but this could 
have setbacks, as the model could prioritize the exogenous 
variables over the data points (16).
 We could also apply ensemble techniques such as 
gradient boosting to find more optimal p, q, and d parameters. 
Gradient boosting minimizes the bias error in the training 
dataset, which would likely lead to a more accurate model. This 
is done by creating several weak learners and successively 
combining them to minimize the loss function . However, 
gradient boosting introduces complexities that could interfere 

Figure 1: Mean Absolute Percentage Error of SARIMAX and 
SARIMAX-GARCH. The difference in Mean Absolute Percentage 
Error of SARIMAX and SARIMAX-GARCH, with SARIMAX-GARCH 
having a 2.2% decrease in MAPE as compared to SARIMAX.
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with SARIMAX and SARIMAX-GARCH’s predictability, while 
also being much more computationally expensive. In addition, 
gradient boosting may generalize poorly to the testing data 
due to overfitting, leading to an overemphasis on outliers (17).
Finally, we could change the models entirely from statistical-
based models to neural networks, which are typically superior 
to variations of ARIMA. For time series data such as load 
forecasting, a Long Short-Term Memory (LSTM) neural 
network, which is a type of Recurrent Neural Network (RNN), 
would be used. The advantage of using a LSTM model over 
ARIMA is that LSTM models have a significantly better ability 
to adapt to new conditions. As a result, LSTMs would be able 
to make more accurate predictions than ARIMA over longer 
forecasting periods because they are more robust to changes 
in the dataset. However, LSTMs require large amounts of data 
to train, so the feasibility of using this model would depend on 
the size of the forecasting dataset (18). Additionally, LSTMs 
require significantly more parameters in comparison to the 
p, q, and d parameters in ARIMA, so runtime would also be 
affected by tuning parameters, which is another disadvantage 
of converting to LSTMs. To maximize accuracy, variants of 
ARIMA should be used for short-term load forecasting and 
LSTMs for long-term load forecasting. 
 Overall, SARIMAX-GARCH can improve forecasting 
of energy supply and demand, help reduce redundancy in 
investments and improve energy security. With SARIMAX-
GARCH, a power sector planner would be able to predict 
more accurately the consumer energy demand in the future. 
Without such accuracy, there could either be an overestimate 
or an underestimate of the actual demand in the future. If 
actual demand is more than the forecasted demand, then the 
planner must purchase the difference from the spot market 
at a higher energy cost and/or allow for shutdowns, either of 
which could have high-cost implications for the economy and 
potentially lead to energy security risk. On the other hand, 
if actual demand is less than the forecasted demand, any 
additional investments made in anticipation of higher actual 
demand in the future, such as building new capacities or 
locked-in long-term power purchase agreements, could incur 
redundant costs to the economy. For a 100 MW renewable 
energy plant, the estimated capital costs would be around 
$100 million. If the actual demand is lower, then it would render 
the newly built public investment redundant and become a 
sunk cost (19).
 The results of our study show that the combination 
of SARIMAX and GARCH into SARIMAX-GARCH is a 
feasible model for load forecasting. However, its marginal 
increase in accuracy combined with the required resources 
to run several GARCH models and combining them with 
SARIMAX highlights that SARIMAX-GARCH could be further 
strengthened. By using other exogenous variables and 
ensemble techniques, we could reduce the error in the model. 
Additionally, other models such as LSTM can be considered 
for more accurate load forecasting. We hope that the results 
of this study will allow others to gain insight into combining 
time series models, specifically variations of ARIMA and 
variations of GARCH, and how energy generation companies 
and energy sector planners can understand the benefits and 
costs of using SARIMAX-GARCH.

MATERIALS AND METHODS
Dataset Processing
 We first selected a load forecasting dataset to compare 
the effectiveness of SARIMAX-GARCH with SARIMAX. We 
used a Panama Kaggle dataset with load consumption data 
from 2015-2019 (10). In total, the Kaggle dataset contains 
39072 rows, providing the models with sufficient data to 
analyze. In our research, all analysis on the Kaggle dataset 
was done in python.
 Before analyzing the data with both models, we pre-
processed the data to increase the efficiency and accuracy 
of the models. The Panama Kaggle dataset contains 12 
columns, including the day of the week, holidays, and the 
temperature. First, we used the parser method in the dateutil 
package to set the index column as the date column in the 
pandas data frame. Next, we dropped all the columns in the 
pandas data frame except for the date index and the load 
measured at that date, as the remaining variables would be 
additional exogenous variables and SARIMAX only takes in 
one exogenous variable. We knew that 39,072 rows would 
take a significant amount of time to process, so we reduced 
the data to start from the year 2018. This decreased the 
number of rows to 11,135 and increased the relevancy of the 
output, as more recent data is passed through both models. 
By removing redundancies in the data, the shape of our data 
frame changed from 39702 rows and 12 columns to 11135 
rows and 2 columns.

Analysis of Raw Data
 After removing redundancies from the data, we plotted 
a graph of the dataset to identify trends and make initial 
assumptions (Figure 2). Our initial observations indicated 
that there was a slight overall trend upwards in energy load 
between 2018 and 2019, with a seasonal trend changing the 
load periodically. To confirm these trends, we performed an 
additive seasonal decomposition of the data to separate the 
actual trend, seasonal trend, and the residuals by using the 
seasonal_decomposition method in the statsmodels package 
(Figures 3- 5). We used the seasonal trend as the exogenous 
variable and the residuals were passed through the GARCH 
models.

Model Creation and Testing
 Finally, we created both SARIMAX and SARIMAX-
GARCH models and trained them on the load data. We first 
split the data into training data and testing data, in which 
the training data would be used to create and fit the model, 
and the testing data would be used to show the accuracy of 
each model. The training dataset consisted of 70% of the 
pre-processed Panama Kaggle data and the testing dataset 
consisted of the remaining 30%. To create both the SARIMAX 
and SARIMAX-GARCH models, we used the itertools 
package to create all possible combinations of p, q, and d 
parameters and seasonal P, Q, and D parameters, where the 
value for each parameter was either 0 or 1. Next, we created 
a SARIMAX model for every possible combination of these 
parameters, with the seasonal trend incorporated as an 
exogenous variable. To select the best model, we evaluated 
each model using AIC and BIC using the statsmodel library 
and chose the model with the lowest AIC and BIC. This meant 
that it had a high log likelihood, a measure of how well the 
model fits the data, to avoid underfitting and a small amount 



20 NOVEMBER 2022  |  VOL 5  |  4Journal of Emerging Investigators  •  www.emerginginvestigators.org

of parameters to avoid overfitting. (20). Then, we fit the model 
on the training data and predicted the load using the model on 
the testing data. Our method to test the SARIMAX-GARCH 
model was similar to the method for the SARIMAX model, but 
we had to create each SARIMAX model and GARCH model 
separately and then combine them to test for AIC and BIC. 
The GARCH models had two parameters p and q generated 
by itertools in conjunction with SARIMAX and passed into 
each of the models. One key difference was that the GARCH 
model would pass in the residuals from the SARIMAX model 
as the data instead of values from the training dataset, as 
GARCH is used to measure heteroskedasticity, not to predict 
actual values. Each of the SARIMAX and SARIMAX-GARCH 
model’s forecasted values were compared with the true 
values of the dataset by using MAPE. 
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