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60% higher than the EPA national emission inventory made in 
2015 (3). Therefore, methane emission numbers from sources 
like the O&G industry could potentially be more severe than 
expected. Due to methane being an ozone precursor, which 
is a pollutant that reacts to form ozone, increased methane 
emissions can lead to higher levels of tropospheric ozone, 
which is low lying ozone that can cause harmful health effects 
upon inhalation (4). O&G operations are also known to be 
an emission source of volatile organic compounds (VOCs) 
and nitrogen oxides (NOx), which are ozone precursors as 
well (1,5). Increased levels of tropospheric ozone in the air 
have been associated with harmful effects on human health, 
such as cardiopulmonary diseases (6). Some VOCs are also 
carcinogens and can contribute to cardiovascular disease (7).

In the state of Colorado, practices like hydraulic fracturing 
have emerged both as a prime form of economy and a public 
health concern (8, 9). With a total of about 55,000 active O&G 
wells, Colorado has become a hotspot for O&G activity as 
the state with the 5th highest O&G production in the United 
States (19). Indeed, areas near O&G fields measured in 
Northeastern Colorado have already shown an increase in 
VOCs and other ozone precursors when compared to major 
US cities (5). Gilman et. al found that the presence of VOCs 
from natural gas activities, such as propane and ethane, 
were present at much higher concentrations in the Denver 
Julesburg region than other urban areas (5). In Colorado’s 
Garfield County, another location of heavy O&G influence, 
residents living within 800m of an O&G well were found to 
be subject to the effects of various VOC emissions, such as 
benzene, a carcinogen (11). Czolowski et al. estimate that 17.6 
million people live within a mile from an O&G well, therefore 
the impacts of O&G emissions are becoming increasingly 
dangerous (12). 

The vast majority of people do not have access to air quality 
measurement tools, especially in low-income countries, so 
development of easier methods to model air quality is crucial 
(14). Monitoring instruments are also extremely costly and 
impractical for mass usage among citizens (15). Therefore, 
the development of land use regression (LUR) models which 
assess the various physical conditions around a location 
potentially provide an outlet for affordable air quality modeling 
(15). However, with the modern rise in O&G activities, many 
LUR models fail to take O&G sources into account (14,15). 
If an emission is found to be correlated with O&G activity, a 
LUR model that predicts the corresponding emission that is 
involved with O&G sources should prove to achieve higher 
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SUMMARY
Emissions from oil and natural gas (O&G) wells such 
as nitrogen dioxide (NO2), volatile organic compounds 
(VOCs), and ozone (O3) can severely impact the health 
of communities located near wells. With the O&G 
industry growing and 17.6 million people living within 
a mile from an O&G well, the effect of O&G activity on 
residents is especially pertinent. In this study, we used 
O&G activity and wind-carried emissions to quantify 
the extent to which O&G wells affect the air quality 
of nearby communities, revealing that NO2, NOx, and 
NO are correlated to O&G activity. We then developed 
a novel land use regression (LUR) model using 
machine learning based on O&G prevalence to predict 
emissions. Many LUR models fail to account for O&G 
sources, therefore we hypothesized that the inclusion 
of O&G sources in land use regression models 
provides an increase in accuracy when predicting 
emissions. The model performed effectively for NO2, 
outperforming past LUR models which did not involve 
O&G activities. The model makes it possible for not 
only communities, but also families and individuals, 
to determine the effect that O&G has on their homes. 
With current modeling techniques failing to observe 
the effects of O&G in the face of the growing O&G 
industry in the U.S., it is crucial that the public is 
educated on the effect of the O&G industry on their 
daily lives and has the tools to monitor these effects.

INTRODUCTION
The oil and natural gas (O&G) industry in the U.S. has 

grown sharply in recent years, with emphasis on the practices 
of hydraulic fracturing and horizontal drilling (1). As the 
frequency of such practices increased, the daily natural gas 
production in the United States also increased from 30 million 
m3 per day in 2005 to more than 700 million m3 per day in 
2012, making up 39% of nationwide natural gas production (2). 
Additionally, between 2008 and 2014, oil production increased 
by 74% from 1.83 billion barrels a year to 3.18 billion barrels 
(1). However, these practices of O&G production also bring 
a multitude of environmental impacts, one of them being the 
emission of gases like methane into the atmosphere. Recent 
studies have shown that methane, a primary component of 
natural gas and a severe greenhouse gas, is emitted into the 
atmosphere at an estimated 13 million tons per year, which is 
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levels of accuracy than other mainstream LUR models which 
do not involve O&G sources.

Another issue with many LUR models is the complexity of 
the variables used. Oftentimes, LUR models utilize a variety 
of complex variables such as road density, road length, 
building density, agricultural density, etc. which may not be 
easily accessible to all people (14,15). These variables may 
often take a while to gather the necessary information. As 
a result, in this study, we will also be testing the viability of 
simpler variables that generalize complex variables into a 
single variable whose information can be easily gathered from 
spatial resources. For example, instead of many variables 
such as population density, road length, and vehicle usage 
to predict urban emissions, a single urban variable based on 
a city’s population density and coverage was used instead. 
If such a variable is proven to be viable, the development of 
LUR models can be streamlined into a much more efficient 
process.

As the O&G industry becomes more prevalent, it is 
important for communities to determine the effect of O&G 
on their daily lives and health which can be done using LUR 
models. By developing a simpler O&G based LUR model 
which can be easily accessed by all people, such a task can 
be accomplished.

One of the goals of our study is to determine the extent 
to which the presence of O&G wells are related to increased 
emissions in the areas surrounding those O&G sites. A spatial 
analysis of the surrounding O&G wells was conducted to 
determine this extent. In addition to ozone, other indications of 
air quality were examined, such as particulate matter, which, 
along with NOx, has also been linked to hydraulic fracturing 
(13).

To verify a correlation between O&G sources and 
increased emissions and also develop a LUR model, we 
developed equations to assess the level of O&G activity of an 
area to test if O&G activity is related to increased emissions. 
We then created a machine learning LUR model with 
generalized variables to predict the levels of emissions from 
O&G activity and other sources, which was compared with 
non-O&G LUR models to assess the influence of O&G activity 
as a variable in LUR models and the viability of generalized 
variables. We hypothesized that, with the growing influence 
of O&G activity, the inclusion of O&G sources in LUR models 
provides an increase in accuracy. It was found that emissions 
were linked to O&G activity, and the inclusion of O&G sources 
raised accuracy in predictions, particularly for a LUR model 
predicting NO2.

RESULTS 
In this study, we first investigated whether an emission 

is related to O&G activity, and then we built LUR models to 
measure their performance. Across Colorado are monitoring 
sites managed by the CDPHE (Colorado Department of Public 
Health and Environment) that measure various emissions. In 
analyzing the O&G activity surrounding each monitoring site 
and determining if there is a difference in emissions, the effect 
of O&G activity on air quality can be discerned. These data 
are then sent to the EPA where we obtained the data. We 
collected data from each of the CDPHE monitoring sites that 
measured wind direction and speed along with the observed 
emission. We also calculated locational prevalence for every 
site. Locational prevalence is a measure of the influence of 

O&G on a location we developed based on the number of 
wells surrounding the location. For sites that measured wind, 
we determined the wind prevalence for each observed day. 
Wind prevalence is another measure of influence of O&G on 
a location we developed based on the direction and speed 
of wind and the amount of O&G activity from where the wind 
comes from. Due to varying percentages of winds from each 
direction and speeds, wind prevalence varied day by day 
while locational prevalence remained the same.

We employed linear regression for each parameter using 
O&G prevalence to test for a correlation between O&G 
activity and emission type. Before building a model to predict 
emissions, it was important to first verify that O&G prevalence 
relates to each emission.

In order to develop a model to predict emissions based 
on locational prevalence and wind prevalence values of 
monitoring sites, we used multiple linear regression, a 
form of machine learning that utilizes multiple independent 
variables to predict a single dependent variable. In this case, 
independent variables were locational O&G prevalence, wind 
O&G prevalence, and urban prevalence. Urban prevalence 
is a measure of how urban a location is based on the size of 
nearby cities. Urban prevalence was developed to represent 
a simplified variable that predicts emissions from urban 
sources. Each independent variable was standardized for an 
average at 0 and a standard deviation of 1. These independent 
variables were used to predict the dependent variable, being 
the observed emission. Computer predicted data was tested 
against actual data to determine the accuracy of our model. 
We conducted regression and machine learning using the 
Scikit-Learn module in Python. Our emission model was 
compared with similar LUR models using r2 and root mean 
squared error (RMSE).

The regression graphs used all available data from 2021 
from the EPA. Certain monitoring sites which displayed large 
amounts of emissions (>20 ppb NO2, >0.7 ppm ozone)  due 
to influences like roads or urban areas were removed in order 
to gain a more accurate regression model as such monitoring 
sites were often heavily skewed past the capacities of the 
urban prevalence value.

Nitrogen Dioxide (NO2)
NO2 was the primary emission tested in this analysis. 

As NO2 is a direct pollutant and heavily emitted from O&G 
activity, it served as a stable indicator for the effect of O&G on 
air quality and air quality models (7).

Figure 1: Regression graphs using O&G prevalence to predict 
NO2 levels. (A) graphs prevalence equations with mean NO2 and (B) 
graphs prevalence equations with highest NO2 of the day. Mean NO2 
displayed an r2 value of 0.22 and highest NO2 displayed an r2 value 
of 0.23.
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NO2 data were used from each recorded day in 2021 and 
we calculated the O&G prevalence for each of those days.

We observed a correlation between O&G prevalence 
and NO2 levels (Figure 1). However, it is a weak correlation 
when considering the low r2 values of 0.22 (mean) and 0.23 
(highest value). This is likely due to the presence of third-party 
emissions. Although urban monitoring sites were removed, 
many of the monitoring sites kept were still subject to urban 
influence. Without the involvement of urban prevalence, the 
linear regression has no way to account for the influence of 
third-party sources such as urban prevalence.

The multiple linear regression models were far more 
accurate than the linear regression model judging by the r2 
values (Figure 2). The multiple linear regression displayed 
r2 values of 0.60 (mean) and 0.69 (highest) with an RMSE 
of 6.36 (mean) and 4.32 (highest), whereas linear regression 
displayed r2 values of 0.15 (mean) and 0.17 (highest) when 
comparing actual values with predicted values. With the 
addition of urban prevalence along with the separation of wind 
and locational prevalence, machine learning was as expected 
able to predict much more accurately than linear regression. 

We found that models that predicted overall emissions 
were more accurate than just O&G sites with urban influenced 
data removed (Figure 3a) and urban prevalence with O&G 
influenced data removed (Figure 3b). This indicates that the 
improved results are not due to the inclusion of urban data in 
which urban prevalence easily predicted. It is only through the 
addition of both sources of data that allowed the O&G model 
to learn enough to effectively predict emissions.

Since the intended purpose of the O&G model was to 
predict emissions solely from O&G sources, this can be 
done by using urban prevalence to determine the amount of 
emissions to subtract after the O&G model predicts emission 

levels, as subtraction before analysis resulted in a much less 
accurate model.

Ozone (O3)
Summertime (June, July, August) ozone was used due to 

ozone reactivity being higher in those months to determine 
if O&G affects ozone to a dangerous extent. Once again, 
linear regression was conducted between O&G prevalence 
(x) and ozone (y). Ozone was measured through ultraviolet 
absorption. Monitoring sites that measured abnormally 
high ozone levels were removed, as such high ozone levels 
indicate that there is heavy influence from another pollution 
source.

Ozone results, however, failed to show any correlation in 
linear regression solely based on O&G based equations. This 
is likely because there are too many factors that affect ozone, 
as it is a secondary pollutant. 

However, multiple variable regression for ozone displayed 
a correlation between predicted and actual data, but the 
O&G model is still largely inaccurate in predicting ozone 
levels when noting the low r2 levels (Figure 4A-B). This is 
likely because there are too many factors that affect ozone, 
as it is a secondary pollutant. Different methods will need to 
be used in order to accurately predict ozone. The amount of 
data available for ozone analysis was also less than for NO2 
analysis as many monitoring sites were deemed unfit due to 
abnormally high ozone levels, with five monitoring sites and 
1050 measurements for ozone compared to nine monitoring 
sites and 1650 measurements for NO2. 

Emissions Summary
Regression conducted for PM10 and PM2.5 (particulate 

matter of size <10 micrometers and <2.5 micrometers 
respectively) failed to display any correlation, indicating 
that the influence of O&G activities on these emissions is 
minimal or nonexistent. Regression for NOx and NO showed 
an expected correlation, albeit a weak one with r2 values of 
0.21 and 0.10 respectively (Figure 5). Overall, the results 
indicate a lack of correlation in PM10 and PM2.5. However, a 
correlation exists for NOx, NO2, and NO which are the main 
pollutants from O&G. For ozone, a correlation only existed in 
the multiple variable regression. 

DISCUSSION
In this study, we discovered a link between O&G activity 

and the different emissions types. In addition, we also created 
a tool using computer code that makes it possible for a 

Figure 2: Multiple regression machine learning predictions 
between actual data and predicted values. (A) shows the 
prediction results for mean NO2 and (B) shows the prediction results 
for highest NO2 of the day. Mean displayed an r2 value of 0.60 and 
highest displayed an r2 value of 0.69.

Figure 3: O&G model analysis comparing urban and O&G 
datasets. (A) displays actual vs. predicted values for a model with 
urban influences removed and (B) displays the model with O&G 
influences removed. r2 value of (A) is 0.33 and r2 value of (B) is 0.17.

Figure 4: Regression graphs using O&G prevalence to predict 
ozone levels. (A) graphs prevalence equations with mean ozone 
and (B) graphs prevalence equations with the highest ozone of the 
day. Mean ozone displayed an r2 value of 0.15 and highest ozone 
displayed an r2 value of 0.33.
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community, or even a family or individual, to determine the 
effect that O&G has on their homes. With the simple amount 
of data required to input to the O&G model and the ease of 
transporting, the O&G model can potentially be published and 
made available to the public in the future.

In order to determine if influences of O&G are related to 
air quality emissions and create a LUR model, equations 
to measure the amount of O&G influence were developed. 
These equations represent a novel way of assessing land use 
variables to create a generalized variable.

Our O&G NO2 model will first be compared to Larkin et 
al. (14)’s NO2 model. Larkin et al. (14) created a model to 
predict the entirety of North America primarily using satellite 
estimated NO2 levels, traffic emissions, and other variables. 
NO2 LUR models of North American regions are rare at this 
current time as LUR models are largely used for intra-urban 
estimates within large cities, not over large regions (18). 
Therefore, there are few LUR models to compare with.

When comparing each model’s predicted values vs. actual 
values, the North American model had an r2 value of 0.52 
and an RMSE of 5.7, compared to our model’s r2 of 0.60 and 
RMSE of 6.4. r2 values indicate that our model fits the data 
better, yet RMSE values indicate that the North American 
model had less deviation from the regression line. The North 
American model was more complex than the O&G model, 
with more specific road (ex: road length, usage) and urban 
measurements (ex: population density, building size) along 
with various other variables such as agriculture. However, 
despite this, our model achieved a higher r2 value, the 
differentiator potentially being the inclusion of O&G sources. 

A factor playing a role could also be that the O&G model 
is fitted to just Colorado and the North American model is 
for the entire continent. Therefore, it may be worth fitting the 
O&G model onto different American states to test if such 
results can be repeated. 

It is also worth noting that other groups also generated 
models for other continents, and the model with most accuracy 
(South America) is the location in which O&G sources are 
least developed. Other continents involved heavily in O&G 
production all displayed lower r2 values. Considering the jump 
in O&G production being rather recent, it makes sense that 
older models may not consider such sources.

Additionally, the purposes of each model should also be 
assessed when considering their performance. The North 
American model was adapted for usage in countries without 
monitoring equipment, especially for professional usage to 
develop health risk studies (14). Therefore, the users may 
have the resources to analyze land use variables on a much 

more specific scale than the O&G model can. This is because 
the O&G model was made for residential use, to be easily 
accessed through a website or similar tool by the general 
population. Therefore, the generalized variables used in the 
O&G model provide much more attainable variables for such 
circumstances. When you consider the relative accuracies 
of both models, it shows that such generalizations can 
also be used effectively in generating accurate predictions 
to an acceptable degree, implying the potential strength 
of generalized variables. Additionally, these generalized 
variables make it very simple to determine how much 
emissions come from each source, which may emerge as a 
valuable source of information in the rise of not only O&G 
activities but also future pollution sources. As more causes 
of O&G are discovered and incorporated into this model, the 
O&G model should only become more accurate in predicting 
emission levels. 

Mavko et al. (15) also created an NO2 LUR model for 
Portland, Oregon, which achieved an r2 value of 0.89, 
exceeding both the North American model and the O&G 
model by a large scale. This model, however, was for a much 
smaller location, and was able to assess much more local and 
specific variables to generate the LUR model. Since 2008, 
Oregon has closed all O&G facilities thus this LUR model was 
completely unaffected by O&G activity (19).

Therefore, regarding the matter of scales of analysis, the 
North American model, the Oregon model, and the O&G 
model all show that the usage of LUR models often performs 
better on smaller scales. As a result, in future applications of 
machine learning for LUR, it may be beneficial to fit a single 
model across several smaller regions over a large area that 
is being examined. 

Based on these results from the NO2 model, the O&G 
model with generalized variables emerges as a novel method 
for providing simple and accessible air quality measurement 
tools to assess the effect of different emission sources on 
a given location. Other NO2 LUR models with more data for 
more variables did not outperform our model, showing the 
influence of O&G sources on LUR models. As many nations 
are becoming immersed in the O&G industry, it is important to 
account for O&G wells in future air quality models (2).

Regarding ozone LUR models, models of such proportions 
remain to be effectively created. Wolf et al. (21) created an 
ozone LUR model for a city in Germany which effectively 
predicted ozone on a much smaller scale, with small scale 
intra-urban variables, similar to the Oregon model. Yet, 
from the O&G model’s results, it is clear as to why ozone 
LUR models over large regions are difficult to create. When 
considering such a large radius in the O&G model, there is a 
large range of unpredictability when modeling ozone, being a 
secondary pollutant. This is a good indication of why there is a 
lack of large-scale ozone LUR models. Again, the benefits of 
smaller scale LUR models are displayed in the ozone results.

Overall, the comparison between the O&G model and 
smaller scale models indicated that LUR models may need 
to be fitted to smaller regions in order to predict with better 
accuracy. The O&G model, which was fitted over a large 
region, was much less accurate than smaller region LUR 
models which were able to better fine tune its predictions. In 
the future, instead of creating one large scale model, it may 
be beneficial to split the regions into smaller areas to fit a 
model piece by piece.

Figure 5: Regression graphs using O&G prevalence to predict 
NOx (A) and NO (B) levels. Both graphs show mean emission levels. 
NOx displayed an r2 value of 0.21 and NO displayed an r2 value of 
0.10.
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The effect of O&G on ozone emissions is still unclear. 
The O&G model indicates a weak correlation and a lack of 
large-scale ozone LUR models make it difficult to assess if 
O&G influences would benefit a LUR model. Ozone has been 
shown to be affected by O&G activities (20), yet the amount 
of effect and how it is affected is unclear.

The major limitation of this study lie in the lack of data 
currently open to the public. Not only are monitoring sites 
rather limited throughout Colorado, but the lack of wind data 
for most of the sites also proved to further limit the variety of 
sites that could be used in the analysis. The monitoring sites 
were also mostly clustered in similar areas, further reducing 
the usefulness of each of these sites due to lack of different 
data sources. Although each monitoring site provided 
sufficient and varying data, it would still be beneficial to have 
more sites to potentially identify further third-party emission 
sources.

Another issue is the problem with other pollution sources 
interfering with the O&G pollution. Although we accounted for 
urban emissions to create a more accurate model, it’s still 
difficult to determine the exact amount of emissions from 
O&G influences. An ideal method would be to use the VOC 
signatures of each site to determine the sources of emissions 
(presence of ethane and propane would indicate emissions 
from O&G, presence of acetylene would indicate emissions 
from urban sources). However, only a small number of 
monitoring sites measure VOCs; it’s not enough to create an 
accurate estimate, and much of VOC data is not disclosed for 
public usage.

Additionally, the weakness of the wind equation used is 
that it assumes that emissions blown by wind will follow a 
straight path to the monitoring site. Wind patterns often do 
not display such patterns with various changes in direction. 
Therefore, emissions can be carried to unexpected locations 
and inaccurately carried to the monitoring site. This equation 
also does not account for vertical winds, which could also 
arise as a form of error. However, since the equation is only 
meant to take a general and spatial analysis of O&G wells and 
not a specific one, the error should be small over long term 
analysis.

Both ozone and NO2 have been linked to inflammatory 
lung reactions, which can lead to airway diseases, and NO2 
additionally can also worsen asthma symptoms and cause 
increased death from cardiovascular diseases (21). Therefore, 
the WHO (World Health Organization) has set thresholds for 
long term exposure of NO2 at 40 µg/m3, or 21.26 ppb (21).

Among values used in the LUR model of NO2, 14.54% 
NO2 values exceeded this limit, largely concentrated in areas 
located near highways or large urban areas, such as Denver. 
However, the O&G model tended to predict too low for these 
points, predicting values that were under the threshold. 
Additionally, only seven of the 340 values exceeded this 
threshold. As a result, when interpreting the results of this 
model, there should be a reasonable degree of caution.

For ozone, the WHO threshold is at 100 µg/m3, or 50.94 
ppb (22). In the data we used, 29.54% of ozone values of 
the LUR model exceeded the threshold, a much higher rate 
than NO2. There wasn’t a particular pattern to the points to 
which higher levels of ozone, which is logical considering 
the unpredictability surrounding the factors that cause the 
emission of ozone. 

The results generally indicate that O&G factors may not 

affect emissions to a dangerous limit. With most of the points 
exceeding thresholds being caused by urban emissions, it’s 
difficult to assess the exact influence of O&G. However, with 
monitoring locations located right in the middle of urban areas 
and subject to the most urban emissions, it is clear why most 
of these exceeding points are linked to urban sources. But 
for O&G wells, there was not a monitoring site which was 
located particularly close to an O&G well, nor a monitoring 
site located in the center of O&G activities on the same level 
that the urban monitoring sites are located in urban centers. 
Therefore, in order to both better determine if O&G factors 
may truly affect health to a dangerous level and optimize the 
LUR model, monitoring data is required for locations exposed 
heavily to O&G wells.

The O&G prevalence model was also more accurate in 
predicting highest emission levels of the day. Higher peaks 
are more evidence that an emission source is producing high 
amounts of emissions, which in this case can be attributed to 
O&G sources.

As the original O&G equations were modeled to create 
urban prevalence, they can be modified to account for different 
other sources of NO2 and emissions. Significant power plants, 
construction sites, and roads can all be potentially accounted 
for in the future using these equations we have created to 
develop a much more accurate air quality model. Especially 
considering that the locational and wind prevalence equations 
can easily be modified for other sources, it is simple for one to 
take into account such sources. In this study, such a process 
was applied to create urban prevalence.

Comparisons between the O&G model and smaller scale 
models also indicated that LUR models may need to be fitted 
to smaller regions in order to predict with better accuracy. The 
O&G model, which was fitted over a large region, was much 
less accurate than smaller region LUR models which were 
able to better fine tune its predictions. In the future, instead 
of creating one large scale model, it may be beneficial to split 
the regions into smaller areas to fit a model piece by piece.

Regarding ozone, although ozone is a known pollutant 
from O&G, the O&G model had relatively low accuracy 
for predicting it. Ozone prediction methods will need to be 
adjusted in order to generate accurate predictions, with the 
inclusion of extra variables that may include ozone precursor 
levels and more specific indicators. A method that may be 
used in predicting future ozone concentrations is by using 
NO2 levels, VOC estimates, and ozone reactivity to predict 
ozone concentrations for a location. Since ozone is highly 
dependent on NO2 and VOC curves (20), this could work 
much better in providing an accurate estimate of ozone 
emissions. Although the O&G model is shown to be more 
suited to NO2, the inclusion of extra variables that can better 
filter out emissions from other sources may help the O&G 
model adapt better to ozone predictions.

It is also worth improving the O&G model to account for 
more emissions sources which can eventually lead to creating 
a universal air quality measurement tool. With this research, 
the public will not only be able to determine the effect of O&G 
pollution on their homes, but also from urban sources, road 
sources, power plants, agriculture, etc.. By using a spatial 
analysis of surrounding sources along with a simple wind 
measurement, this is a powerful tool that may be utilized by 
anyone with access to a computer.
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MATERIALS AND METHODS
Monitoring Sites and Data

Monitoring sites and data were obtained from the EPA 
at the following link: https://aqs.epa.gov/aqsweb/airdata/
download_files.html. The EPA’s data contains data uploaded 
from the CDPHE. Methods of emission measurements are 
therefore consistent with the standards of the CDPHE and the 
EPA. The parameters that are used in this study are nitrogen 
oxides (NOx), nitrogen dioxide (NO2), nitric oxide (NO), ozone 
(O3), PM25, and PM10. Monitoring sites are located across 
Colorado, largely concentrated in urban locations (Figure 6). 

Equations and Modeling
We created equations based on different buffer distances 

that assess the various circumstances involved in O&G 
emissions. The equations generated numerical values that 
tell the influence of O&G for a given location. These equations 
represent a novel way of assessing land use variables to 
create a generalized variable. To our understanding, this is 
the first attempt at creating such generalized variables to use 
with a LUR model.

The first equation involves the proximity that a location 
has on nearby wells, which will be referred to as “locational 
prevalence.” The following equation was created to predict 
emissions based on wells in close proximity:

P=2A+B+0.5C+0.2D+0.01E

where P is the “O&G prevalence” based on well distances 
and number, A is the number of O&G sites within an 800 m 
radius of the monitoring site, B is the number of sites within an 
800-2000 m radius, C is the number of sites within a 2-3 km 
radius, D is the number of sites within a 3-10 km radius, and E 
is the number of sites within a 10-20 km radius. Higher values 
of O&G prevalence indicate a higher concentration of O&G in 
the area, whereas lower values of O&G prevalence indicate 
lower concentrations of O&G activity. We used the Python 
programming language to calculate this O&G prevalence. 
The code for this project can be found at the following Github 
link: eltonc01/OG-ML-Study (github.com).

Areas within 800 m from O&G sites have significantly 

increased exposure to air emissions (11), hence the distance 
of A in the equation. A U.S. EPA report regarding the dilution 
of toxic air contaminants also found that in areas within 800 
m from the source of emissions was 0.1 g/m3 per g/s (16). 
In areas within 2000 m of the source recorded 0.015 g/m3 
per g/s, and in areas within 3000 m, there was a dilution of 
0.007 g/m3 per g/s (16). A study regarding proximity of natural 
gas wells and the effect of emissions based on different 
buffer distances also reported that respiratory symptoms 
were more frequent among locations <1 km away from the 
source compared with locations >2 km away (16). Based 
on these data, we have chosen the distances of B and C in 
the equation. For benzene (a VOC), it was determined that 
beyond 3 km, dilutions were two orders of magnitude less 
than the 800 m radius and were all relatively equal (16). 
These dilutions determined the distance of D in the equation. 
The value of D is to take into account of O&G wells are on the 
border of affecting the location of the monitoring site. Lastly, 
the distance of E is to add on to the spatial representation 
of the prevalence of O&G wells. Although these distances 
may not have a large or direct impact on the routines of the 
examined site, they are still useful in order to gain an idea of 
the amount of O&G production in an area.

In general, the coefficients of the equations have been 
chosen to reflect the impact that a well may have based on the 
distance from the examined site. However, although locations 
closer to O&G sites have displayed much larger emissions 
than distances further away, the coefficients of the equation 
do not directly reflect this difference in emissions. Having 
large coefficients can significantly alter the data, so in order 
to lessen this impact, the coefficients are more focused on a 
spatial representation of O&G sites in the general vicinity. In the 
case that data regarding the O&G wells have been improperly 
collected by the COGCC, the changing of coefficients would 
also help reduce the error in the calculations, so that these 
errors play less of a role in changing the O&G prevalence. 
Essentially, the coefficients help take a more conservative 
method of building the equation in order to counteract the 
heavy variance involved with predicting emissions.

The second equation takes wind into account, which 
can blow emissions from farther O&G wells to an observed 
location. The first equation alone cannot entirely be accurate 
in predicting emissions, so the following equation was 
developed to account for wind:

where P is the “O&G prevalence” based off wind, L is the 
distance from nearby O&G activity, z is the wind speeds (km), 
s is the prevalence strength of the nearby O&G activity, and 
x is the % of winds blowing in the direction being measured. 
The equation is a sum of the eight different cardinal directions 
(north, northeast, east, southeast, south, southwest, west, 
northwest), which represents the direction the wind is blowing.

Distance from nearby O&G activity, or L, was calculated 
by finding the center point of nearby O&G wells in the region 
described by the cardinal directions. Each region can be 
described as a “pie slice,” in which we can find the center 
point of O&G wells for distances between 20 km and 50 km 
away. This distance value is chosen to build from the first 
equation, which stops inputting values beyond 20 km. The 
center point of O&G wells will be calculated by finding the 

Figure 6. Map of monitoring sites across Colorado. Built using 
Google maps, it can be found in the following URL: https://www.
google.com/maps/d/u/0/edit?hl=en&mid=1XUhtaOJhpa3Hb
I M y h DX rA E P4 8 - Q _ 8 R E & l l = 3 9 . 318 0 0 0 470 4 8 8 07 % 2 C -
106.00521116294118&z=7
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average latitudes and longitudes of all wells in each “pie 
slice.” Once the center points are calculated, the distances 
will be measured in kilometers.

Prevalence strength of the O&G activity nearby, or ‘s,’ was 
calculated by counting the number of O&G wells in the “pie 
slice.”

Lastly, percent of winds measured, or x, is the percentage 
of measured winds that blew in the cardinal direction that is 
being used. This was collected by finding the percentage 
of winds blowing in each direction based on hourly 
measurements for the year of 2021.

Each equation was developed and put into action using 
Python. 

Urban Prevalence
Monitoring sites located at or near urban locations such 

as cities were subject to much higher levels of emissions 
like NO2 and NOx, indicating the large influence of such 
urban emissions. Therefore, locational and wind prevalence 
equations have been modified to account for urban influence, 
creating an “urban prevalence” value. As the equations 
account for a spatial and wind analysis of emissions, they 
should be able to be applied to other sources of emissions.

Population of each city determined the radius of influence 

along with the emission strength of each city (Table 1). For 
example, if a monitoring site was located at the black ‘x’, then 
the model would determine the amount of influence from 
Denver that factors into the equation (Figure 7). The red circle 
represents Denver’s radius of influence, and the amount of 
overlap would be counted towards the equation. Strength acts 
as a multiplier of the overall result—the more populous a city 
is, the denser it will be, creating more potential for emissions. 
As radius increases outwards, strength also decreases. This 
setup effectively creates a generalized variable which is 
based on the principle that as a city’s influence recedes the 
further you are.
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