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Article

stable mood, to the patients (1). Over time, the neural damage 
can expand to parts of the brain that are responsible for 
mobility, ultimately impairing patients’ walking, swallowing 
abilities (1). Such disabilities, compounding worsely over 
time, cause patients to rely on aid from family relatives to 
perform daily life activities. Because ACh plays a central 
role in memory and learning, maintaining its levels is crucial 
for slowing AD symptoms (3). Acetylcholinesterase (AChE) 
is an enzyme that catalyzes the inactivation of ACh via the 
hydrolysis of ACh into acetic acid and choline. This makes 
AChE a major therapeutic target. As AChE inhibitors can 
prolong ACh activity in synapses, they help to mitigate the 
cognitive symptoms of AD (4). Moreover, sustained ACh 
concentration in synapses supports normal regulation of 
muscle contractions and autonomic functions, which are 
often impaired in AD patients (4). Therefore, elevated AChE 
activity is linked to neurodegenerative disease progression, 
making the development of a sustainable AChE inhibitor an 
urgent priority (5). 
	 AChE is a heterodimeric protein that belongs to a family 
of enzymes called serine hydrolases, known for hydrolyzing 
peptide bonds using the serine residue in the catalytic site 
(6). ACh is distributed throughout the central and peripheral 
systems but is especially prominent in postsynaptic 
neuromuscular junctions in muscles and nerves (7). The 
neurotransmitter is degraded by AChE once it finishes carrying 
the signal from the nerve cell to the muscle cell (7). The active 
site of AChE contains two subsites: the esteratic and anionic 
sites. The esteratic site contains a catalytic triad of amino 
acids—Ser200, His400, and Glu327—that enables AChE to 
hydrolyze ACh by breaking the ester bond. Meanwhile, the 
anionic site, composed of Phe330 and Trp84, helps position 
ACh for catalysis by binding its positively charged quaternary 
amine (7). Hydrolysis of ACh, eventually, produces acetic 
acid and choline (7). Additionally, AChE contains peripheral 
anionic sites (PAS) distinct from the active site that bind 
quaternary ligands, considered as uncompetitive inhibitors 
(7). The PAS has attracted attention in drug development, 
given many AChE inhibitors—such as donepezil-–targets the 
PAS (8). 
	 The known competitive AChE inhibitors exhibit different 
inhibitory mechanisms. For example, donepezil acts as a 
reversible inhibitor; this compound binds non-covalently to 
the PAS of AChE (8). While reversibility decreases long-term 
toxicity risk, it also means short-lived inhibition, meaning 
effectiveness depends heavily on drug concentration (8). As a 
result, donepezil must be taken regularly to maintain effective 
drug concentrations, ensuring consistent AChE inhibition and 
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SUMMARY
Scientific literature suggests that the elevated activity 
of acetylcholinesterase (AChE) in breaking down the 
neurotransmitter acetylcholine (ACh) is the main 
contributing factor leading to cognitive decline and 
neurodegenerative diseases, including Alzheimer’s 
disease (AD). However, due to the poor bioavailability 
of existing AChE inhibitors, the demand for new 
drugs to be developed persists. In this paper, we 
designed novel, non-toxic, competitive inhibitors 
targeting AChE from structures of 72 drugs targeting 
AChE, using computational techniques including 
molecular docking, chemical analysis, molecular 
modification, and molecular dynamics (MD) 
simulation. Since AChE's binding site contains active 
residues that possess polar aromatic side chains, 
we hypothesized that adding aromatic R-groups to 
ligands would promote hydrogen bonding and pi-pi 
interactions, thereby increasing the thermodynamic 
favorability of AChE-ligand binding. In accordance 
with our hypothesis, drugs with high logP (high 
hydrophobicity) and molar refractivity (high 
polarizability) had slightly stronger predicted binding 
energies. In fact, maintaining high logP and molar 
refractivity, ligands 17 and 18 exhibited the highest 
predicted binding energies. Moreover, we deemed 
them as non-toxic toward human cell culture, as they 
passed the Absorption, Distribution, Metabolism, 
Excretion, and Toxicity (ADMET) tests. However, when 
compared to ligand 17 simple chloroethyl side chain, 
our MD results indicated that bulky or cyclic R-groups 
in ligand 18 led to less stable binding conformations 
due to induced steric hindrance in the AChE active 
site. With these results highlighting the promise of 
AChE inhibitors, in vivo experiments are required to 
validate the inhibitory efficacy and cytotoxicity of 
ligand 17 as a potential-enhanced AD therapeutic. 

INTRODUCTION
	 Approximately 6.9 million – 10.9% – of Americans aged 
65 and older have AD (1). AD is characterized by progressive 
memory loss and decline, which are strongly associated 
with reduced levels of acetylcholine (ACh) in the brain (2). 
Notably, neuron destruction can start to progress as early 
as 20 years before showing significant symptoms, including 
failures in recalling and consolidating memory or maintaining 
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sustained acetylcholine elevation (8). Moreover, because 
donepezil increases ACh broadly, it may cause cholinergic 
side effects such as nausea, diarrhea, or bradycardia, though 
its peripheral effects are minimal compared to less selective 
inhibitors (8). Another inhibitor of AChE, rivastigmine, similarly 
acts as a slow-reversible inhibitor, binding competitively to the 
esteratic site of the active site (6). However, unlike donepezil, 
which selectively inhibits AChE, rivastigmine also targets 
butyrylcholinesterase (BuChE) (6). Targeting both BuChE 
and AChE may enhance cholinergic signaling but introduces 
different drawbacks. For example, BuChE inhibition by 
rivastigmine raises ACh levels in peripheral tissue, outside 
the brain, which may contribute to cholinergic side effects 
(6). Carbamates, on the other hand, are organic compounds 
characterized by two R-groups derived from carbamic acid 
(6). These compounds act as reversible AChE inhibitors (6). 
Despite the diversity of carbamates, the main drawback of 
these inhibitors is cholinergic toxicity, as excess acetylcholine 
level can cause confusion, delirium, hallucinations, tremor, 
and seizures (9). Similarly, donepezil and rivastigmine can 
also exhibit cholinergic adverse effects, and rivastigmine has 
limited oral bioavailability (8). These limitations underscore 
the need for the design of new analogs that maintain AChE 
inhibition while minimizing off-target cholinergic effects.
	 To the extent of AChE inhibitors being modified, efforts 
have been made to better inhibitory efficacy and limit the 
side-effects of inhibitors. For example, with donepezil, Wang 
et al. observed an enhanced inhibition through the terminal 
phenyl ring was substituted with an ortho-fluorophenyl group 
(10). Moreover, scientists found that donepezil analogs 
bearing neuroprotective effects when the terminal phenyl ring 
was replaced by 3-methylpyridinium (10). On the other hand, 
with carbamate derivative inhibitors, Pizova et. al identified 

an enhanced inhibition of carbamate derivatives through 
introducing a chlorine atom at the para-chloro substituent 
on the anilide phenyl ring (11). They identified that Tyr337, a 
key residue that shapes AChE’s active site gorge, stabilizes 
ligand binding orientation, thereby enhancing the binding 
affinity between the drug and AChE active site (11). Ultimately, 
we hypothesized that the convenience of computational 
techniques allow us to exploit the modifiability of AChE 
inhibitors to gain robust insights into AChE-ligand interaction.  
AChE remains an attractive target for therapeutic intervention 
due to its high activity in AD patients and its central role in 
terminating neurotransmission at the cholinergic synapse. 
Given that currently available AChE inhibitors have 
bioavailability and toxicity drawbacks, we designed candidate 
competitive inhibitors with predicted low toxicity for AChE. We 
docked 72 AChE inhibitors using in-silico techniques to select 
and modify the one that exhibited the best predicted binding 
energy. We hypothesized that the more hydrophobic ligands 
with an aromatic R-group would interact more strongly with 
available aromatic residues at the AChE binding site through 
non-polar interactions.
	 Our data supported our hypothesis, as compounds 
with high logP–an index of ligand hydrophobicity–and 
molar refractivity consistently correlate with a favorable 
binding score. Given that strychnine-derived analogs—i.e., 
compounds retaining the rigid strychnine core with varied R1 
substituents—showed the highest predicted binding energy 
to AChE among the 13 used scaffolds, future studies should 
focus on this series. Besides, as MD simulation predicted our 
best two performing ligands to bind stably to AChE active site, 
in vivo experiments testing the toxicities of these two ligands 
are required to substantiate their potential as therapeutics. 

Figure 1: Mean docking scores for analogs of 13 scaffolds selected out from the initial 72 AChE inhibitors. Average docking scores 
for each scaffold are represented by bar groups ± standard deviation of docking scores. N-sample sizes are shown on the bar graphs of each 
scaffold. Two sample one-tailed t-tests are used to measure statistical significance with a cutoff p-value < 0.05. Statistical insignificant (N. S.) 
are labelled, while all other comparisons between strychnine, Alpha-Napthoflavone, and Exatecan and the other 11 structures are statistically 
significant and are not labelled. 
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RESULTS
Scaffold analysis and R-group analysis
	 We compiled a list of structures of 72 existing drugs from 
Drugbank and selected the top 13 drugs’ scaffolds through 
bash docking. Using a python script, we created 871 analogs 
of the 13 scaffolds from modifying their R-group(s) and 
docked them into the active site of AChE. Through Pubchem, 
we identified positions of R-group(s) on each scaffold through 
comparing structures of their analogs. From our initial testing, 
analogs of the 13 best-performing AChE ligands showed 
varying mean docking scores, ranging from -9.69 ± 0.44 
kcal/mol to -11.82 ± 0.77 kcal/mol (Figure 1). Docking score 
is defined as an index measuring the strength of binding 
affinity between ligands and AChE, and the lower the score 
correlates to stronger binding affinity. Analogs of alpha-
naphthoflavone had an average docking score of -11.82 kcal/
mol, showing the highest predicted binding energy, followed 
by strychnine (-11.80 kcal/mol) and exatecan (-11.32 kcal/
mol) (Figure 1). Two sample one-tailed t-tests suggested no 
significant difference between the mean docking scores of 
analogs of alpha-naphthoflavone and strychnine (p-value = 
0.435), or that of exatecan and metergoline (p-value = 0.419), 
at a cutoff of α = 0.05 (Figure 1). In contrast, comparisons 

Figure 2: Top three scaffolds with the highest average docking 
scores. A) Common structure of Strychnine analogs. B) Common 
structure of Exatecan analogs. C) Common structure of alpha-
naphthoflavone analogs. Exatecan and alpha-naphthoflavone were 
shown with three R-groups because their Pubchem analogs were 
found with three modifiable positions on the scaffold. Strychnine, in 
contrast, was shown with only one R-group, as its Pubchem analogs 
only shared one modifiable position. This figure was created in the 
ChemDraw software. 

Figure 3: Average docking scores of structures for the top 3 scaffolds. The average docking scores (kcal/mol) are shown below the 
structures. R-groups’ positions are found from comparing existing analogs of the scaffold on Pubchem. Each SMILES structure of analogs are 
created by a Python script, and their docking scores are obtained from bash docking. A) Average docking score for Strychnine’s structure. B) 
Average docking scores for Exatecan’s structures. C) Average docking score for alpha-naphthoflavone’s structures.
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between the strychnine, alpha-napthoflavone, and exatecan 
structures and all other structures were statistically significant 
(p-value < 0.05) (Figure 1). This result suggests heterocyclic 
structures – found commonly between alpha-napthoflavone, 
exatecan, and strychnine – exhibit high predicted binding 
energies to AChE active sites, potentially through induced 
pi-pi interactions (Figure 2, 3). Given these three structure 
scaffolds exhibited the highest predicted binding energies, 
further chemical property analysis and ADMET were 
performed on 147 analogs of these structures. 

Chemical properties analysis
	 Prior to chemical property analysis, the chemical 
structures of the top five best-performing ligands were shown 
with their R-groups (Figure 4). Chemical property values 
taken from 147 analogs derived from exatecan-R1, alpha-
naphthoflavone-R1, and strychnine scaffolds were arranged 
into five categories – molecular weight, logP (a measure of 
hydrophobicity), number of hydrogen bond donors, number 
of hydrogen bond acceptors, and molar refractivity – and 
compared against the docking scores of the analogs (Figure 
5). LogP and molar refractivity were found to have an inversely 
proportional relationship with the docking scores (Figure 5), 
with R2 = 0.259 and 0.18, respectively (Figure 5). Conversely, 
the number of hydrogen bond donors and acceptors were 
found to have a proportional relationship with the docking 
scores, with R2 = 0.089 and 0.15, respectively (Figure 5). 
No correlation was found between the values of molecular 
weights and docking scores with R2 = 0.004 (Figure 5). 
These analyses were made on the assumption that R2 values 

less than 0.05 were negligible, while those greater than 0.05 
were evidence of correlation. 

Pharmacokinetic screening analysis
	 Out of 147 selected analogs, 20 ligands that passed 
Lipinski’s Rule of Five test and had the lowest docking scores 
were selected. A ligand, to be considered orally active by 

Lipkinski’s Rule of five, must have molecular weight below 
500 Da, logP below 5, numbers of H-bond donors larger 
than 5, and number of H-bond acceptors larger than 10 (12). 
From this set of 20 ligands, only the five ligands 6, 8, 12, 17, 
and 18 passed the toxicity tests conducted through pkCSM 
webserver. In fact, we deemed these ligands nontoxic due to 
their negative results in the Salmonella typhimurium reverse 
mutation assay (AMES), human Ether-a-go-go–Related 
Gene 1 (hERG I) inhibitor, and hepatotoxicity criteria (Table 
1), categories measuring toxicity in pkCSM (13). Especially, 
negative results in hERG I inhibition indicated that these 
ligands do not inhibit potassium channels, preventing the 
risk of cardiotoxicity and thus qualify as drug candidates (13). 
Moreover, the software predicted that all 5 ligands had low 
water solubility, with values ranging from -4.429 to -2.971 (log 
mol/L) (Table 1) (13). However, it indicated that these ligands 
had high Caco-2 permeability and intestinal absorption, which 
were between 1.141-1.187 x 10-6 cm/s log Papp in and 96.698-
100% absorbed, respectively (Table 1) (13). Typical values 
for Caco-2 permeability and intestinal absorption in nontoxic 
drugs range from log Papp 10 to 70 x 10-6 cm/s, corresponding 
to ≥ 85-100% absorption in humans (14).The Caco-2 values 
here (log10 Papp 1.141–1.187 → ~14–15 ×10-6 cm/s) and the 
very high human intestinal absorption (97–100%) fall in the 
high-permeability/absorption range measured for marketed 
AChE inhibitors donepezil and rivastigmine The  (Table 1). 
Four out of five ligands were predicted to be moderately toxic 
given their Lowest Observed Adverse Effect Level (LOAEL) 
values were in the range of 1-2 (log mg/kg_bw/day). Similarly, 
rivastigmine was predicted to have a similar LOAEL score 
of 1.163 (Table 1). In contrast, donepezil and ligand 8 were 
predicted to be highly toxic given their estimated LOAEL 
values of 0.991, and 0.832, respectively (log mg/kg_bw/day) 
(Table 1).

Analyzing ligand-receptor interactions
	 We used a molecular docking tool through UCSF Chimera 
to calculate the docking scores between ACh and strychinine’s 
analogs to AChE. Four docking poses, including ACh, ligand 
6, ligand 8, and ligand 12 were analyzed. Ligands 6, 8, and 
12 were chosen because of their low docking scores, as 
they imply thermodynamics favorable binding affinity. Given 
ligands 6, 8, 12, 17, and 18 share a common strychnine 
scaffold, we limited our detailed interaction analysis to 
ligands 6, 8, and 12 to reduce redundancy while still capturing 
the general interaction trends of the ligands (Figure 4). No 
hydrogen bonds were observed between AChE and the three 
analyzed ligands, while there was only one observed in the 
docking pose of ACh and AChE (Figure 6). However, Van 
der Waals (VdW) interactions were more commonly observed 
among molecules with large, bulkier R groups and AChE 
(Figure 6). This partially explains that the higher binding 
affinity of ligands 6, 12, and 18 over those with less bulkier 
R-groups comes from the higher number of VdW interactions 
existing in their binding pose to AChE (Figure 4).    

Molecular Dynamics (MD) simulations results
	 Given MD simulations for 20 selected ligands were 
computationally intensive and went beyond our computational 
workforce available, we decided to conduct the simulation 
for ligands 6, 8, 12, 17, and 18 – the top 5 best performing 
ligands. Among these 5 simulations, convergence, defined 

Figure 4: Chemical structures of the 5 best-performing ligands 
that are deemed non-toxic in table 1. The R-group of analogs are 
colored red. The docking scores (kcal/mol) of each analog are in 
parentheses. 
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as the stabilization of protein backbone Root Mean Square 
Deviation (RMSD) within ±0.05 nm over the final 20 ns 
of the trajectory, was observed for ligands 17 and 18, with 
an equilibrated RMSD of approximately 0.35 nm, 0.45 nm, 
respectively (Figure 7). Further calculations for interacting 
energies – derived from their Leonard-Jones short-range 
energy and Coulombic short-range energy – resulted in 
values of -166.332 ± 4.48 (kJ/mol), -132.483 ± 2.97 (kJ/
mol), -163.594 ± 10.5 (kJ/mol), -173.995 ± 6.58 (kJ/mol), 
and -185.814 ± 14.6 (kJ/mol), for ligand 6, 8, 12, 17, and 18, 
respectively (Figure 7). 

DISCUSSION
	 Results showed that the alpha-naphthoflavone and 
strychnine-derived compounds had the best predicted 
binding energies, suggesting that the presence of extended 
conjugation of aromatic rings, which leads to more rigid 
molecular structures, contribute to stable noncovalent 
interactions such as pi-pi bonds between the ligand and 

the aromatic gorge of the AChE protein. In addition, other 
functional groups on the ligands such as carbonyl or hydroxyl 
groups, which play a key role as hydrogen acceptors and 
donors, consolidate the ligand-AChE interactions by fostering 
the formation of specific hydrogen bonds between ligands and 
active site residues. As a result, they explain the favorable 
predicted binding energies of these scaffolds. Compounds 
that pass criteria placed by Lipinski’s Rule of Five are more 
likely to be orally bioavailable, so we used this filter to select 
the top 20 drug-like candidates for further analysis. The 
pharmacokinetic testing for toxicity revealed five of the best-
performing non-toxic compounds: ligands 6, 8, 12, 17, and 
18, which are all based on strychnine. While there weren’t 
any studies explaining the enhanced binding affinity of 
analogs derived from strychnine scaffold, we hypothesized 
that the high rigidity, polycyclic, and non-planar structures of 
strychnine analogs fit allows them to fit better to the AChE 
active site gorge. This is evidenced through the success 
of strychnine analogs to bind strongly to the acyl binding 

Figure 5: Chemical property values of 147 analogs derived from exatecan-R1, alpha-naphthoflavone-R1, and strychnine scaffolds. 
The chemical property values are plotted on the y-axis, and the docking scores are plotted on the x-axis. Statistical significance correlations 
(p-value < 0.001) between chemical properties and docking scores are represented through best fit line equations and their associated R2 
value, placed above each sub-figure. Docking scores are plotted against (A) molecular weight, (B) logP, (C) Number of hydrogen bonds 
acceptors, (D) Molar refractivity, (E) Number of hydrogen bond donors. The R2 and p-values were calculated using a significance test for 
Pearson’s correlation coefficient. 
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pocket–composed of Phe295, Phe297– of AChE, that other 
study suggested to be responsible for ligand-specificity (15).  
These five promising compounds warrant in vitro and in vivo 
testing to gauge their potential as drug candidates. 
	 We noted that the presence of aromatic groups in ligand 
scaffolds seemed to facilitate favorable binding interactions 
with the AChE protein. This is supported by existing 
literature on donepezil derivatives in AChE inhibition (10). 
These derivatives bear structural similarities with strychnine 
analogs–our best non-toxic performers–with their rigid bicyclic 
systems and nitrogen-containing cores (10). In addition, the 
docking results of the ligand-receptors with ligand 6, 12 and 
AChE indicates enhanced predicted binding energies induced 
from the pi-pi interaction between the aromatic groups within 
strychnine analogs and AChE residues Phe338, Tyr341. 
Aside from the functional groups, the spatial arrangement 
of this scaffold plays an important role in binding efficiency. 
With a rigid bicyclic system, strychnine analogs have less 
conformational flexibility and hence form a more stable 
interaction with the active site.

	 Our chemical property values from 147 analogs derived 
from exatecan-R1, alpha-naphthoflavone-R1, and strychnine 
scaffolds indicated a weak inversely proportional relationship 
between logP values and docking scores. This observation 
was attributed to the equally distributed polar and nonpolar 
residues in the AChE active site. Since higher logP values 
correspond to greater hydrophobicity, analogs preferentially 
engaged in hydrophobic interactions with nonpolar aromatic 
residues – such as Phe338, Phe295, and Phe297 – while 
forming VdW and pi-pi interactions with polar aromatic 
residues – such as Tyr341, Tyr337 – in the active site. 
Similar to the trend observed with logP, molar refractivity 
was found to be weakly inversely proportional to the docking 
scores. Given the higher molar refractivity corresponding to 
a higher polarizability, analogs with high molar refractivity 
preferentially engaged in VdW interactions with AChE’s 
active site polar aromatic residues Tyr72, Tyr 124, Tyr337, 
and Tyr341, leading to an enhanced binding affinity. Besides, 
numbers of hydrogen bond donors and acceptors were 
found to be inversely proportional to the docking scores. 

Table 1: Pharmacokinetic properties of the top 20 best performing ligands that passed Lipinski’s Rules of Five, Rivastigmine (RIG), 
and Donepezil (DON). Water solubility, Caco-2 permeability, human intestinal absorption, and P-glycoprotein substrate status) indicates 
bioavailability. Ames toxicity, hERG I, lowest observed adverse effect level (LOAEL), and hepatotoxicity indicate the toxicity. Ligands colored 
in green were deemed non-toxic toward human cell culture. Ligands colored in red were deemed toxic toward human cell culture. 
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This weak correlation was attributed to the desolvation 
effect caused by the addition of hydrogen bond donors and 
acceptors in the analogs, leading to a decrease in binding 
affinity. In addition, only one hydrogen bond was observed 
across the 4 analyzed docking poses of ACh and ligands 6, 
8, and 12 against AChE. This showed that hydrogen bond 
formation between AChE inhibitors and its active site were 
generally unfavorable. Moreover, the presence of hydrogen 
bond donors and acceptors interfered with the formation of 
VdW and pi-pi interactions, ultimately leading to a decrease 
in predicted binding energy.
	 Further ligand-receptor interaction analysis supported 
the ability of our ligands to inhibit AChE. All three analyzed 
ligands interacted with Trp286 and Tyr72, two residues on 
AChE’s active site that were responsible for the construction 
of PAS. Given donepezil primarily binds the PAS of AChE, it 
was reasonable to hypothesize that our three best-performing 
ligands share a similar inhibitory mechanism to reversible 
inhibitors (6). In addition, the acyl pocket, which is composed 
of Phe295 and Phe297, was reported to be responsible for the 
binding specificity of ACh to AChE’s active site (16). Indeed, 
our three ligands were shown to fully interact with either 
Phe295 or Phe297. However, we found that our three ligands 
bind at different sites with ACh, as they share few interacting 
residues with each other. Moreover, given our ligands don’t 
interact with any residues composing the ecstatic subsite, 
which rivastigmine targets, they were hypothesized to have 
different inhibitory mechanisms (6). 

	 Our MD simulation results indicated ligands 17 and 18 
were promising compounds for further drug enhancements. 
Convergences were only observed on simulations of ligand 
17 and 18, and ligand 17 stood out with a low RMSD value 
at equilibrium of 0.35 nm, which was 0.1 nm shorter than 
ligand 18’s RMSD at equilibrium of 0.45 nm. Ligand RMSD 
measures how much the ligand’s heavy atoms drift from the 
starting bound pose during the simulation; a lower value 
means the bound position changed less during the MD run. 
It does not, by itself, show stronger binding. Ligand 17’s 
propensity to stabilize its interaction earlier to the AChE 
active site than ligand 18 does implicitly indicates a more 
stable interaction of ligand 17 to the active site than ligand 18 
does. Factors that contribute to the better binding stability of 
ligand 17 include the structures of these two ligands. Ligand 
17 features a relatively small chloroethyl functional group 
at the para position with respect to the benzyl moiety in the 
strychnine scaffold; this feature reduced the steric hindrance 
to allow ligand 17 to bind closer to the active site, contributing 
to ligand 17’s lower RMSD value at equilibrium. On the other 
hand, the presence of a bulky 1,2-pyridazine functional group 
at the para position with respect to the benzyl moiety induced 
more transient reactions in the active site due to its flexibility 
and polarity, leading to ligand 18’s higher RMSD value at 
equilibration. A higher RMSD value can still be compatible 
with strong binding if a flexible group moves among nearby 
positions while keeping favorable contacts. Despite the 
higher RMSD value, ligand 18 had a more favorable average 

Figure 6: Binding pose of acetylcholine and best-performing 
ligands in AChE active site. Docking poses are visualized through 
Chimera software. A) ACh docked on AChE. B) Ligand 6 docked on 
AChE. C) Ligand 8 docked on AChE. D) Ligand 12 docked on AChE. 
Acetylcholine and ligands are colored cyan; AChE is colored beige; 
Van der Waals interactions are colored green; hydrogen bonding is 
colored black; in text, hydrophobic residues are highlighted in pink; 
hydrophilic residues are blue; residue involving in hydrogen bonding 
is placed inside a parentheses. 

Figure 7: RMSD of the 5 best-performing non-toxic ligands 6, 
8, 12, 17, and 18 against AChE’s backbone over 100 ns of MD 
simulations. The RMSD values (measured in nm) are plotted on 
the y-axis, while time (measured in ns) is plotted on the x-axis. The 
red line represents the smoothed RMSD trends, obtained from the 
average of 100 data points. A-E) Ligand 6, 8, 12, 17 and 18’s RMSD 
over time with average interacting energies of -166.332 ± 4.48 (kJ/
mol), -132.483 ± 2.97 (kJ/mol), -163.594 ± 10.5 (kJ/mol), -173.995 ± 
6.58 (kJ/mol), and -185.814 ± 14.6 (kJ/mol), respectively.
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protein–ligand interaction energy than ligand 17, which 
suggests stronger interactions on average. Lower RMSD 
value, indicating a more rigid position, and more negative 
interaction energy, indicating stronger interactions, describe 
different properties and thus are not contradictory. The fact 
that ligand 18’s simulation yielded a lower overall interacting 
energy than ligand 17 does indicate ligand 18 had a stronger 
predicted binding energies to AChE active site than ligand 17. 
This observation could be attributed to the more potential pi-
pi interactions and hydrogen bonding between ligand 18 and 
the active site than ligand 17. As the 1,2-pyridazine functional 
group is more flexible and contains two addition nitrogen 
atoms – which serves as hydrogen bond acceptor – on the 
benzyl ring than the chloroethyl functional group of ligand 17, 
ligand 18 was expected to form more VdW interactions and 
hydrogen bonding in the active site than ligand 17, further 
leading to a stronger overall interacting energy of ligand 
18. Regardless of having a lower interaction energy, ligand 
18’s interaction with the AChE active site was expected to 
be less rigid and fluctuate more often than the interaction of 
ligand 17 with the active site, due to its higher RMSD value at 
equilibrium when compared to ligand 17’s. Therefore, ligand 
17 favors positional stability, while ligand 18 favors interaction 
strength.
	 Despite the promising results from molecular docking, MD 
simulation, and pharmacokinetics testing for ligands 17 and 
18, relying on these results to conclude the viability of these 
two compounds in clinical trials is insufficient. Instead, further 
in vitro and in vivo experiments are required to validate the 
efficacy of these two compounds. Thus, isothermal titration 
calorimetry, surface plasmon resonance, and other in vitro 
experiments assessing and measuring the binding affinity 
and IC50 values of ligands 17 and 18 to AChE are potential 
next steps. In addition, other in vitro and in vivo experiments 
measuring the blood-brain barrier penetration of ligands 
17 and 18 are highly recommended, given their promising 
predicted bioavailability with high Caco-2 permeability and 
intestinal absorption. Moreover, in vivo studies in animal 
models are needed to assess toxicity and to determine 
whether ligands 17 and 18 are viable candidates for clinical 
trials.
	 Research into the inhibition of AChE and other 
neurotransmitter-degrading enzymes is a crucial field for 
curing neurodegenerative diseases such as AD. Based on 
our work, future research should focus on designing and 
testing the inhibitory effects of new strychnine-R1 analogs 
toward AChE. In addition, given the high binding affinity and 
stability of ligands 17 and 18 to AChE, future studies can focus 
on exploring the relationship between the inhibitory efficacy 
of strychnine-R1 analogs and halogenated, polar aromatic 
R-groups. While modifying the R-group to include bulkier, 
nonpolar R-groups induces better predicted binding energy 
between compounds and the AChE active site, incorporating 
highly electronegative, small R-groups leads to better binding 
stability. Doing so will foster robust enhancement in binding 
affinity of ligands 17 and 18.
	 Our project highlights the impact of structure-activity-
relationship (SAR) analysis. As success in drug modification 
requires an enormous meta-analysis of SAR analysis, our 
identification of strychnine as a common scaffold among the 
initial list of 72 AChE inhibitors and our testing of the inhibitory 
efficacy of strychnine analogs fits into the bigger picture of 

finding new AD treatment. We hope our effort in this project 
will enable scientists to derive better AChE inhibitors from 
strychnine scaffolds as new AD therapeutics.

MATERIALS AND METHODS
Compiling AChE inhibitor analogs for testing 
	 Through the Drugbank website, a library of 72 known 
inhibitors of AChE was compiled (17). Their structures were 
compiled from PubChem in a simplified molecular input 
line entry system (SMILES) (18). These ligands were bash 
docked, and the top 13 with the lowest docking scores, 
indicating stronger binding affinity, were further analyzed 
for their core scaffold structures and R-group modifications. 
The ligands with the lowest docking scores were used 
due to their strong predicted binding energy to AChE. The 
structures for each of the top 13 ligands were compared to 
similar compounds’ structures on PubChem to identify the 
R-group positions (18). Depending on the number of available 
R-groups on each scaffold, the number of analogs for them 
varied (Figure 1). The R-groups on SMILES of each of the top 
13 ligands’ structures were manually removed, and a Python 
script was used to attach in these positions functional groups 
from four categories: aromatic rings, alkyl chains, halogens, 
and nitrogen-containing groups. From there, those modified 
analogs were compiled into data sets with their respective 13 
initial scaffolds for bash docking. 

Bash docking 
	 The bash docking procedure was carried out in two 
stages. The initial set of 72 known inhibitors to AChE were in 
the first trial, while the library of modified compounds derived 
from structures of 13 best-performing inhibitors from the 
initial 72 were screened for the second trial. The 3D structure 
of the AChE enzyme was sourced from the Research 
Collaboratory for Structural Bioinformatics (RCSB) protein 
data bank (PDB) in PDB format (PDB ID: 4EY7 for human 
AChE) (19). Proteins were dock-prepped in UCSF Chimera 
with Dock Prep, where water molecules and external ligands 
were removed, and hydrogens and Gasteiger charges were 
added. Ligand structures were downloaded in Structure-
Data File (SDF) format from PubChem and converted to 
mol2 format. Docking was conducted using Dockstring, a 
Python package for AutoDock Vina, targeting active residues 
Phe338, Ser297 and Phe337 in AChE’s active site (20, 
21). The average docking score was calculated for analogs 
derived from the structures for the top 13 best performing 
ligands. To ensure that the selected top three best performing 
structures were statistically significant, two sample one-tailed 
t-tests were conducted to measure the p-value between the 
three structures and the other 12 structures (Figure 1) (22). 
Analogs derived from the top three best performing structures 
with the lowest average docking scores, implying highest 
ligand-AChE affinity interaction, were compiled and assessed 
according to Lipinski’s Rules of Five via a Python script. 
Each rule (molecular weight, logP, number of hydrogen bond 
donors, and number of hydrogen bond acceptors) in Lipinski’s 
Rules of Five were weighted equally. That is, a ligand would 
be considered to fail the test if it violated one out of the four 
rules. The top 20 ligands that passed the Lipinski’s Rules of 
Five tests were isolated and underwent the pharmacokinetic 
property analysis.   
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Chemical property analysis 
	 After docking, ligands were assessed for chemical 
properties, including molecular weight, Wildman-Crippen 
log partition coefficient (logP), hydrogen bond donors and 
acceptors, rotatable bonds, aromatic ring count, molar 
refractivity, and topological polar surface area (TPSA), using 
the RDKit Python package. Correlations between molecular 
properties and predicted binding energies of ligands, 
represented through their docking scores (with more negative 
values indicating stronger binding affinity), were visualized 
through scatter plots. Through Google Sheets correlation 
(CORREL) and t-distribution (TDIST), significance tests for 
Pearson’s correlation coefficient were performed to calculate 
the R2 and p-value between analogs’ chemical properties 
and their docking scores, with a cutoff of p-value < 0.05 (22). 
For chemical property analysis, R2 values less than 0.05 
were deemed negligible, while R2 values greater than 0.05 
were deemed to be evidence of correlation. 

Pharmacokinetic property analysis 
	 Pharmacokinetic characteristics such as water solubility 
(log Mol/L), Caco-2 permeability (log Papp in 10^-6 cm/s), 
human intestinal absorption (% absorbed), P-glycoprotein 
substrate status, Ames toxicity, human ether-à-go-go related 
gene (hERG) I inhibition, lowest observed adverse effect level 
(LOAEL), and hepatotoxicity predictions were determined 
using the pkCSM web server for the top 20 ligands isolated 
from the bash docking section (13). Intestinal absorption, 
a critical first step that determines bioavailability for orally 
administered drugs, was reflected by Caco-2 permeability 
index. P-glycoprotein (P-gp) substrate status was evaluated, 
given P-gp efflux can reduce the intracellular retention 
and thus lower the bioavailability. Lastly, hERG I inhibition 
criteria indicate the risk of cardiotoxicity, which results as a 
consequence of inhibiting potassium channels. 

Visualization of docking poses and ligand-receptor 
interactions 
	 Given lower docking scores imply higher binding affinity, 
4 docking poses of ACh and ligands 6, 8, and 12 were 
visualized using UCSF Chimera (v1.17.3) (23). Hydrogen 
bonds were identified within a 4.0Å proximity between ligands 
and receptor residues. Van der Waals interactions were 
evaluated using a −0.4Å cutoff. Resides in AChE active sites 
involving interaction with ACh and best performing ligands 
were highlighted according to the polarity.

MD simulation 
	 Given MD simulations for 20 selected ligands were 
computationally intensive and went beyond our computational 
workforce available, we decided to conduct the simulation 
for ligands 6, 8, 12, 17, and 18 – the top 5 best performing 
ligands with lowest docking scores. These simulations were 
conducted through GROMACS-2024.3 – an open-access 
software (24). AChE-ligand complexes were separated and 
prepared independently with respect to the CHARMM36 
forcefield (25). AChE’s CHARMM parameter was prepared 
by the pdb2gmx module in GROMACS with the N-, C-termini 
charged as “NH3+” and “COO-”, respectively (24). The 
ligand’s parameter was obtained from the CGenFF web server 
(26). Ligands with parameters having either param or charge 
penalties exceeding 50 underwent optimization in Orca 5.0, 

in which the density functional theory with the B3LYP and 
def2-TZVP basis sets was employed for a reliable geometry 
optimization (27-29). This setting was aided by the TightOpt 
and TightSCF modules, which aim to ensure a more rigorous 
geometry optimization and charge distribution, respectively 
(27). After force field preparations, the ligand topology file 
was manually incorporated into the AChE topology file, 
reforming the AChE-ligand complex. The complex was 
solvated in a cubic water box, neutralized with counterions, 
and energy was minimized with the steepest descent method 
(24). Equilibration was performed under Canonical (NVT) 
and Isothermal-Isobaric (NPT) ensembles in 10 ps, aiming to 
stabilize the pressure and temperature of the system to 1 bar 
and 300k, respectively (24). Then, the AChE-ligand complex 
underwent a 100 ns MD simulation, in which RMSD analysis 
was used to keep track of the distance between ligands and 
AChE’s backbone. In addition, the Leonard-Jones short-range 
energy and Coulombic short-range energy were measured to 
calculate the total interacting energies for each system (30).
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APPENDIX
Github repository for used scripts: https://github.com/kennardliong/ache-paper-scripts

https://github.com/kennardliong/ache-paper-scripts 

