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SUMMARY

Scientific literature suggests that the elevated activity
of acetylcholinesterase (AChE) in breaking down the
neurotransmitter acetylcholine (ACh) is the main
contributing factor leading to cognitive decline and
neurodegenerative diseases, including Alzheimer’s
disease (AD). However, due to the poor bioavailability
of existing AChE inhibitors, the demand for new
drugs to be developed persists. In this paper, we
designed novel, non-toxic, competitive inhibitors
targeting AChE from structures of 72 drugs targeting
AChE, using computational techniques including
molecular docking, chemical analysis, molecular
modification, and molecular dynamics (MD)
simulation. Since AChE's binding site contains active
residues that possess polar aromatic side chains,
we hypothesized that adding aromatic R-groups to
ligands would promote hydrogen bonding and pi-pi
interactions, thereby increasing the thermodynamic
favorability of AChE-ligand binding. In accordance
with our hypothesis, drugs with high logP (high
hydrophobicity) and molar refractivity (high
polarizability) had slightly stronger predicted binding
energies. In fact, maintaining high logP and molar
refractivity, ligands 17 and 18 exhibited the highest
predicted binding energies. Moreover, we deemed
them as non-toxic toward human cell culture, as they
passed the Absorption, Distribution, Metabolism,
Excretion, and Toxicity (ADMET) tests. However, when
compared to ligand 17 simple chloroethyl side chain,
our MD results indicated that bulky or cyclic R-groups
in ligand 18 led to less stable binding conformations
due to induced steric hindrance in the AChE active
site. With these results highlighting the promise of
AChE inhibitors, in vivo experiments are required to
validate the inhibitory efficacy and cytotoxicity of
ligand 17 as a potential-enhanced AD therapeutic.

INTRODUCTION

Approximately 6.9 million — 10.9% — of Americans aged
65 and older have AD (1). AD is characterized by progressive
memory loss and decline, which are strongly associated
with reduced levels of acetylcholine (ACh) in the brain (2).
Notably, neuron destruction can start to progress as early
as 20 years before showing significant symptoms, including
failures in recalling and consolidating memory or maintaining

stable mood, to the patients (1). Over time, the neural damage
can expand to parts of the brain that are responsible for
mobility, ultimately impairing patients’ walking, swallowing
abilities (1). Such disabilities, compounding worsely over
time, cause patients to rely on aid from family relatives to
perform daily life activities. Because ACh plays a central
role in memory and learning, maintaining its levels is crucial
for slowing AD symptoms (3). Acetylcholinesterase (AChE)
is an enzyme that catalyzes the inactivation of ACh via the
hydrolysis of ACh into acetic acid and choline. This makes
AChE a major therapeutic target. As AChE inhibitors can
prolong ACh activity in synapses, they help to mitigate the
cognitive symptoms of AD (4). Moreover, sustained ACh
concentration in synapses supports normal regulation of
muscle contractions and autonomic functions, which are
often impaired in AD patients (4). Therefore, elevated AChE
activity is linked to neurodegenerative disease progression,
making the development of a sustainable AChE inhibitor an
urgent priority (5).

AChE is a heterodimeric protein that belongs to a family
of enzymes called serine hydrolases, known for hydrolyzing
peptide bonds using the serine residue in the catalytic site
(6). ACh is distributed throughout the central and peripheral
systems but is especially prominent in postsynaptic
neuromuscular junctions in muscles and nerves (7). The
neurotransmitter is degraded by AChE once it finishes carrying
the signal from the nerve cell to the muscle cell (7). The active
site of AChE contains two subsites: the esteratic and anionic
sites. The esteratic site contains a catalytic triad of amino
acids—Ser200, His400, and Glu327—that enables AChE to
hydrolyze ACh by breaking the ester bond. Meanwhile, the
anionic site, composed of Phe330 and Trp84, helps position
ACh for catalysis by binding its positively charged quaternary
amine (7). Hydrolysis of ACh, eventually, produces acetic
acid and choline (7). Additionally, AChE contains peripheral
anionic sites (PAS) distinct from the active site that bind
quaternary ligands, considered as uncompetitive inhibitors
(7). The PAS has attracted attention in drug development,
given many AChE inhibitors—such as donepezil--targets the
PAS (8).

The known competitive AChE inhibitors exhibit different
inhibitory mechanisms. For example, donepezil acts as a
reversible inhibitor; this compound binds non-covalently to
the PAS of AChE (8). While reversibility decreases long-term
toxicity risk, it also means short-lived inhibition, meaning
effectiveness depends heavily on drug concentration (8). As a
result, donepezil must be taken regularly to maintain effective
drug concentrations, ensuring consistent AChE inhibition and

Journal of Emerging Investigators - www.emerginginvestigators.org

22 JANUARY 2026 | VOL9 | 1



JOURNAL OF

EMERGING INVESTIGATORS

sustained acetylcholine elevation (8). Moreover, because
donepezil increases ACh broadly, it may cause cholinergic
side effects such as nausea, diarrhea, or bradycardia, though
its peripheral effects are minimal compared to less selective
inhibitors (8). Another inhibitor of AChE, rivastigmine, similarly
acts as a slow-reversible inhibitor, binding competitively to the
esteratic site of the active site (6). However, unlike donepezil,
which selectively inhibits AChE, rivastigmine also targets
butyrylcholinesterase (BuChE) (6). Targeting both BuChE
and AChE may enhance cholinergic signaling but introduces
different drawbacks. For example, BuChE inhibition by
rivastigmine raises ACh levels in peripheral tissue, outside
the brain, which may contribute to cholinergic side effects
(6). Carbamates, on the other hand, are organic compounds
characterized by two R-groups derived from carbamic acid
(6). These compounds act as reversible AChE inhibitors (6).
Despite the diversity of carbamates, the main drawback of
these inhibitors is cholinergic toxicity, as excess acetylcholine
level can cause confusion, delirium, hallucinations, tremor,
and seizures (9). Similarly, donepezil and rivastigmine can
also exhibit cholinergic adverse effects, and rivastigmine has
limited oral bioavailability (8). These limitations underscore
the need for the design of new analogs that maintain AChE
inhibition while minimizing off-target cholinergic effects.

To the extent of AChE inhibitors being modified, efforts
have been made to better inhibitory efficacy and limit the
side-effects of inhibitors. For example, with donepezil, Wang
et al. observed an enhanced inhibition through the terminal
phenyl ring was substituted with an ortho-fluorophenyl group
(10). Moreover, scientists found that donepezil analogs
bearing neuroprotective effects when the terminal phenyl ring
was replaced by 3-methylpyridinium (10). On the other hand,
with carbamate derivative inhibitors, Pizova et. al identified

https://doi.org/10.59720/25-140

an enhanced inhibition of carbamate derivatives through
introducing a chlorine atom at the para-chloro substituent
on the anilide phenyl ring (11). They identified that Tyr337, a
key residue that shapes AChE’s active site gorge, stabilizes
ligand binding orientation, thereby enhancing the binding
affinity between the drug and AChE active site (11). Ultimately,
we hypothesized that the convenience of computational
techniques allow us to exploit the modifiability of AChE
inhibitors to gain robust insights into AChE-ligand interaction.
AChE remains an attractive target for therapeutic intervention
due to its high activity in AD patients and its central role in
terminating neurotransmission at the cholinergic synapse.
Given that currently available AChE inhibitors have
bioavailability and toxicity drawbacks, we designed candidate
competitive inhibitors with predicted low toxicity for AChE. We
docked 72 AChE inhibitors using in-silico techniques to select
and modify the one that exhibited the best predicted binding
energy. We hypothesized that the more hydrophobic ligands
with an aromatic R-group would interact more strongly with
available aromatic residues at the AChE binding site through
non-polar interactions.

Our data supported our hypothesis, as compounds
with high logP—an index of ligand hydrophobicity—and
molar refractivity consistently correlate with a favorable
binding score. Given that strychnine-derived analogs—i.e.,
compounds retaining the rigid strychnine core with varied R1
substituents—showed the highest predicted binding energy
to AChE among the 13 used scaffolds, future studies should
focus on this series. Besides, as MD simulation predicted our
best two performing ligands to bind stably to AChE active site,
in vivo experiments testing the toxicities of these two ligands
are required to substantiate their potential as therapeutics.
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Figure 1: Mean docking scores for analogs of 13 scaffolds selected out from the initial 72 AChE inhibitors. Average docking scores
for each scaffold are represented by bar groups * standard deviation of docking scores. N-sample sizes are shown on the bar graphs of each
scaffold. Two sample one-tailed t-tests are used to measure statistical significance with a cutoff p-value < 0.05. Statistical insignificant (N. S.)
are labelled, while all other comparisons between strychnine, Alpha-Napthoflavone, and Exatecan and the other 11 structures are statistically

significant and are not labelled.
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Figure 2: Top three scaffolds with the highest average docking
scores. A) Common structure of Strychnine analogs. B) Common
structure of Exatecan analogs. C) Common structure of alpha-
naphthoflavone analogs. Exatecan and alpha-naphthoflavone were
shown with three R-groups because their Pubchem analogs were
found with three modifiable positions on the scaffold. Strychnine, in
contrast, was shown with only one R-group, as its Pubchem analogs
only shared one modifiable position. This figure was created in the
ChemDraw software.
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RESULTS
Scaffold analysis and R-group analysis

We compiled a list of structures of 72 existing drugs from
Drugbank and selected the top 13 drugs’ scaffolds through
bash docking. Using a python script, we created 871 analogs
of the 13 scaffolds from modifying their R-group(s) and
docked them into the active site of AChE. Through Pubchem,
we identified positions of R-group(s) on each scaffold through
comparing structures of their analogs. From our initial testing,
analogs of the 13 best-performing AChE ligands showed
varying mean docking scores, ranging from -9.69 * 0.44
kcal/mol to -11.82 + 0.77 kcal/mol (Figure 1). Docking score
is defined as an index measuring the strength of binding
affinity between ligands and AChE, and the lower the score
correlates to stronger binding affinity. Analogs of alpha-
naphthoflavone had an average docking score of -11.82 kcal/
mol, showing the highest predicted binding energy, followed
by strychnine (-11.80 kcal/mol) and exatecan (-11.32 kcal/
mol) (Figure 1). Two sample one-tailed t-tests suggested no
significant difference between the mean docking scores of
analogs of alpha-naphthoflavone and strychnine (p-value =
0.435), or that of exatecan and metergoline (p-value = 0.419),
at a cutoff of a = 0.05 (Figure 1). In contrast, comparisons
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Figure 3: Average docking scores of structures for the top 3 scaffolds. The average docking scores (kcal/mol) are shown below the

structures. R-groups’ positions are found from comparing existing ana

logs of the scaffold on Pubchem. Each SMILES structure of analogs are

created by a Python script, and their docking scores are obtained from bash docking. A) Average docking score for Strychnine’s structure. B)

Average docking scores for Exatecan’s structures. C) Average dockin

g score for alpha-naphthoflavone’s structures.
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Ligand 18 (-11.9 kcal/mal)

Figure 4: Chemical structures of the 5 best-performing ligands
that are deemed non-toxic in table 1. The R-group of analogs are
colored red. The docking scores (kcal/mol) of each analog are in
parentheses.

between the strychnine, alpha-napthoflavone, and exatecan
structures and all other structures were statistically significant
(p-value < 0.05) (Figure 1). This result suggests heterocyclic
structures — found commonly between alpha-napthoflavone,
exatecan, and strychnine — exhibit high predicted binding
energies to AChE active sites, potentially through induced
pi-pi interactions (Figure 2, 3). Given these three structure
scaffolds exhibited the highest predicted binding energies,
further chemical property analysis and ADMET were
performed on 147 analogs of these structures.

Chemical properties analysis

Prior to chemical property analysis, the chemical
structures of the top five best-performing ligands were shown
with their R-groups (Figure 4). Chemical property values
taken from 147 analogs derived from exatecan-R1, alpha-
naphthoflavone-R1, and strychnine scaffolds were arranged
into five categories — molecular weight, logP (a measure of
hydrophobicity), number of hydrogen bond donors, number
of hydrogen bond acceptors, and molar refractivity — and
compared against the docking scores of the analogs (Figure
5). LogP and molar refractivity were found to have an inversely
proportional relationship with the docking scores (Figure 5),
with R2 = 0.259 and 0.18, respectively (Figure 5). Conversely,
the number of hydrogen bond donors and acceptors were
found to have a proportional relationship with the docking
scores, with R2 = 0.089 and 0.15, respectively (Figure 5).
No correlation was found between the values of molecular
weights and docking scores with R2 = 0.004 (Figure 5).
These analyses were made on the assumption that R2 values
less than 0.05 were negligible, while those greater than 0.05
were evidence of correlation.

Pharmacokinetic screening analysis

Out of 147 selected analogs, 20 ligands that passed
Lipinski’s Rule of Five test and had the lowest docking scores
were selected. A ligand, to be considered orally active by

https://doi.org/10.59720/25-140

Lipkinski’s Rule of five, must have molecular weight below
500 Da, logP below 5, numbers of H-bond donors larger
than 5, and number of H-bond acceptors larger than 10 (12).
From this set of 20 ligands, only the five ligands 6, 8, 12, 17,
and 18 passed the toxicity tests conducted through pkCSM
webserver. In fact, we deemed these ligands nontoxic due to
their negative results in the Salmonella typhimurium reverse
mutation assay (AMES), human Ether-a-go-go—Related
Gene 1 (hERG I) inhibitor, and hepatotoxicity criteria (Table
1), categories measuring toxicity in pkCSM (13). Especially,
negative results in hERG | inhibition indicated that these
ligands do not inhibit potassium channels, preventing the
risk of cardiotoxicity and thus qualify as drug candidates (13).
Moreover, the software predicted that all 5 ligands had low
water solubility, with values ranging from -4.429 to -2.971 (log
mol/L) (Table 1) (13). However, it indicated that these ligands
had high Caco-2 permeability and intestinal absorption, which
were between 1.141-1.187 x 10-°cm/s log Papp in and 96.698-
100% absorbed, respectively (Table 1) (13). Typical values
for Caco-2 permeability and intestinal absorption in nontoxic
drugs range from log Papp 10to 70 x 10-6 cm/s, corresponding
to = 85-100% absorption in humans (14).The Caco-2 values
here (log10 Papp 1.141-1.187 — ~14-15 x10-% cm/s) and the
very high human intestinal absorption (97-100%) fall in the
high-permeability/absorption range measured for marketed
AChE inhibitors donepezil and rivastigmine The (Table 1).
Four out of five ligands were predicted to be moderately toxic
given their Lowest Observed Adverse Effect Level (LOAEL)
values were in the range of 1-2 (log mg/kg_bw/day). Similarly,
rivastigmine was predicted to have a similar LOAEL score
of 1163 (Table 1). In contrast, donepezil and ligand 8 were
predicted to be highly toxic given their estimated LOAEL
values of 0.991, and 0.832, respectively (log mg/kg_bw/day)
(Table 1).

Analyzing ligand-receptor interactions

We used a molecular docking tool through UCSF Chimera
to calculate the docking scores between ACh and strychinine’s
analogs to AChE. Four docking poses, including ACh, ligand
6, ligand 8, and ligand 12 were analyzed. Ligands 6, 8, and
12 were chosen because of their low docking scores, as
they imply thermodynamics favorable binding affinity. Given
ligands 6, 8, 12, 17, and 18 share a common strychnine
scaffold, we limited our detailed interaction analysis to
ligands 6, 8, and 12 to reduce redundancy while still capturing
the general interaction trends of the ligands (Figure 4). No
hydrogen bonds were observed between AChE and the three
analyzed ligands, while there was only one observed in the
docking pose of ACh and AChE (Figure 6). However, Van
der Waals (VdW) interactions were more commonly observed
among molecules with large, bulkier R groups and AChE
(Figure 6). This partially explains that the higher binding
affinity of ligands 6, 12, and 18 over those with less bulkier
R-groups comes from the higher number of VAW interactions
existing in their binding pose to AChE (Figure 4).

Molecular Dynamics (MD) simulations results

Given MD simulations for 20 selected ligands were
computationally intensive and went beyond our computational
workforce available, we decided to conduct the simulation
for ligands 6, 8, 12, 17, and 18 — the top 5 best performing
ligands. Among these 5 simulations, convergence, defined
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Figure 5: Chemical property values of 147 analogs derived from exatecan-R1, alpha-naphthoflavone-R1, and strychnine scaffolds.
The chemical property values are plotted on the y-axis, and the docking scores are plotted on the x-axis. Statistical significance correlations
(p-value < 0.001) between chemical properties and docking scores are represented through best fit line equations and their associated R2
value, placed above each sub-figure. Docking scores are plotted against (A) molecular weight, (B) logP, (C) Number of hydrogen bonds
acceptors, (D) Molar refractivity, (E) Number of hydrogen bond donors. The R2 and p-values were calculated using a significance test for

Pearson’s correlation coefficient.

as the stabilization of protein backbone Root Mean Square
Deviation (RMSD) within £0.05 nm over the final 20 ns
of the trajectory, was observed for ligands 17 and 18, with
an equilibrated RMSD of approximately 0.35 nm, 0.45 nm,
respectively (Figure 7). Further calculations for interacting
energies — derived from their Leonard-Jones short-range
energy and Coulombic short-range energy — resulted in
values of -166.332 + 4.48 (kJ/mol), -132.483 + 2.97 (kJ/
mol), -163.594 + 10.5 (kJ/mol), -173.995 + 6.58 (kJ/mol),
and -185.814 + 14.6 (kJ/mol), for ligand 6, 8, 12, 17, and 18,
respectively (Figure 7).

DISCUSSION

Results showed that the alpha-naphthoflavone and
strychnine-derived compounds had the best predicted
binding energies, suggesting that the presence of extended
conjugation of aromatic rings, which leads to more rigid
molecular structures, contribute to stable noncovalent
interactions such as pi-pi bonds between the ligand and

the aromatic gorge of the AChE protein. In addition, other
functional groups on the ligands such as carbonyl or hydroxyl
groups, which play a key role as hydrogen acceptors and
donors, consolidate the ligand-AChE interactions by fostering
the formation of specific hydrogen bonds between ligands and
active site residues. As a result, they explain the favorable
predicted binding energies of these scaffolds. Compounds
that pass criteria placed by Lipinski’s Rule of Five are more
likely to be orally bioavailable, so we used this filter to select
the top 20 drug-like candidates for further analysis. The
pharmacokinetic testing for toxicity revealed five of the best-
performing non-toxic compounds: ligands 6, 8, 12, 17, and
18, which are all based on strychnine. While there weren’t
any studies explaining the enhanced binding affinity of
analogs derived from strychnine scaffold, we hypothesized
that the high rigidity, polycyclic, and non-planar structures of
strychnine analogs fit allows them to fit better to the AChE
active site gorge. This is evidenced through the success
of strychnine analogs to bind strongly to the acyl binding
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Water | Caco-2 ;E;i?g;i P- | Ames | herg| | owest observed -
Ligand solubility permeablllfzy (human) glycoprotein toxicity | inhibitor adverse effect |Hepatotoxicity
(log (log Papp in (% substrate (Yes/No) | (Yes/No) level (LOAEL) (Yes/No)
Mol/L) | 10-6 cm/s) absorbed) (Yes/No) (logmg/kg_bw/day)
-2.892 0.952]  94.153 Yes|  Yes No 2.772 No
-4.454 1.271]  96.615 Yes No No 1.853 Yes
-2.903 1.3|  96.579 Yes|  Yes No 0.223 No
-4.696 1.277 96.79 Yes|  Yes No 1.788 Yes
-3.255 1.051 95.58 Yes No No 1.512 Yes
| 6] -4.429 1.146|  98.698 Yes No No 1.09 No
-4.179 1.265|  97.192 Yes No No 1.898 Yes
| 8] -3.488 1.162 100 Yes No No 0.832 No
-4.113 1.237 100 Yes|  Yes No 0.893 Yes
-5.161 0.597|  95.902 Yes|  Yes No 2.978 Yes
-3.092 0.043 100 Yes No No 1.992 Yes
| 12 423 1.141]  98.524 Yes No No 1.053 No
-5.818 0.535 100 Yes|  Yes No 0.904 No
-3.257 1.193 100 Yes No No 1.264 Yes
-5.818 0.535 100 Yes|  Yes No 2.422 No
-3.709 1.136]  99.441 Yes No No 1.404 Yes
17| -3764 1.147]  99.305 Yes No No 1.398 No
18] -2.971 1.187 100 Yes No No 1.698 No
-4.035 1.334]  97.486 Yes No No 1.343 Yes
-3.145 1.009 100 Yes No No 1.486 Yes
RIG | -2.347 1.569|  88.456 No No No 1.163 No
-4.648 1.273]  93.707 Yes No No 0.991 Yes

Table 1: Pharmacokinetic properties of the top 20 best performing ligands that passed Lipinski’s Rules of Five, Rivastigmine (RIG),
and Donepezil (DON). Water solubility, Caco-2 permeability, human intestinal absorption, and P-glycoprotein substrate status) indicates
bioavailability. Ames toxicity, hERG I, lowest observed adverse effect level (LOAEL), and hepatotoxicity indicate the toxicity. Ligands colored
in green were deemed non-toxic toward human cell culture. Ligands colored in red were deemed toxic toward human cell culture.

pocket—composed of Phe295, Phe297— of AChE, that other
study suggested to be responsible for ligand-specificity (15).
These five promising compounds warrant in vitro and in vivo
testing to gauge their potential as drug candidates.

We noted that the presence of aromatic groups in ligand
scaffolds seemed to facilitate favorable binding interactions
with the AChE protein. This is supported by existing
literature on donepezil derivatives in AChE inhibition (10).
These derivatives bear structural similarities with strychnine
analogs—our best non-toxic performers—with their rigid bicyclic
systems and nitrogen-containing cores (10). In addition, the
docking results of the ligand-receptors with ligand 6, 12 and
AChE indicates enhanced predicted binding energies induced
from the pi-pi interaction between the aromatic groups within
strychnine analogs and AChE residues Phe338, Tyr341.
Aside from the functional groups, the spatial arrangement
of this scaffold plays an important role in binding efficiency.
With a rigid bicyclic system, strychnine analogs have less
conformational flexibility and hence form a more stable
interaction with the active site.

Our chemical property values from 147 analogs derived
from exatecan-R1, alpha-naphthoflavone-R1, and strychnine
scaffolds indicated a weak inversely proportional relationship
between logP values and docking scores. This observation
was attributed to the equally distributed polar and nonpolar
residues in the AChE active site. Since higher logP values
correspond to greater hydrophobicity, analogs preferentially
engaged in hydrophobic interactions with nonpolar aromatic
residues — such as Phe338, Phe295, and Phe297 — while
forming VAW and pi-pi interactions with polar aromatic
residues — such as Tyr341, Tyr337 — in the active site.
Similar to the trend observed with logP, molar refractivity
was found to be weakly inversely proportional to the docking
scores. Given the higher molar refractivity corresponding to
a higher polarizability, analogs with high molar refractivity
preferentially engaged in VdW interactions with AChE’s
active site polar aromatic residues Tyr72, Tyr 124, Tyr337,
and Tyr341, leading to an enhanced binding affinity. Besides,
numbers of hydrogen bond donors and acceptors were
found to be inversely proportional to the docking scores.
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Figure 6: Binding pose of acetylcholine and best-performing
ligands in AChE active site. Docking poses are visualized through
Chimera software. A) ACh docked on AChE. B) Ligand 6 docked on
AChE. C) Ligand 8 docked on AChE. D) Ligand 12 docked on AChE.
Acetylcholine and ligands are colored cyan; AChE is colored beige;
Van der Waals interactions are colored green; hydrogen bonding is
colored black; in text, hydrophobic residues are highlighted in pink;
hydrophilic residues are blue; residue involving in hydrogen bonding
is placed inside a parentheses.

This weak correlation was attributed to the desolvation
effect caused by the addition of hydrogen bond donors and
acceptors in the analogs, leading to a decrease in binding
affinity. In addition, only one hydrogen bond was observed
across the 4 analyzed docking poses of ACh and ligands 6,
8, and 12 against AChE. This showed that hydrogen bond
formation between AChE inhibitors and its active site were
generally unfavorable. Moreover, the presence of hydrogen
bond donors and acceptors interfered with the formation of
VdW and pi-pi interactions, ultimately leading to a decrease
in predicted binding energy.

Further ligand-receptor interaction analysis supported
the ability of our ligands to inhibit AChE. All three analyzed
ligands interacted with Trp286 and Tyr72, two residues on
AChE’s active site that were responsible for the construction
of PAS. Given donepezil primarily binds the PAS of AChE, it
was reasonable to hypothesize that our three best-performing
ligands share a similar inhibitory mechanism to reversible
inhibitors (6). In addition, the acyl pocket, which is composed
of Phe295 and Phe297, was reported to be responsible for the
binding specificity of ACh to AChE’s active site (16). Indeed,
our three ligands were shown to fully interact with either
Phe295 or Phe297. However, we found that our three ligands
bind at different sites with ACh, as they share few interacting
residues with each other. Moreover, given our ligands don’t
interact with any residues composing the ecstatic subsite,
which rivastigmine targets, they were hypothesized to have
different inhibitory mechanisms (6).

https://doi.org/10.59720/25-140
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Figure 7: RMSD of the 5 best-performing non-toxic ligands 6,
8, 12, 17, and 18 against AChE’s backbone over 100 ns of MD
simulations. The RMSD values (measured in nm) are plotted on
the y-axis, while time (measured in ns) is plotted on the x-axis. The
red line represents the smoothed RMSD trends, obtained from the
average of 100 data points. A-E) Ligand 6, 8, 12, 17 and 18’'s RMSD
over time with average interacting energies of -166.332 + 4.48 (kJ/
mol), -132.483 + 2.97 (kJ/mol), -163.594 + 10.5 (kJ/mol), -173.995 +
6.58 (kJ/mol), and -185.814 + 14.6 (kJ/mol), respectively.

Our MD simulation results indicated ligands 17 and 18
were promising compounds for further drug enhancements.
Convergences were only observed on simulations of ligand
17 and 18, and ligand 17 stood out with a low RMSD value
at equilibrium of 0.35 nm, which was 0.1 nm shorter than
ligand 18’'s RMSD at equilibrium of 0.45 nm. Ligand RMSD
measures how much the ligand’s heavy atoms drift from the
starting bound pose during the simulation; a lower value
means the bound position changed less during the MD run.
It does not, by itself, show stronger binding. Ligand 17’s
propensity to stabilize its interaction earlier to the AChE
active site than ligand 18 does implicitly indicates a more
stable interaction of ligand 17 to the active site than ligand 18
does. Factors that contribute to the better binding stability of
ligand 17 include the structures of these two ligands. Ligand
17 features a relatively small chloroethyl functional group
at the para position with respect to the benzyl moiety in the
strychnine scaffold; this feature reduced the steric hindrance
to allow ligand 17 to bind closer to the active site, contributing
to ligand 17’s lower RMSD value at equilibrium. On the other
hand, the presence of a bulky 1,2-pyridazine functional group
at the para position with respect to the benzyl moiety induced
more transient reactions in the active site due to its flexibility
and polarity, leading to ligand 18’s higher RMSD value at
equilibration. A higher RMSD value can still be compatible
with strong binding if a flexible group moves among nearby
positions while keeping favorable contacts. Despite the
higher RMSD value, ligand 18 had a more favorable average
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protein—ligand interaction energy than ligand 17, which
suggests stronger interactions on average. Lower RMSD
value, indicating a more rigid position, and more negative
interaction energy, indicating stronger interactions, describe
different properties and thus are not contradictory. The fact
that ligand 18’s simulation yielded a lower overall interacting
energy than ligand 17 does indicate ligand 18 had a stronger
predicted binding energies to AChE active site than ligand 17.
This observation could be attributed to the more potential pi-
pi interactions and hydrogen bonding between ligand 18 and
the active site than ligand 17. As the 1,2-pyridazine functional
group is more flexible and contains two addition nitrogen
atoms — which serves as hydrogen bond acceptor — on the
benzyl ring than the chloroethyl functional group of ligand 17,
ligand 18 was expected to form more VdW interactions and
hydrogen bonding in the active site than ligand 17, further
leading to a stronger overall interacting energy of ligand
18. Regardless of having a lower interaction energy, ligand
18’s interaction with the AChE active site was expected to
be less rigid and fluctuate more often than the interaction of
ligand 17 with the active site, due to its higher RMSD value at
equilibrium when compared to ligand 17’s. Therefore, ligand
17 favors positional stability, while ligand 18 favors interaction
strength.

Despite the promising results from molecular docking, MD
simulation, and pharmacokinetics testing for ligands 17 and
18, relying on these results to conclude the viability of these
two compounds in clinical trials is insufficient. Instead, further
in vitro and in vivo experiments are required to validate the
efficacy of these two compounds. Thus, isothermal titration
calorimetry, surface plasmon resonance, and other in vitro
experiments assessing and measuring the binding affinity
and IC50 values of ligands 17 and 18 to AChE are potential
next steps. In addition, other in vitro and in vivo experiments
measuring the blood-brain barrier penetration of ligands
17 and 18 are highly recommended, given their promising
predicted bioavailability with high Caco-2 permeability and
intestinal absorption. Moreover, in vivo studies in animal
models are needed to assess toxicity and to determine
whether ligands 17 and 18 are viable candidates for clinical
trials.

Research into the inhibiton of AChE and other
neurotransmitter-degrading enzymes is a crucial field for
curing neurodegenerative diseases such as AD. Based on
our work, future research should focus on designing and
testing the inhibitory effects of new strychnine-R1 analogs
toward AChE. In addition, given the high binding affinity and
stability of ligands 17 and 18 to AChE, future studies can focus
on exploring the relationship between the inhibitory efficacy
of strychnine-R1 analogs and halogenated, polar aromatic
R-groups. While modifying the R-group to include bulkier,
nonpolar R-groups induces better predicted binding energy
between compounds and the AChE active site, incorporating
highly electronegative, small R-groups leads to better binding
stability. Doing so will foster robust enhancement in binding
affinity of ligands 17 and 18.

Our project highlights the impact of structure-activity-
relationship (SAR) analysis. As success in drug modification
requires an enormous meta-analysis of SAR analysis, our
identification of strychnine as a common scaffold among the
initial list of 72 AChE inhibitors and our testing of the inhibitory
efficacy of strychnine analogs fits into the bigger picture of
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finding new AD treatment. We hope our effort in this project
will enable scientists to derive better AChE inhibitors from
strychnine scaffolds as new AD therapeutics.

MATERIALS AND METHODS
Compiling AChE inhibitor analogs for testing

Through the Drugbank website, a library of 72 known
inhibitors of AChE was compiled (17). Their structures were
compiled from PubChem in a simplified molecular input
line entry system (SMILES) (18). These ligands were bash
docked, and the top 13 with the lowest docking scores,
indicating stronger binding affinity, were further analyzed
for their core scaffold structures and R-group modifications.
The ligands with the lowest docking scores were used
due to their strong predicted binding energy to AChE. The
structures for each of the top 13 ligands were compared to
similar compounds’ structures on PubChem to identify the
R-group positions (18). Depending on the number of available
R-groups on each scaffold, the number of analogs for them
varied (Figure 1). The R-groups on SMILES of each of the top
13 ligands’ structures were manually removed, and a Python
script was used to attach in these positions functional groups
from four categories: aromatic rings, alkyl chains, halogens,
and nitrogen-containing groups. From there, those modified
analogs were compiled into data sets with their respective 13
initial scaffolds for bash docking.

Bash docking

The bash docking procedure was carried out in two
stages. The initial set of 72 known inhibitors to AChE were in
the first trial, while the library of modified compounds derived
from structures of 13 best-performing inhibitors from the
initial 72 were screened for the second trial. The 3D structure
of the AChE enzyme was sourced from the Research
Collaboratory for Structural Bioinformatics (RCSB) protein
data bank (PDB) in PDB format (PDB ID: 4EY7 for human
AChE) (19). Proteins were dock-prepped in UCSF Chimera
with Dock Prep, where water molecules and external ligands
were removed, and hydrogens and Gasteiger charges were
added. Ligand structures were downloaded in Structure-
Data File (SDF) format from PubChem and converted to
mol2 format. Docking was conducted using Dockstring, a
Python package for AutoDock Vina, targeting active residues
Phe338, Ser297 and Phe337 in AChE’s active site (20,
21). The average docking score was calculated for analogs
derived from the structures for the top 13 best performing
ligands. To ensure that the selected top three best performing
structures were statistically significant, two sample one-tailed
t-tests were conducted to measure the p-value between the
three structures and the other 12 structures (Figure 1) (22).
Analogs derived from the top three best performing structures
with the lowest average docking scores, implying highest
ligand-AChE affinity interaction, were compiled and assessed
according to Lipinski’s Rules of Five via a Python script.
Each rule (molecular weight, logP, number of hydrogen bond
donors, and number of hydrogen bond acceptors) in Lipinski’s
Rules of Five were weighted equally. That is, a ligand would
be considered to fail the test if it violated one out of the four
rules. The top 20 ligands that passed the Lipinski’'s Rules of
Five tests were isolated and underwent the pharmacokinetic
property analysis.
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Chemical property analysis

After docking, ligands were assessed for chemical
properties, including molecular weight, Wildman-Crippen
log partition coefficient (logP), hydrogen bond donors and
acceptors, rotatable bonds, aromatic ring count, molar
refractivity, and topological polar surface area (TPSA), using
the RDKit Python package. Correlations between molecular
properties and predicted binding energies of ligands,
represented through their docking scores (with more negative
values indicating stronger binding affinity), were visualized
through scatter plots. Through Google Sheets correlation
(CORREL) and t-distribution (TDIST), significance tests for
Pearson’s correlation coefficient were performed to calculate
the R2 and p-value between analogs’ chemical properties
and their docking scores, with a cutoff of p-value < 0.05 (22).
For chemical property analysis, R2 values less than 0.05
were deemed negligible, while R2 values greater than 0.05
were deemed to be evidence of correlation.

Pharmacokinetic property analysis

Pharmacokinetic characteristics such as water solubility
(log Mol/L), Caco-2 permeability (log Papp in 102-6 cm/s),
human intestinal absorption (% absorbed), P-glycoprotein
substrate status, Ames toxicity, human ether-a-go-go related
gene (hERG) linhibition, lowest observed adverse effect level
(LOAEL), and hepatotoxicity predictions were determined
using the pkCSM web server for the top 20 ligands isolated
from the bash docking section (13). Intestinal absorption,
a critical first step that determines bioavailability for orally
administered drugs, was reflected by Caco-2 permeability
index. P-glycoprotein (P-gp) substrate status was evaluated,
given P-gp efflux can reduce the intracellular retention
and thus lower the bioavailability. Lastly, hERG | inhibition
criteria indicate the risk of cardiotoxicity, which results as a
consequence of inhibiting potassium channels.

Visualization of docking poses and ligand-receptor
interactions

Given lower docking scores imply higher binding affinity,
4 docking poses of ACh and ligands 6, 8, and 12 were
visualized using UCSF Chimera (v1.17.3) (23). Hydrogen
bonds were identified within a 4.0A proximity between ligands
and receptor residues. Van der Waals interactions were
evaluated using a —0.4A cutoff. Resides in AChE active sites
involving interaction with ACh and best performing ligands
were highlighted according to the polarity.

MD simulation

Given MD simulations for 20 selected ligands were
computationally intensive and went beyond our computational
workforce available, we decided to conduct the simulation
for ligands 6, 8, 12, 17, and 18 — the top 5 best performing
ligands with lowest docking scores. These simulations were
conducted through GROMACS-2024.3 — an open-access
software (24). AChE-ligand complexes were separated and
prepared independently with respect to the CHARMMS36
forcefield (25). AChE’'s CHARMM parameter was prepared
by the pdb2gmx module in GROMACS with the N-, C-termini
charged as “NH3+” and “COO-", respectively (24). The
ligand’s parameter was obtained from the CGenFF web server
(26). Ligands with parameters having either param or charge
penalties exceeding 50 underwent optimization in Orca 5.0,
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in which the density functional theory with the B3LYP and
def2-TZVP basis sets was employed for a reliable geometry
optimization (27-29). This setting was aided by the TightOpt
and TightSCF modules, which aim to ensure a more rigorous
geometry optimization and charge distribution, respectively
(27). After force field preparations, the ligand topology file
was manually incorporated into the AChE topology file,
reforming the AChE-ligand complex. The complex was
solvated in a cubic water box, neutralized with counterions,
and energy was minimized with the steepest descent method
(24). Equilibration was performed under Canonical (NVT)
and Isothermal-Isobaric (NPT) ensembles in 10 ps, aiming to
stabilize the pressure and temperature of the system to 1 bar
and 300k, respectively (24). Then, the AChE-ligand complex
underwent a 100 ns MD simulation, in which RMSD analysis
was used to keep track of the distance between ligands and
AChE’s backbone. In addition, the Leonard-Jones short-range
energy and Coulombic short-range energy were measured to
calculate the total interacting energies for each system (30).
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APPENDIX
Github repository for used scripts: https://github.com/kennardliong/ache-paper-scripts
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