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like fractures or dislocations, manifest as progressive 
changes in bone structure that are difficult to discern visually 
during initial onset (2). Cervical spondylosis is a degenerative 
disease that occurs when the cartilage and bones in the neck 
wear down over time, and it often results in chronic neck 
pain (2). This degeneration is especially an issue for elderly 
people, with around half of adults over the age of 40 and 85 % 
of adults over the age of 60 affected by cervical spondylosis 
(2). Therefore, there is a great need for studies which focus 
on detecting this condition. Furthermore, conditions such 
as herniated discs, osteoarthritis, and spinal stenosis may 
cause mild misalignments or changes in bone density that are 
easily overlooked in conventional imaging (3). The cervical 
spine’s complex anatomy, including its role in supporting the 
skull and enabling a wide range of motion, complicates the 
interpretation of imaging further. Subtle pathologies in this 
region can lead to serious outcomes, including chronic pain, 
neurological deficits, and impaired mobility, if not identified 
and treated promptly (4). While X-rays are widely used due 
to their accessibility and cost-effectiveness, their limitations 
in contrast resolution and inability to capture soft tissue 
abnormalities highlight the need for advanced diagnostic 
methods. 
	 The purpose of this study is to utilize classical deep 
learning frameworks, namely convolutional neural networks 
(CNNs), in order to streamline the process of identifying 
cervical spine conditions from X-rays. Deep learning has 
been used in efforts to automate and improve the accuracy 
of tasks done by humans; thus, we chose to apply this 
concept to the biomedical field. This study focuses on image 
classification and a popular high-performing deep learning 
framework, CNN. A standard CNN is made up of three 
primary elements: convolutional layers, pooling layers, and 
fully connected layers (5). Convolutional layers use learnable 
filters to scan input images, capturing features, such as edges, 
textures, and increasingly intricate patterns, as the network 
progresses (5). Pooling layers, such as those performing 
max pooling, shrink the spatial size of the data, preserving 
essential information while reducing the computational 
load and mitigating the risk of overfitting (5). Finally, fully 
connected layers integrate the extracted features from 
earlier stages to generate final predictions (5). Additionally, 
CNNs can automate feature engineering, eliminating the 
need to manually extract features to put together a pattern. 

The effects of image manipulation on classification of 
cervical spondylosis X-ray images using deep learning

SUMMARY
Cervical spondylosis is a prevalent degenerative 
disorder of the cervical spine and a leading cause 
of chronic neck pain and neurological impairment 
worldwide. Diagnostic imaging, particularly X-rays, 
remains the first-line tool for detection; however, 
reliance on manual interpretation contributes to delays, 
variability, and potential diagnostic error. This study 
addresses the challenge of accurately diagnosing 
cervical spondylosis from X-rays by assessing the 
effects of various preprocessing procedures on the 
efficacy of classical convolutional neural networks 
(CNNs) for image classification. To determine whether 
preprocessing improves diagnostic outcomes, we 
trained CNNs with transfer learning on the Cervical 
Spine X-ray Atlas (CXSA) dataset, applied techniques 
such as wide-area cropping and color enhancement, 
and measured classification accuracy, precision, and 
F1-scores. We hypothesized that image processing 
via the wide cropping of images would significantly 
increase the performance of our model when tasked 
with detecting cervical spondylosis in comparison 
with other typical preprocessing techniques. Our 
most effective approaches, wide-area cropping and 
color enhancement, achieved a maximum accuracy 
of 95.73%, with wide-area cropping rooting out the 
most false negatives and positives. These findings 
demonstrate that image preprocessing improves 
diagnostic accuracy and efficiency, offering 
potential for clinical translation. More broadly, the 
methods developed here could be extended to other 
musculoskeletal conditions, supporting more reliable, 
individualized treatment plans and advancing the role 
of deep learning in medical diagnostics.

INTRODUCTION
	 Medical imaging, especially X-ray, is crucial in diagnosing 
various spinal conditions, particularly those occurring in the 
cervical spine, which consists of the C1 through C7 vertebrae 
(1). Accurate interpretation of X-ray scans is essential 
for effective treatment planning. However, many spinal 
abnormalities, including congenital deformities, degenerative 
conditions like cervical spondylosis, and traumatic injuries, 
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This capability not only optimizes the classification process 
but streamlines it, allowing for a greater volume of cases to 
be processed with higher efficiency (6). These components 
allow CNNs to identify patterns, often performing complex 
tasks with a higher accuracy than the average human. With 
this prior knowledge in hand, the purpose of this study was to 
evaluate the effects of color and image manipulation on the 
classification of cervical spondylosis X-rays through CNNs.
	 The CNN model used in this study is one at the forefront 
of deep learning used in medical image classification, the 
ResNet50. ResNet50, a model given by Microsoft, consists 
of 50 layers, with convolutional layers, activation layers, 
and residual blocks (15). ResNet50 incorporates residual 
connections that help prevent the vanishing gradient problem, 
which is a phenomenon where gradients shrink significantly as 
they backpropagate through the network (7). With this feature, 
the model can be effectively trained even at considerable 
depth (7). Its balanced size, computational efficiency, and 
high compatibility with data augmentation allows the model to 
generalize well and maintain success in binary classification 
tasks, like it was tasked with in our study. CNNs have been 
successfully applied to a wide range of spinal imaging tasks, 
consistently demonstrating strong diagnostic performance 
across modalities (8–13). For instance, studies using MRI 
and CT scans have achieved high accuracy in detecting 
conditions such as herniated discs, cervical cord lesions, and 
spinal fractures, often exceeding 90% with models such as 
ResNet50, VGG19, and MobileNetV2 (8–13). These findings 
highlight the utility of deep learning in spinal diagnostics but 
also underscore a key limitation: most prior work has focused 
on MRI or CT data, which are not always available in resource-
limited clinical settings. By contrast, our study advances this 
field by applying CNNs to cervical spine X-rays, which are 
more accessible and cost-effective, thereby extending the 
potential impact of AI-driven diagnostic tools. However, many 
of these studies focus on different spinal conditions or imaging 
types, and often rely on standardized toy datasets, reducing 
their applicability to real-world situations where image quality 
and conditions can vary. Research specifically using CNNs 
to analyze cervical spine X-rays—a more accessible and 
affordable imaging method—is still quite rare.

	 Our study fills this gap by investigating whether CNNs, 
specifically the ResNet50 model, can effectively classify 
cervical spinal conditions using X-ray images. We used a 
newly released public dataset published in 2024 that has 
not been studied before, and applied intricate preprocessing 
techniques to account for the challenges of imperfect real-
world images. 
	 We hypothesized that image processing via the wide 
cropping of images would significantly increase the 
performance of our model when tasked with detecting cervical 
spondylosis in comparison with other typical preprocessing 
techniques. To test this, we trained ResNet50 and VGG19 
on both original and modified datasets, applied a variety 
of preprocessing techniques, and compared performance 
across accuracy, precision, and F1-scores. 
	 Our findings demonstrate that both wide-area cropping 
and color enhancement independently improved classification 
accuracy to 95.73%, with wide-area cropping providing the 
greatest precision and clinical utility. These results suggest 
that preprocessing strategies tailored to medical imaging can 
significantly reduce diagnostic errors such as false positives 
and false negatives. In turn, this highlights the potential of 
carefully optimized CNN pipelines to enhance the reliability of 
automated cervical spondylosis diagnosis, while future work 
should focus on expanding dataset diversity and exploring 
hybrid or ensemble modeling strategies to further advance 
clinical applicability.

RESULTS
	 We sought to understand the role of image processing 
techniques and their combinations on improving cervical 
spondylosis detection. Thus, deep learning models were 
trained on versions of the dataset after applying different 
image processing techniques and combinations to 
experimentally improve performance (Figure 1). The dataset 
consisted of 181 healthy spinal x-rays and 4782 diseased 
x-rays and was divided into 75% for training purposes and 
25% for testing purposes using a fixed random seed for 
consistent comparison across all processed versions of the 
dataset (Figure 2).
	 To evaluate the performance before and after applying 

Figure 1: Workflow for cervical spinal X-ray image classification using deep neural networks. The process began with the original 
X-ray images, which underwent a 500x500 center crop to standardize dimensions. Next, the cropped images were subjected to preprocessing 
and normalization, using various configurations of cropping, color mapping, and intensity standardization, depending on the specific process. 
These processed images were then resized to 224x224 pixels to match the input size requirements of the deep neural networks. Augmentation 
techniques, such as rotation, flipping, and scaling, were applied to enhance the dataset's diversity and improve model robustness. Two pre-
trained deep neural networks, ResNet50 and VGG19, were employed for feature extraction and classification, and categorized the images 
into healthy or diseased classes.
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image processing, we evaluated the trained models’ 
performances using performance metrics like accuracy, 
precision, recall, and F1-score (Table 1). First, two deep 
learning CNNs, ResNet50 and VGG19, were trained over 
30 epochs on the original dataset with no image processing 
as a control group (Figure 3). Since the ResNet50 model’s 
accuracy was superior to the VGG19 model by approximately 
1.5%, ResNet50 was used on the rest of the deep learning 
model tests. The accuracy of the model without prior image 
modification was 94.19%, which increased to 95.73% during 
both instances in which wide cropping and color modification 
were separately applied (Table 1). Color enhancement 
amplifies contrast and sharpens subtle variations in grayscale 
radiographs, making pathological features such as abnormal 
curvatures or density shifts more distinguishable to the 
network (Figure 4). Wide-area cropping, on the other hand, 
reduces irrelevant background information while ensuring 
that the cervical region remains in focus, thereby limiting 
noise and improving the consistency of inputs (Figure 4). 
By applying these preprocessing steps, we aimed to isolate 
diagnostically relevant features and minimize distractions, 
enabling the models to learn more robust and clinically 
meaningful patterns. Utilizing two proportion z tests, we 
compared the accuracy of our model when run on the original 
dataset in comparison to five, distinctly preprocessed, 
versions of the dataset: cropped, wide cropped, color 
enhanced, color enhanced and cropped, and color enhanced 
and wide cropped. When our data was preprocessed 
through color enhancement and regular cropping, the 
model produced an accuracy of 94.76% (p = 0.269); when 
the data was preprocessed by color enhancement and wide 
cropping, the model produced an accuracy of 94.92% (p = 
0.213). When our dataset went through only regular cropping, 
the model produced an accuracy of 95.48% (p = 0.0732). 
Although this was a great improvement from the previous two 
methods, it was still not statistically significant. When wide 
cropping and color enhancement were tested individually, 
their shared accuracy was 95.73%, (p = 0.0406). The 
improvement in accuracy by the use of these preprocessing 
methods is statistically significant. Although this showcases 
how important these two methods are in the study of machine 
learning, this study particularly engages with the intersection 
of machine learning and the medical domain; thus, it was 

important to take into account more than just accuracy.  In 
terms of precision, wide cropping shows better results with 
93.09% precision versus 92.55% precision from the color 
modification, and the same occurs when using F1-score as a 
metric with scores of 94.24% and 94.11% respectively (Table 
1). 

DISCUSSION
	 To determine the most effective preprocessing techniques 
for improving convolutional neural network performance in 
cervical spondylosis classification, we trained and evaluated 
two candidate models, ResNet50 and VGG19. For each 
model, we measured accuracy, precision, and F1-scores 
across multiple image manipulation strategies. We first 
conducted trials using the original dataset and modified 
duplicates, when necessary, with our candidate models, 
ResNet50 and VGG19, at least one of each. The model with 
the highest base accuracy is the ResNet50 model at 94.19%, 
which we optimized through image color manipulation and 
cropping to a maximum accuracy of 95.73%. In addition 
to the higher parameter efficiency and deep structure of 
ResNet50, we attribute the high base accuracy to crucial 
consistencies in the dataset, such as the same imaging 
angles and regions.  ResNet50 outperforms VGG19 for 
this task, which has a base accuracy of 92.74%, using the 
most optimal hyperparameters. 	 Our most effective 
image preprocessing procedure combinations were color 
manipulation and cropping with a manually widened area—
performed independently on separate, modified dataset 
copies. Both color manipulation and widened area cropping 
increase the consistency of data and remove unnecessary 
visual details that may pose a distraction, allowing the 
model to extract and evaluate features with higher accuracy. 
They both achieved accuracies of 95.73%. Cropping 
with a manually widened area, however, achieved higher 
precision and F1-scores, so this processing procedure 
offers the best performance and practicality for clinical use 
in this study. High accuracy and precision scores indicate 
that the model minimizes both false positives and false 
negatives, which is critical in medical diagnostics. Reducing 
false negatives lowers the risk of missed diagnoses, while 
reducing false positives prevents unnecessary treatments 
and patient anxiety. However, when both are applied 

Figure 2: Distribution of dataset images across classification categories. The dataset contains 181 images classified as healthy and 
4782 images classified as diseased. Example X-ray images from each category are shown.
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together, accuracy decreases to 94.92%, which we theorize 
is because of excessive loss of necessary information due 
to over-processing, exacerbated by an increase in data 
ambiguity after data augmentation. This finding supported 
our hypothesis that image processing is key for cervical 
spondylosis classification tasks—specifically, wide image 
cropping is a superior form of image manipulation. This further 
supports the idea that image cropping not only produces a 
higher accuracy but also reduces the risk of false positives 
and negatives, which is particularly important as missing a 
cervical spondylosis diagnosis could delay treatment and 
increase the risk of neurological complications. Preprocessing 
with color manipulation and cropping, individually, as proven 
with aforementioned results, can be used to increase the 
accuracy of cervical spondylosis diagnosis and add to the 
researched advantages of incorporating deep learning into 
medical procedures.
	 The Cervical Spine X-ray Atlas (CSXA) dataset used in 
this study contained a severe imbalance between abnormal 
and normal spinal X-rays, with 4782 symptomatic X-rays 
versus only 181 asymptomatic X-rays (1). In order to combat 
this issue, disparity methods, such as image augmentation 
and oversampling, were used. However, these techniques 
were only able to bridge the gap to a certain extent. 
Augmentation generates altered versions of existing images, 
and oversampling reuses the same limited samples, neither 
of which introduces new biological variability. As a result, 
the model remains vulnerable to overfitting and struggles to 
generalize to unseen asymptomatic cases. As the majority of 
research done in the field of spinal injuries utilizes privately 
sourced data, a provision not readily available to us, this 
uneven dataset limited the possible accuracy of our model. 
In the future, to increase said accuracy, it would be optimal 
to find a larger and more diverse dataset, which would allow 

our model to more accurately identify asymptomatic spinal 
X-rays.
	 This study utilized only two classical deep learning 
models. As a result, when tasked with identifying a spinal 
condition from X-rays, the product included a lengthy runtime 
and moderate accuracy. While this study aims to achieve 
accurate results regarding the classification of spines, it also 
aims to streamline the process, allowing for quicker results 
that could be applied as medical diagnosis in real-time. Using 
a single classical model limits our ability to achieve this goal, 
as all data is processed through this model bit by bit. Working 
towards this goal in the future could include utilizing a larger 
variety of CNN architectures, such as EfficientNet, which is 
designed for optimal performance with fewer parameters 
and computations, making it both accurate and efficient for 
training and inference. Combined with VGG’s straightforward 
architecture, which we utilized in this study, we could capture 
detailed hierarchical features, which can enhance accuracy 
in specific scenarios. By combining these models, either 
through ensemble methods or hybrid approaches, we could 
achieve quicker and more accurate results. Another way 
results could be optimized in the future is through the use 
of a quantum machine learning model. As stated earlier, the 
classical model utilized in this study processed all data bit by 
bit. Quantum machine learning models are capable of parallel 
processing through the use of qubits, which can result in 
multiple states simultaneously, rather than the classical “bit by 
bit” processing that only allows bits to be one state at a time. 
This capability can lead to faster computation on complex 
tasks such as the one in this study. Thus, an adaptation of 
this study in the future could include the testing of a quantum 
machine learning model tasked with the same duty of 
identifying cervical spinal abnormalities. From what we know 
about quantum versus classical machine learning, this new 

Table 1: Comparison of model performance using different image processing techniques. Statistics of the deep CNNs, ResNet50 and 
VGG19, when using different image processing techniques and their combinations, including accuracy, precision, recall, and F1-score. We 
computed the p-value using a paired t-test, which measures the probability of obtaining the observed difference under the null hypothesis 
(no image enhancement). The test statistic was derived from the mean difference in accuracy divided by the standard error of the differences 
across folds.
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quantum model would most likely serve to improve not only 
accuracy but also streamline the identification process as a 
whole.
	 In summary, this study demonstrates that targeted 
preprocessing strategies, particularly wide-area cropping, 
can significantly enhance the diagnostic accuracy and 
clinical applicability of CNN-based models for cervical 
spondylosis classification. These results align with and 
extend current knowledge on the role of preprocessing 
in optimizing deep learning pipelines, highlighting that 
even modest manipulations of medical imaging data can 
yield substantial improvements in model performance. By 
reducing false positives and negatives, wide-area cropping 
contributes not only to improved accuracy but also to greater 
clinical reliability, an essential factor in preventing diagnostic 
delays and mitigating risks of neurological complications. 
Although limitations such as dataset imbalance and reliance 
on classical CNN architectures constrain the present study, 
our findings underscore the importance of methodological 
refinement in advancing the field of computer-aided diagnosis. 
This work supports the integration of optimized CNN models 
into medical diagnostics as a means to enhance precision, 
efficiency, and patient outcomes, contributing to the broader 
objective of leveraging artificial intelligence to improve human 
health.

MATERIALS AND METHODS
Data Preparation
	 The dataset used in this study is the CSXA, made 
publicly available by the Dongzhimen Hospital of Beijing 
University of Chinese Medicine (1). The dataset comprises 
4,963 spinal X-ray images in PNG format, featuring 4,782 
scans from patients showing symptoms of cervical pain or 
cervical spondylosis, and 181 scans from individuals without 
symptoms. Before using deep learning CNNs to detect cervical 
spondylosis, the Cervical Spine X-ray Atlas dataset used 
was cleaned up to ensure smooth processing. The dataset 
ensures that key demographic information—identity, gender, 
and age—is embedded directly into the filename, simplifying 
data management and analysis (1). The dataset comes with 
a Microsoft Excel Spreadsheet that includes 5000 rows 
with distinct sequence numbers, despite only having 4963 
patients. After analysis, we excluded the 37 datapoints lacking 
images. We also found a number of datapoints containing 
mismatched age labels. Since the focus of this study does 
not concern patient age, the age label on the spreadsheet 
was corrected to match the image file name, regardless of 
its accuracy. The cervical spine dataset contains images 
of both healthy spines and those with cervical spondylosis. 
However, it predominantly consists of symptomatic cases, so 
data augmentation was used not only to balance the dataset 
but also to expand its size. This approach introduces real-
world variability, helping to reduce overfitting and improve 
model generalization. For this study, the data were divided 

Figure 3: Overview of deep learning architectures used in this study. (A) ResNet50: A residual network featuring convolutional layers with 
skip connections to mitigate vanishing gradients, structured into blocks of increasing depth and complexity. (B) VGG19: A deep convolutional 
neural network characterized by sequential 3×3 convolutional layers and fully connected layers, designed for high-resolution feature extraction 
and classification. Both architectures are evaluated for their performance in cervical spinal X-ray classification tasks.
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into training and testing sets, with 75% (3,722 images) used 
for training and the remaining 25% (1,241 images) reserved 
for testing.

Preprocessing
	 The Cervical Spine X-ray Atlas (CSXA) dataset underwent 
basic modification and augmentation prior to training to ensure 

that files were processable by the deep learning models 
and to minimize class imbalance (Figure 2). For individual 
images, inconsistent image dimensions, footnotes, labels, 
as well as presumably unintentional borders from the source 
X-rays were resolved by first cropping to 500 × 500 pixels, 
while maintaining the center of the original file. The images 
were then resized to 224 × 224 pixels, the optimal input size 
for most CNN architectures. Additionally, the alpha channel 
was removed because of its redundancy, given all pixels are 
at full opacity, reducing pixels to three channels. Another 
issue within the dataset was an insufficiency of asymptomatic 
patient data, originally comprising only 3.60% of the training 
set and 3.79% of the testing set. Using synthetic minority 
oversampling technique (SMOTE), randomly selected image 
combinations were generated from the smaller class, resulting 
in 3454 more images to append to the aforementioned class 
within the training set and match the class size of symptomatic 
images. Prior to oversampling, we also cleaned the data by 
removing images that did not have a corresponding label and 
vice versa.
	 To test our hypothesis that the image processing 
techniques—especially the area cropping—are a key factor 
for model performance, combinations of image enhancements 
were subsequently applied and tested for effectiveness 
through model accuracy. The first procedure incorporated 
the preprocessing procedure by another study, which targets 
instances in the dataset where the image colors are inverted, 
presenting a white background and dark foreground, instead 
of the originally more frequent dark background and white 
foreground (14). For each image, an inverted and equalized 
version was created by manipulating the grayscale pixel 
values before stacking the images in different orders to 
create two three-channel new image files. In both versions, 
the original grayscale values were in the first channel, while 
the equalized and inverted values were swapped between the 
second and third channels. This procedure further balances 
classes by reducing the large value differences between white-
background and dark-background images by producing those 
of intermediate values. The second procedure uses available 
JavaScript Object Notation (JSON) data from the source 
dataset, including pixel coordinates of each spinal segment, 
to crop out unnecessary objects in images, such as parts of 
the skull. The maximum and minimum x and y coordinates 
from each image determine a rectangular cropping area, 
which has been enlarged up to 200 pixels vertically and 100 
pixels horizontally to contain the entire spine. Two dataset 
duplicates, cropped accordingly, were produced, one in 
which the cropping area was enlarged. In sum, a total of five 
versions of the dataset were used to assess the effectiveness 
of the proposed image processing techniques (Figure 3).
	 To enhance the model’s reliability and adaptability, we 
employed data augmentation techniques during training, 
including random horizontal flips, vertical flips, and rotations. 
The images are first given random horizontal and vertical 
flips, with a probability of 50% each. For the random rotations, 
we applied two sequential random rotations to the input 
images. The first rotation was randomly selected from a 
range of -20 to +20 degrees, while the second rotation was 
randomly chosen from a range of -60 to +60 degrees. Using 
two sequential rotations rather than one allows for angles 
closer to zero degrees to have higher probability, rather than 
all angles from -80 to +80 degrees having uniform probability 

Figure 4: Overview of preprocessing methods applied to cervical 
spinal X-ray images for Convolutional Neural Network (CNN) 
input. The dataset underwent various image processing techniques, 
including cropping, segmentation, and color mapping, to enhance 
model accuracy. Preprocessing focused on standardizing anatomical 
regions and balancing pixel intensity variations between images. 
These techniques generated six dataset versions, incorporating 
combinations of grayscale manipulation, segmentation cropping, and 
augmented color mapping for evaluation.



8 JANUARY 2026  |  VOL 9  |  7Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/25-135

distributions. This is especially important because we expect 
that most spinal x-ray will be oriented closer to a vertically 
straight angle, and using this combination of rotations allows 
us to handle outlier images with the spine oriented in a wider 
angle. Using augmentation ultimately introduced a wider 
range of orientations for the images, potentially reducing 
overfitting and improving the model’s ability to handle real-
world variations in the orientation of the cervical spine in 
unseen data.
	 Finally, to standardize image data for model training, the 
mean and standard deviation of the dataset were calculated 
using an online approach. The batches of images were 
iteratively processed and the sum of pixel values and squared 
pixel values were calculated. Using these accumulated values, 
the mean and standard deviation for each color channel were 
then computed. This process allowed for efficient calculation 
without requiring the entire dataset to be loaded into memory. 
The images from each version of the dataset were then 
normalized to these values to ensure consistent input scaling, 
improving convergence during training and optimizing the 
model’s learning process by reducing skewness.

Convolutional Neural Networks
	 The CNN models are designed to learn hierarchical 
features from the spinal X-ray images through a series of 
convolutional and pooling layers. The VGG19 and ResNet50 
architectures were tested, leveraging those convolutional 
layers to extract spatial patterns from the input images 
(Figure 4).
	 Transfer learning is a method that leverages a model 
trained on one task as a starting point for learning a different, 
but related, task. In this study, transfer learning is used on 
both the ResNet50 and VGG19 model, which are pre-trained 
on ImageNet, a dataset consisting of over 14 million labeled 
images across thousands of categories (15). 
	 Using transfer learning, the pre-trained ResNet50 model 
trained on a large dataset of cervical spine X-ray images, 
which included images with and without spinal conditions. 
To enhance the reliability of the analysis, the dataset was 
preprocessed to isolate the spine region in each X-ray; image 
augmentation techniques were applied to balance the severe 
difference in representation of images with and without spinal 
abnormalities. 
	 The images are processed through the model’s layers, 
with training conducted over 30 epochs. The initial learning 
rate is set to 0.0003 and is reduced by half every 5 epochs 
to optimize performance. The CrossEntropyLoss function is 
used as the criterion, and the models are optimized using the 
Adam optimizer. 

Metrics
	 Model performance was evaluated using accuracy, recall, 
precision, and F1 scores. Accuracy refers to how often the 
model was correct across all diagnoses, while precision 
focuses directly on how many of the model’s positive 
predictions were correct. Recall refers to how many of the 
positive cases the model was able to correctly detect, which 
functions to call out missing positives. A lot of value was 
placed into the F1 score which serves to balance precision 
and recall, taking into account the model’s ability to make 
accurate positive predictions but simultaneously not miss too 
many real ones.

	 To determine whether improvements in model accuracy 
were statistically significant, we used a two-proportion z-test. 
This test compares the proportions of correct classifications 
between two models, typically the baseline model using 
the original dataset and a modified model using specific 
preprocessing techniques. By treating the number of correct 
predictions as “successes” out of the total predictions, 
we applied the z-test to evaluate whether the observed 
differences in accuracy could have occurred by chance. The 
resulting p-values reflect the probability that the accuracy 
improvements were due to random variation rather than the 
preprocessing methods themselves.
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Appendix 

All preprocessing and deep learning code for this project can be found in 

github.com/nknishio/Cervical-Spondylosis.  


