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SUMMARY

Cervical spondylosis is a prevalent degenerative
disorder of the cervical spine and a leading cause
of chronic neck pain and neurological impairment
worldwide. Diagnostic imaging, particularly X-rays,
remains the first-line tool for detection; however,
relianceonmanualinterpretationcontributestodelays,
variability, and potential diagnostic error. This study
addresses the challenge of accurately diagnosing
cervical spondylosis from X-rays by assessing the
effects of various preprocessing procedures on the
efficacy of classical convolutional neural networks
(CNNs) for image classification. To determine whether
preprocessing improves diagnostic outcomes, we
trained CNNs with transfer learning on the Cervical
Spine X-ray Atlas (CXSA) dataset, applied techniques
such as wide-area cropping and color enhancement,
and measured classification accuracy, precision, and
F1-scores. We hypothesized that image processing
via the wide cropping of images would significantly
increase the performance of our model when tasked
with detecting cervical spondylosis in comparison
with other typical preprocessing techniques. Our
most effective approaches, wide-area cropping and
color enhancement, achieved a maximum accuracy
of 95.73%, with wide-area cropping rooting out the
most false negatives and positives. These findings
demonstrate that image preprocessing improves
diagnostic accuracy and efficiency, offering
potential for clinical translation. More broadly, the
methods developed here could be extended to other
musculoskeletal conditions, supporting more reliable,
individualized treatment plans and advancing the role
of deep learning in medical diagnostics.

INTRODUCTION

Medical imaging, especially X-ray, is crucial in diagnosing
various spinal conditions, particularly those occurring in the
cervical spine, which consists of the C1 through C7 vertebrae
(1). Accurate interpretation of X-ray scans is essential
for effective treatment planning. However, many spinal
abnormalities, including congenital deformities, degenerative
conditions like cervical spondylosis, and traumatic injuries,

like fractures or dislocations, manifest as progressive
changes in bone structure that are difficult to discern visually
during initial onset (2). Cervical spondylosis is a degenerative
disease that occurs when the cartilage and bones in the neck
wear down over time, and it often results in chronic neck
pain (2). This degeneration is especially an issue for elderly
people, with around half of adults over the age of 40 and 85 %
of adults over the age of 60 affected by cervical spondylosis
(2). Therefore, there is a great need for studies which focus
on detecting this condition. Furthermore, conditions such
as herniated discs, osteoarthritis, and spinal stenosis may
cause mild misalignments or changes in bone density that are
easily overlooked in conventional imaging (3). The cervical
spine’s complex anatomy, including its role in supporting the
skull and enabling a wide range of motion, complicates the
interpretation of imaging further. Subtle pathologies in this
region can lead to serious outcomes, including chronic pain,
neurological deficits, and impaired mobility, if not identified
and treated promptly (4). While X-rays are widely used due
to their accessibility and cost-effectiveness, their limitations
in contrast resolution and inability to capture soft tissue
abnormalities highlight the need for advanced diagnostic
methods.

The purpose of this study is to utilize classical deep
learning frameworks, namely convolutional neural networks
(CNNs), in order to streamline the process of identifying
cervical spine conditions from X-rays. Deep learning has
been used in efforts to automate and improve the accuracy
of tasks done by humans; thus, we chose to apply this
concept to the biomedical field. This study focuses on image
classification and a popular high-performing deep learning
framework, CNN. A standard CNN is made up of three
primary elements: convolutional layers, pooling layers, and
fully connected layers (5). Convolutional layers use learnable
filters to scan inputimages, capturing features, such as edges,
textures, and increasingly intricate patterns, as the network
progresses (5). Pooling layers, such as those performing
max pooling, shrink the spatial size of the data, preserving
essential information while reducing the computational
load and mitigating the risk of overfitting (5). Finally, fully
connected layers integrate the extracted features from
earlier stages to generate final predictions (5). Additionally,
CNNs can automate feature engineering, eliminating the
need to manually extract features to put together a pattern.
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This capability not only optimizes the classification process
but streamlines it, allowing for a greater volume of cases to
be processed with higher efficiency (6). These components
allow CNNs to identify patterns, often performing complex
tasks with a higher accuracy than the average human. With
this prior knowledge in hand, the purpose of this study was to
evaluate the effects of color and image manipulation on the
classification of cervical spondylosis X-rays through CNNs.

The CNN model used in this study is one at the forefront
of deep learning used in medical image classification, the
ResNet50. ResNet50, a model given by Microsoft, consists
of 50 layers, with convolutional layers, activation layers,
and residual blocks (15). ResNet50 incorporates residual
connections that help prevent the vanishing gradient problem,
which is a phenomenon where gradients shrink significantly as
they backpropagate through the network (7). With this feature,
the model can be effectively trained even at considerable
depth (7). Its balanced size, computational efficiency, and
high compatibility with data augmentation allows the model to
generalize well and maintain success in binary classification
tasks, like it was tasked with in our study. CNNs have been
successfully applied to a wide range of spinal imaging tasks,
consistently demonstrating strong diagnostic performance
across modalities (8—13). For instance, studies using MRI
and CT scans have achieved high accuracy in detecting
conditions such as herniated discs, cervical cord lesions, and
spinal fractures, often exceeding 90% with models such as
ResNet50, VGG19, and MobileNetV2 (8-13). These findings
highlight the utility of deep learning in spinal diagnostics but
also underscore a key limitation: most prior work has focused
on MRl or CT data, which are not always available in resource-
limited clinical settings. By contrast, our study advances this
field by applying CNNs to cervical spine X-rays, which are
more accessible and cost-effective, thereby extending the
potential impact of Al-driven diagnostic tools. However, many
of these studies focus on different spinal conditions orimaging
types, and often rely on standardized toy datasets, reducing
their applicability to real-world situations where image quality
and conditions can vary. Research specifically using CNNs
to analyze cervical spine X-rays—a more accessible and
affordable imaging method—is still quite rare.
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Our study fills this gap by investigating whether CNNs,
specifically the ResNet50 model, can effectively classify
cervical spinal conditions using X-ray images. We used a
newly released public dataset published in 2024 that has
not been studied before, and applied intricate preprocessing
techniques to account for the challenges of imperfect real-
world images.

We hypothesized that image processing via the wide
cropping of images would significantly increase the
performance of our model when tasked with detecting cervical
spondylosis in comparison with other typical preprocessing
techniques. To test this, we trained ResNet50 and VGG19
on both original and modified datasets, applied a variety
of preprocessing techniques, and compared performance
across accuracy, precision, and F1-scores.

Our findings demonstrate that both wide-area cropping
and color enhancement independently improved classification
accuracy to 95.73%, with wide-area cropping providing the
greatest precision and clinical utility. These results suggest
that preprocessing strategies tailored to medical imaging can
significantly reduce diagnostic errors such as false positives
and false negatives. In turn, this highlights the potential of
carefully optimized CNN pipelines to enhance the reliability of
automated cervical spondylosis diagnosis, while future work
should focus on expanding dataset diversity and exploring
hybrid or ensemble modeling strategies to further advance
clinical applicability.

RESULTS

We sought to understand the role of image processing
techniques and their combinations on improving cervical
spondylosis detection. Thus, deep learning models were
trained on versions of the dataset after applying different
image processing techniques and combinations to
experimentally improve performance (Figure 1). The dataset
consisted of 181 healthy spinal x-rays and 4782 diseased
x-rays and was divided into 75% for training purposes and
25% for testing purposes using a fixed random seed for
consistent comparison across all processed versions of the
dataset (Figure 2).

To evaluate the performance before and after applying

- ’,I — ResNet50 Healthy
I 1 w NM - o -
Augmentation Deep Neural Classification
Network

Figure 1: Workflow for cervical spinal X-ray image classification using deep neural networks. The process began with the original
X-ray images, which underwent a 500x500 center crop to standardize dimensions. Next, the cropped images were subjected to preprocessing
and normalization, using various configurations of cropping, color mapping, and intensity standardization, depending on the specific process.
These processed images were then resized to 224x224 pixels to match the input size requirements of the deep neural networks. Augmentation
techniques, such as rotation, flipping, and scaling, were applied to enhance the dataset's diversity and improve model robustness. Two pre-
trained deep neural networks, ResNet50 and VGG19, were employed for feature extraction and classification, and categorized the images
into healthy or diseased classes.
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Figure 2: Distribution of dataset images across classification categories. The dataset contains 181 images classified as healthy and
4782 images classified as diseased. Example X-ray images from each category are shown.

image processing, we evaluated the trained models’
performances using performance metrics like accuracy,
precision, recall, and F1-score (Table 1). First, two deep
learning CNNs, ResNet50 and VGG19, were trained over
30 epochs on the original dataset with no image processing
as a control group (Figure 3). Since the ResNet50 model’s
accuracy was superior to the VGG19 model by approximately
1.5%, ResNet50 was used on the rest of the deep learning
model tests. The accuracy of the model without prior image
modification was 94.19%, which increased to 95.73% during
both instances in which wide cropping and color modification
were separately applied (Table 1). Color enhancement
amplifies contrast and sharpens subtle variations in grayscale
radiographs, making pathological features such as abnormal
curvatures or density shifts more distinguishable to the
network (Figure 4). Wide-area cropping, on the other hand,
reduces irrelevant background information while ensuring
that the cervical region remains in focus, thereby limiting
noise and improving the consistency of inputs (Figure 4).
By applying these preprocessing steps, we aimed to isolate
diagnostically relevant features and minimize distractions,
enabling the models to learn more robust and clinically
meaningful patterns. Utilizing two proportion z tests, we
compared the accuracy of our model when run on the original
dataset in comparison to five, distinctly preprocessed,
versions of the dataset: cropped, wide cropped, color
enhanced, color enhanced and cropped, and color enhanced
and wide cropped. When our data was preprocessed
through color enhancement and regular cropping, the
model produced an accuracy of 94.76% (p = 0.269); when
the data was preprocessed by color enhancement and wide
cropping, the model produced an accuracy of 94.92% (p =
0.213). When our dataset went through only regular cropping,
the model produced an accuracy of 95.48% (p = 0.0732).
Although this was a great improvement from the previous two
methods, it was still not statistically significant. When wide
cropping and color enhancement were tested individually,
their shared accuracy was 95.73%, (p = 0.0406). The
improvement in accuracy by the use of these preprocessing
methods is statistically significant. Although this showcases
how important these two methods are in the study of machine
learning, this study particularly engages with the intersection
of machine learning and the medical domain; thus, it was

important to take into account more than just accuracy. In
terms of precision, wide cropping shows better results with
93.09% precision versus 92.55% precision from the color
modification, and the same occurs when using F1-score as a
metric with scores of 94.24% and 94.11% respectively (Table
1).

DISCUSSION

To determine the most effective preprocessing techniques
for improving convolutional neural network performance in
cervical spondylosis classification, we trained and evaluated
two candidate models, ResNet50 and VGG19. For each
model, we measured accuracy, precision, and F1-scores
across multiple image manipulation strategies. We first
conducted trials using the original dataset and modified
duplicates, when necessary, with our candidate models,
ResNet50 and VGG19, at least one of each. The model with
the highest base accuracy is the ResNet50 model at 94.19%,
which we optimized through image color manipulation and
cropping to a maximum accuracy of 95.73%. In addition
to the higher parameter efficiency and deep structure of
ResNet50, we attribute the high base accuracy to crucial
consistencies in the dataset, such as the same imaging
angles and regions. ResNet50 outperforms VGG19 for
this task, which has a base accuracy of 92.74%, using the
most optimal hyperparameters. Our most effective
image preprocessing procedure combinations were color
manipulation and cropping with a manually widened area—
performed independently on separate, modified dataset
copies. Both color manipulation and widened area cropping
increase the consistency of data and remove unnecessary
visual details that may pose a distraction, allowing the
model to extract and evaluate features with higher accuracy.
They both achieved accuracies of 95.73%. Cropping
with a manually widened area, however, achieved higher
precision and F1-scores, so this processing procedure
offers the best performance and practicality for clinical use
in this study. High accuracy and precision scores indicate
that the model minimizes both false positives and false
negatives, which is critical in medical diagnostics. Reducing
false negatives lowers the risk of missed diagnoses, while
reducing false positives prevents unnecessary treatments
and patient anxiety. However, when both are applied
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EnhLT'IiEL:'I ent Model Accuracy (%) | Precision (%) | F1-score (%) P-value
ResNet50 9419 93.08 93.62 n/a
Original
VEGE19 92.74 92.89 92.81 n'a
Cropped ResNet50 9548 92 54 93.99 0.0732
Wide Cropped! ResNetb0 9573 93.09 94.24 0.0406
Colored ResNet50 8573 9255 9411 0.0406
Colored, - o eNet50 9476 9277 93.73 0.269
Cropped esNe . . . :
Colored, Wide
Cropped ResNet50 9492 9252 93.70 0213

Table 1: Comparison of model performance using different image processing techniques. Statistics of the deep CNNs, ResNet50 and
VGG19, when using different image processing techniques and their combinations, including accuracy, precision, recall, and F1-score. We
computed the p-value using a paired t-test, which measures the probability of obtaining the observed difference under the null hypothesis
(no image enhancement). The test statistic was derived from the mean difference in accuracy divided by the standard error of the differences

across folds.

together, accuracy decreases to 94.92%, which we theorize
is because of excessive loss of necessary information due
to over-processing, exacerbated by an increase in data
ambiguity after data augmentation. This finding supported
our hypothesis that image processing is key for cervical
spondylosis classification tasks—specifically, wide image
cropping is a superior form of image manipulation. This further
supports the idea that image cropping not only produces a
higher accuracy but also reduces the risk of false positives
and negatives, which is particularly important as missing a
cervical spondylosis diagnosis could delay treatment and
increase the risk of neurological complications. Preprocessing
with color manipulation and cropping, individually, as proven
with aforementioned results, can be used to increase the
accuracy of cervical spondylosis diagnosis and add to the
researched advantages of incorporating deep learning into
medical procedures.

The Cervical Spine X-ray Atlas (CSXA) dataset used in
this study contained a severe imbalance between abnormal
and normal spinal X-rays, with 4782 symptomatic X-rays
versus only 181 asymptomatic X-rays (1). In order to combat
this issue, disparity methods, such as image augmentation
and oversampling, were used. However, these techniques
were only able to bridge the gap to a certain extent.
Augmentation generates altered versions of existing images,
and oversampling reuses the same limited samples, neither
of which introduces new biological variability. As a result,
the model remains vulnerable to overfitting and struggles to
generalize to unseen asymptomatic cases. As the majority of
research done in the field of spinal injuries utilizes privately
sourced data, a provision not readily available to us, this
uneven dataset limited the possible accuracy of our model.
In the future, to increase said accuracy, it would be optimal
to find a larger and more diverse dataset, which would allow

our model to more accurately identify asymptomatic spinal
X-rays.

This study utilized only two classical deep learning
models. As a result, when tasked with identifying a spinal
condition from X-rays, the product included a lengthy runtime
and moderate accuracy. While this study aims to achieve
accurate results regarding the classification of spines, it also
aims to streamline the process, allowing for quicker results
that could be applied as medical diagnosis in real-time. Using
a single classical model limits our ability to achieve this goal,
as all data is processed through this model bit by bit. Working
towards this goal in the future could include utilizing a larger
variety of CNN architectures, such as EfficientNet, which is
designed for optimal performance with fewer parameters
and computations, making it both accurate and efficient for
training and inference. Combined with VGG’s straightforward
architecture, which we utilized in this study, we could capture
detailed hierarchical features, which can enhance accuracy
in specific scenarios. By combining these models, either
through ensemble methods or hybrid approaches, we could
achieve quicker and more accurate results. Another way
results could be optimized in the future is through the use
of a quantum machine learning model. As stated earlier, the
classical model utilized in this study processed all data bit by
bit. Quantum machine learning models are capable of parallel
processing through the use of qubits, which can result in
multiple states simultaneously, rather than the classical “bit by
bit” processing that only allows bits to be one state at a time.
This capability can lead to faster computation on complex
tasks such as the one in this study. Thus, an adaptation of
this study in the future could include the testing of a quantum
machine learning model tasked with the same duty of
identifying cervical spinal abnormalities. From what we know
about quantum versus classical machine learning, this new
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Figure 3: Overview of deep learning architectures used in this study. (A) ResNet50: A residual network featuring convolutional layers with
skip connections to mitigate vanishing gradients, structured into blocks of increasing depth and complexity. (B) VGG19: A deep convolutional
neural network characterized by sequential 3x3 convolutional layers and fully connected layers, designed for high-resolution feature extraction
and classification. Both architectures are evaluated for their performance in cervical spinal X-ray classification tasks.

quantum model would most likely serve to improve not only
accuracy but also streamline the identification process as a
whole.

In summary, this study demonstrates that targeted
preprocessing strategies, particularly wide-area cropping,
can significantly enhance the diagnostic accuracy and
clinical applicability of CNN-based models for cervical
spondylosis classification. These results align with and
extend current knowledge on the role of preprocessing
in optimizing deep learning pipelines, highlighting that
even modest manipulations of medical imaging data can
yield substantial improvements in model performance. By
reducing false positives and negatives, wide-area cropping
contributes not only to improved accuracy but also to greater
clinical reliability, an essential factor in preventing diagnostic
delays and mitigating risks of neurological complications.
Although limitations such as dataset imbalance and reliance
on classical CNN architectures constrain the present study,
our findings underscore the importance of methodological
refinement in advancing the field of computer-aided diagnosis.
This work supports the integration of optimized CNN models
into medical diagnostics as a means to enhance precision,
efficiency, and patient outcomes, contributing to the broader
objective of leveraging artificial intelligence to improve human
health.

MATERIALS AND METHODS
Data Preparation

The dataset used in this study is the CSXA, made
publicly available by the Dongzhimen Hospital of Beijing
University of Chinese Medicine (1). The dataset comprises
4,963 spinal X-ray images in PNG format, featuring 4,782
scans from patients showing symptoms of cervical pain or
cervical spondylosis, and 181 scans from individuals without
symptoms. Before using deep learning CNNs to detect cervical
spondylosis, the Cervical Spine X-ray Atlas dataset used
was cleaned up to ensure smooth processing. The dataset
ensures that key demographic information—identity, gender,
and age—is embedded directly into the filename, simplifying
data management and analysis (1). The dataset comes with
a Microsoft Excel Spreadsheet that includes 5000 rows
with distinct sequence numbers, despite only having 4963
patients. After analysis, we excluded the 37 datapoints lacking
images. We also found a number of datapoints containing
mismatched age labels. Since the focus of this study does
not concern patient age, the age label on the spreadsheet
was corrected to match the image file name, regardless of
its accuracy. The cervical spine dataset contains images
of both healthy spines and those with cervical spondylosis.
However, it predominantly consists of symptomatic cases, so
data augmentation was used not only to balance the dataset
but also to expand its size. This approach introduces real-
world variability, helping to reduce overfitting and improve
model generalization. For this study, the data were divided

Journal of Emerging Investigators « www.emerginginvestigators.org

8 JANUARY 2026 | VOL9 | 5



JOURNAL OF

EMERGING INVESTIGATORS

Healthy Diseased

Center Crop
(500x500)

Spine Crop

Wide
Spine Crop

Colored
Center
Crop

Colored
Spine
Crop

Colored
Wide Spine
Crop

Figure 4: Overview of preprocessing methods applied to cervical
spinal X-ray images for Convolutional Neural Network (CNN)
input. The dataset underwent various image processing techniques,
including cropping, segmentation, and color mapping, to enhance
model accuracy. Preprocessing focused on standardizing anatomical
regions and balancing pixel intensity variations between images.
These techniques generated six dataset versions, incorporating
combinations of grayscale manipulation, segmentation cropping, and
augmented color mapping for evaluation.

into training and testing sets, with 75% (3,722 images) used
for training and the remaining 25% (1,241 images) reserved
for testing.

Preprocessing
The Cervical Spine X-ray Atlas (CSXA) dataset underwent
basic modification and augmentation prior to training to ensure

https://doi.org/10.59720/25-135

that files were processable by the deep learning models
and to minimize class imbalance (Figure 2). For individual
images, inconsistent image dimensions, footnotes, labels,
as well as presumably unintentional borders from the source
X-rays were resolved by first cropping to 500 x 500 pixels,
while maintaining the center of the original file. The images
were then resized to 224 x 224 pixels, the optimal input size
for most CNN architectures. Additionally, the alpha channel
was removed because of its redundancy, given all pixels are
at full opacity, reducing pixels to three channels. Another
issue within the dataset was an insufficiency of asymptomatic
patient data, originally comprising only 3.60% of the training
set and 3.79% of the testing set. Using synthetic minority
oversampling technique (SMOTE), randomly selected image
combinations were generated from the smaller class, resulting
in 3454 more images to append to the aforementioned class
within the training set and match the class size of symptomatic
images. Prior to oversampling, we also cleaned the data by
removing images that did not have a corresponding label and
vice versa.

To test our hypothesis that the image processing
techniques—especially the area cropping—are a key factor
for model performance, combinations ofimage enhancements
were subsequently applied and tested for effectiveness
through model accuracy. The first procedure incorporated
the preprocessing procedure by another study, which targets
instances in the dataset where the image colors are inverted,
presenting a white background and dark foreground, instead
of the originally more frequent dark background and white
foreground (14). For each image, an inverted and equalized
version was created by manipulating the grayscale pixel
values before stacking the images in different orders to
create two three-channel new image files. In both versions,
the original grayscale values were in the first channel, while
the equalized and inverted values were swapped between the
second and third channels. This procedure further balances
classes by reducing the large value differences between white-
background and dark-background images by producing those
of intermediate values. The second procedure uses available
JavaScript Object Notation (JSON) data from the source
dataset, including pixel coordinates of each spinal segment,
to crop out unnecessary objects in images, such as parts of
the skull. The maximum and minimum x and y coordinates
from each image determine a rectangular cropping area,
which has been enlarged up to 200 pixels vertically and 100
pixels horizontally to contain the entire spine. Two dataset
duplicates, cropped accordingly, were produced, one in
which the cropping area was enlarged. In sum, a total of five
versions of the dataset were used to assess the effectiveness
of the proposed image processing techniques (Figure 3).

To enhance the model’s reliability and adaptability, we
employed data augmentation techniques during training,
including random horizontal flips, vertical flips, and rotations.
The images are first given random horizontal and vertical
flips, with a probability of 50% each. For the random rotations,
we applied two sequential random rotations to the input
images. The first rotation was randomly selected from a
range of -20 to +20 degrees, while the second rotation was
randomly chosen from a range of -60 to +60 degrees. Using
two sequential rotations rather than one allows for angles
closer to zero degrees to have higher probability, rather than
all angles from -80 to +80 degrees having uniform probability
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distributions. This is especially important because we expect
that most spinal x-ray will be oriented closer to a vertically
straight angle, and using this combination of rotations allows
us to handle outlier images with the spine oriented in a wider
angle. Using augmentation ultimately introduced a wider
range of orientations for the images, potentially reducing
overfitting and improving the model’s ability to handle real-
world variations in the orientation of the cervical spine in
unseen data.

Finally, to standardize image data for model training, the
mean and standard deviation of the dataset were calculated
using an online approach. The batches of images were
iteratively processed and the sum of pixel values and squared
pixel values were calculated. Using these accumulated values,
the mean and standard deviation for each color channel were
then computed. This process allowed for efficient calculation
without requiring the entire dataset to be loaded into memory.
The images from each version of the dataset were then
normalized to these values to ensure consistent input scaling,
improving convergence during training and optimizing the
model’s learning process by reducing skewness.

Convolutional Neural Networks

The CNN models are designed to learn hierarchical
features from the spinal X-ray images through a series of
convolutional and pooling layers. The VGG19 and ResNet50
architectures were tested, leveraging those convolutional
layers to extract spatial patterns from the input images
(Figure 4).

Transfer learning is a method that leverages a model
trained on one task as a starting point for learning a different,
but related, task. In this study, transfer learning is used on
both the ResNet50 and VGG19 model, which are pre-trained
on ImageNet, a dataset consisting of over 14 million labeled
images across thousands of categories (15).

Using transfer learning, the pre-trained ResNet50 model
trained on a large dataset of cervical spine X-ray images,
which included images with and without spinal conditions.
To enhance the reliability of the analysis, the dataset was
preprocessed to isolate the spine region in each X-ray; image
augmentation techniques were applied to balance the severe
difference in representation of images with and without spinal
abnormalities.

The images are processed through the model’s layers,
with training conducted over 30 epochs. The initial learning
rate is set to 0.0003 and is reduced by half every 5 epochs
to optimize performance. The CrossEntropyLoss function is
used as the criterion, and the models are optimized using the
Adam optimizer.

Metrics

Model performance was evaluated using accuracy, recall,
precision, and F1 scores. Accuracy refers to how often the
model was correct across all diagnoses, while precision
focuses directly on how many of the model's positive
predictions were correct. Recall refers to how many of the
positive cases the model was able to correctly detect, which
functions to call out missing positives. A lot of value was
placed into the F1 score which serves to balance precision
and recall, taking into account the model’s ability to make
accurate positive predictions but simultaneously not miss too
many real ones.

https://doi.org/10.59720/25-135

To determine whether improvements in model accuracy
were statistically significant, we used a two-proportion z-test.
This test compares the proportions of correct classifications
between two models, typically the baseline model using
the original dataset and a modified model using specific
preprocessing techniques. By treating the number of correct
predictions as “successes” out of the total predictions,
we applied the z-test to evaluate whether the observed
differences in accuracy could have occurred by chance. The
resulting p-values reflect the probability that the accuracy
improvements were due to random variation rather than the
preprocessing methods themselves.
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Appendix
All preprocessing and deep learning code for this project can be found in

github.com/nknishio/Cervical-Spondylosis.



