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SUMMARY

Pulsars play a critical role in astrophysics, serving as
natural laboratories for studying extreme states of matter,
testing general relativity, and detecting gravitational
waves. With the growing volume of pulsar survey data,
Convolutional Neural Networks (CNNs) are a promising
approach for automating the classification of pulsar
candidates. However, CNN performance is influenced by
hyperparameters, such as the number of epochs, which
refers to one complete iteration through the training
data, and batch size. Our investigation aimed to evaluate
the influence of these hyperparameters on classification
accuracy using prepfold plots. Our hypotheses are as
follows: first, that training and testing accuracy would
increase with more epochs, and second, that training
and testing accuracy would increase with smaller batch
sizes. To test our hypotheses, we randomly assigned 140
samples from the Pulsar Science Collaboratory (PSC)
database to training (100), validation (20), and testing (20)
datasets, and then ran pulsar classification trials using
different epoch values and batch sizes. The findings
of this study partially support the first hypothesis;
classification training and testing accuracy improved
as epochs increased, but only until a threshold number
of 20 epochs, after which both training and testing
accuracy declined. We also found that training and
testing accuracy improved with decreasing batch size,
thus supporting the second hypothesis. Additionally,
the model consistently achieved accuracies exceeding
90% with relatively few epochs. These results confirm
the significant role of hyperparameters in determining
model accuracy and offer compelling evidence for the
viability of automated pulsar candidate classification
for real-world applications. Hence, our work provides a
basis for advancing high-accuracy pulsar classification
models, with the potential of expediting the pulsar
discovery process and accelerating astrophysical
research.

INTRODUCTION

A pulsar is an ultra-dense, revolving neutron star that
emanates a powerful magnetic field from its magnetic poles
(1). It is formed when a star at least eight times the mass of
the sun collapses and explodes in a supernova (2). Pulsars
were first discovered by Jocelyn Bell Burnell and Anthony
Hewish in 1967 (3). Today, 3000 pulsars are known, yet
studies estimate the number of pulsars in our galaxy as
~10%-5, and extrapolation to the universe suggests over a
trillion pulsars in total (4, 5). Evidently, our current database
of known pulsars is relatively small, and many aspects of

pulsars, such as neutron star interiors, still remain a mystery
(6). Therefore, broadening our known pulsar database is
essential to improve our understanding of pulsar population
characteristics, neutron star physics, and their broader role in
astrophysical phenomena (7).

Pulsars are used in a range of astronomical research,
including the study of cosmic rays and stellar evolution, and
the detection of gravitational waves and dark matter (8, 9).
Pulsars’ exceptionally precise “blinking” can be used by
scientists to detect nearby space events and for accurate
calculation of cosmic distances by monitoring changes in
their regularity (9). Recently, cosmic background radiation
has been detected using pulsar timing arrays by the North
American Nanohertz Observatory for Gravitational Waves
(NANOGrav) (10). A further example is NASA’'s Neutron Star
Interior Composition Explorer (NICER), which uses X-ray
observations of 6 precise millisecond pulsars (MSPs) to
explore the nature of matter at these extreme conditions (11).

Because of the misalignment between the magnetic and
rotational axes of a pulsar, as the pulsar spins, radiation
beams sweep through space like a lighthouse that can be
observed by sensitive telescopes when they cross Earth (12).
Pulsars can therefore be detected on Earth as a result of their
lighthouse effect (12). Radio telescopes are primarily used
for pulsar surveys and detection because most pulsars emit
in the radio region of the electromagnetic spectrum, making
them more reliable than X-ray or gamma-ray telescopes
(13). Raw radio data can then be compiled into prepfold
plots (PFPs) by the open-source software package PRESTO
(14-17). By aligning and stacking numerous pulse periods
to improve the periodic signal relative to noise, PRESTO
facilitates visualization of pulsar periodicity through these
PFP charts (14-17). This procedure increases the accuracy
of pulsar detection by making it easier to identify and validate
pulsar signals (14-17).

PFPs contain four major diagnostic subplots which
represent patterns and features that enable pulsar signals to
be distinguished from noise and radio frequency interference
(RFI) (Figure 1) (18). PFPs have been utilized in the PSC
database, which is a citizen science project for students and
teachers that gives access to radio astronomy data from
the Arecibo Observatory and Green Bank Telescope after
requisite training (19). These data are then analyzed to search
for new pulsars.

However, the classification of pulsars remains a largely
manual, human-centered process that is time-intensive and
laborious, which impedes the discovery of new pulsars (20).
Furthermore, there are tremendous volumes of radio data
already collected by telescopes, such as the 3000 terabytes
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Figure 1: Pulsar sample from the Pulsar Science Collaboratory (PSC) dataset. Shown is a Prepfold Plot (PFP) of a pulsar signal
comprising the major diagnostic plots: (A) Integrated Pulse Profile, (B) Time Domain plot, (C) Sub-band plot, and (D) Dispersion measure
(DM) plot. Strong peaks in the integrated pulse profile, a single set of dark parallel streaks across the time domain plot, a broadband signal
in the sub-band plot, and a DM greater than zero are all indicative of a pulsar. Graphic compiled by software package PRESTO and acquired

from the PSC database (19).

of radio data solely from the Arecibo telescope, with volumes
of data predicted to increase exponentially in the coming years
(21). Forinstance, Yue and Li estimate that pulsar search data
volume is expected to increase a 100-fold over a decade at
the Five-hundred-meter Aperture Spherical radio Telescope
(FAST) alone (22). More automated classification techniques
are crucial to keep pace with these expansions.

An attractive field for the development of automated
classification algorithms is machine learning. Studies such as
Zhao et al., use Multimodal Large Language Models (MLLMs)
like StarWhisper-Pulsar to classify pulsar candidates with
labeled data in visual, textual, and numerical modalities (23).
Convolutional neural networks (CNNs) are an especially
promising option for pulsar candidate classification, as they
offer a robust method for distinguishing pulsars from non-
pulsar signals. Filters (kernels) applied to small regions of
the input PFP graphic from convolutional layers can scan
the image and then construct feature maps that capture local
patterns and features such as edges or peaks in pulsar plots

(24). A noteworthy study by Zeng et al. used a CNN to deduce
patterns characteristic of pulsars from the diagnostic subplots
with a classification accuracy of approximately 98.9%,
missing only 4 real pulsars out of 326 candidates (25).

In machine learning, a model's learning process, and
hence its learning outcomes, are governed by a configuration
setting known as a hyperparameter. Unlike parameters,
which are the model's internal variables learned and updated
from the data during training, hyperparameter values are set
before the training begins (26). Hyperparameters influence
both the training and testing accuracy of machine learning
models by affecting how they learn from the input data (26).
Training accuracy gives us insights into how well the model
can recognize and learn patterns from the training dataset
(27). Testing accuracy, by contrast, gives a measure of how
often a model correctly predicts the outcome on the testing
dataset and evaluates the model’s generalizing abilities and
performance in categorizing unseen data (27). Both metrics
are essential for a comprehensive evaluation of a machine
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learning model (27).

Optimal model hyperparameters help efficient
convergence, in addition to reducing overfitting, where
the model memorizes training data but fails on new data,
and underfitting, where the model is too simple to capture
meaningful patterns (28). Proper hyperparameter tuning
ensures the model achieves both accurate learning and
good generalization to unseen data. In a recent 2024 study,
Wojciuk et al. showed a 6% improvement in CNN classification
accuracy by optimizing hyperparameters (29). Therefore,
understanding how individual hyperparameters affect model
performance and accuracy is crucial to selecting the optimal
hyperparameters.

An important hyperparameter is the number of epochs.
Each full iteration of the training dataset is called an epoch,
and the number of epochs greatly influences both training
and testing accuracy (30). Multiple studies, such as Ajayi
and Ashi (2023), observe that training and testing accuracies
generally improve with increasing epoch number because the
model has increased opportunities to update and optimize
parameters and weights while minimizing the loss function,
which quantitatively measures the difference between the
model’s predictions and the actual target values (31). Another
critical hyperparameter to consider is batch size. The batch
size indicates how many samples are analyzed in a single
iteration prior to model parameters being updated, and it
significantly influences the model’s learning process and
generalizing capabilities (30). Larger batch sizes generally
lead to sharper minima in the loss landscape, meaning poorer
recognition of patterns during training, resulting in lower test
accuracy (32).

Our study aimed to investigate the influence of epoch
and batch size on CNN's learning efficacy and generalizing
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capabilities for pulsar classification by measuring model
training and testing accuracies. We hypothesized that training
and testing accuracies would both increase with increasing
epoch number and decrease with increasing batch size. To
assess training and testing accuracies, we split our dataset
of 140 PFP samples from the PSC database, assigning 100
samples to training, 20 to validation, and 20 to testing. All
three datasets were then used as inputs to a TensorFlow
CNN model. We then carried out multiple trials using varying
epochs and batch sizes while recording corresponding
training and testing accuracies. We found that training and
testing accuracies indeed improved with increasing epochs;
however, only until a critical epoch threshold of 20 epochs,
after which accuracy declined. Notably, the model consistently
achieved accuracies higher than 90% with a relatively small
number of epochs. Furthermore, we found that training and
testing accuracies decreased with larger batch sizes. These
results further extend our knowledge of how hyperparameters,
like epochs and batch size, affect overall model accuracy
and offer powerful evidence of models being able to reach
high classification accuracies with optimal hyperparameter
selection. Taken together, these data demonstrate the viability
of automated pulsar candidate classification for real-world
applications, which could streamline the pulsar discovery
process and accelerate astrophysical research.

RESULTS

Our goal was to measure the model’s training and testing
accuracy while systematically varying epochs and batch size,
in order to examine how these hyperparameters affect the
CNN's learning effectiveness and, thereby, its classification
performance in pulsar identification. The study used a dataset
of 140 samples, split into training, validation, and testing sets.

Legend
*  Trials
— Regression line

Benchmark for random guessing

Figure 2: Positive correlation between model training accuracy and epochs. Using 100 training samples over a progressively increasing
number of epochs (30 trials per number of epochs), we measured the model’s training accuracy. Our model is a convolutional neural network
built with TensorFlow Keras, comprising two convolutional layers that extract features from the PFP, each followed by max pooling to reduce
dimensionality of the feature maps. These are then flattened before passing through two dense layers for classification. The model was trained
using the Adam optimizer with binary cross-entropy loss. Three to seven training epochs were used. Each black dot represents a trial, with
some hidden as their accuracy scores coincide with those of other trials. The dotted orange line represents random guessing, and the blue
line represents the least-squares line of best fit. Linear regression showed a significant relationship (t-test, p < 0.001) with an R? value of 0.37.
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For each epoch and batch size setting, we conducted 30
trials, progressively increasing these values and recording
the corresponding training and testing accuracies.

Investigating the Number of Epochs Against Model
Training and Testing Accuracy

Model accuracy is substantially influenced by the number
of epochs trained for. Studies such as those by Ajayi and
Ashi demonstrate that model accuracy rises with increasing
epochs (31). A linear regression analysis of our experimental
results showed a significant positive correlation between
model training accuracy and number of epochs, with an
R? value of 0.37, indicating 37% of the variance in training
accuracy was explained by the number of epochs (t-test,
R?=0.37, p<0.001) (Figure 2). The model’s testing accuracy
also improved with increasing epochs (t-test, R? = = 0.28,
p < 0.001) (Figure 3). Interestingly, at initial epochs, the
CNN persistently reached low accuracies, irrespective of the
initial randomly generated neural network weights (Figures 2
and 3). However, after roughly 6 epochs, the training and
testing accuracies were observed to consistently achieve
high (>90% values), regardless of the initialization of the
weights (Figures 2 and 3).

We also ran trials with 10, 20, 50, and 100 training epochs
to evaluate if there was a limit to model improvement. Training
accuracies varied across different epoch values, with mean
(SD) values of 85.3% (SD = 23.5), 90.0% (SD = 21.1), 81.2%
(SD = 24.3), and 71.9% (SD = 24.3) at 10, 20, 50, and 100
epochs respectively. Testing accuracies followed a similar
trend, with mean (SD) values of 82.0% (SD = 29.7), 89.3%
(SD =23.3), 81.3% (SD = 24.9), and 66.7% (SD = 29.3) across
the same epochs. Both accuracies peaked around 20 epochs
before declining; notably, training accuracy decreased from
90.0% (margin of error of 15.1%) to 71.9% (margin of error of
17.4%), and testing accuracy declined from 89.3% (margin of
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error of 16.7%) to 66.7% (margin of error of 21.0%) between
20 and 100 epochs. All errors are reported with a 95%
confidence interval.

Investigating Batch Size Against Model Training and
Testing Accuracy

Significant relationships have been identified between
batch size and model performance. In a study by Thakur,
smaller batch sizes improved generalization and testing
accuracies, whereby a batch size of 16 performed the best,
and a batch size of 256 performed the worst (33). Similarly,
measuring the training and testing accuracy at increasing
batch sizes allows us to determine if our model may become
more accurate in pulsar signal classification.

We identified a negative correlation between batch
size and both training and testing model accuracy for
pulsar classification (Figures 4 and 5). As the batch size
increased, training accuracy decreased (t-test, R? = 0.29,
p < 0.001) (Figure 4). Testing accuracy also decreased as
batch size increased (t-test, R? = 0.22, p < 0.001) (Figure 5).
Interestingly, by batch sizes of 75 and 100, the model almost
consistently achieved a testing accuracy of 50% (Figure 6).
A 96.7% (29 times out of 30) recurrence with a 2.05% margin
of error (95% confidence interval) was observed for the batch
size of 75. A recurrence of 96.7% (29 times out of 30) with a
2.39% margin of error (95% confidence interval) was seen
for the batch size of 100, suggesting that the model failed to
capture meaningful patterns from the data, and was therefore
performing no better than random guessing.

DISCUSSION

We identified a positive correlation between the number of
epochs and model training and testing accuracy, which held
until a critical threshold of approximately 20 epochs. Beyond
this point, both training and testing accuracies declined.

Legend
*  Trials
— Regression line

Benchmark for random guessing

Figure 3: Positive correlation between model testing accuracy and epochs. Evaluated on 20 test samples over a progressively increasing
number of epochs (30 trials per number of epochs), we measured the model’s testing accuracy. Three to seven training epochs were used.
Each black dot represents a trial, with some hidden as their accuracy scores coincide with those of other trials. The dotted orange line
represents random guessing, and the blue line represents the least-squares line of best fit. Linear regression showed a significant relationship

(t-test, p < 0.001) with an R? value of 0.28.
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100

Figure 4: Negative correlation between model training accuracy and batch size. Using 100 training samples with 5 epochs over a
progressively increasing batch size (30 trials per batch size), we measured the model’s training accuracy. We performed trials at batch sizes
of 5, 10, 25, 50, 75, and 100. Each black dot represents a trial, with some hidden as their accuracy scores coincide with those of other trials.
The dotted orange line represents random guessing, and the blue line represents the least-squares line of best fit. Linear regression showed

a significant relationship (t-test, p < 0.001) with an R? value of 0.29.
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Figure 5: Negative correlation between model testing accuracy and batch size. Evaluated on 20 test samples with 5 epochs over a
progressively increasing batch size (30 trials per batch size), we measured the model’s testing accuracy. We performed trials at batch sizes
of 5, 10, 25, 50, 75, and 100. Each black dot represents a trial, with some hidden as their accuracy scores coincide with those of other trials.
The dotted orange line represents random guessing, and the blue line represents the least-squares line of best fit. Linear regression showed

a significant relationship (t-test, p < 0.001) with an R? value of 0.22.

This result, however, should be interpreted with caution, as
the observed decline is based on empirical data, and further
investigation with intermediate epoch values is necessary
to precisely locate the peak. We also observed a significant
negative correlation between batch size and training and
testing accuracies. |Intriguingly, the model's accuracy
consistently hovered around 50% for batch sizes of 75 and
100.

The most striking observation to emerge from the data
comparison during the investigation of epoch number was
that training and testing accuracies decreased after a certain
number, implying a critical threshold value of epochs. We
expect this is due to the occurrence of overfitting, whereby
after an excessive number of epochs, models may start to
memorize the training sets rather than learning generalizable
patterns (34). This results in poorer performance as hidden
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Figure 6: Consistent hovering of testing accuracy at 50%, specifically at batch sizes of 75 and 100. Bubble size represents the number
of trials that achieved the corresponding testing accuracy at each batch size. Evaluated on 20 test samples with 5 epochs over a progressively
increasing batch size (30 trials per batch size), we measured the model’s testing accuracy. We performed trials at batch sizes of 5, 10, 25, 50,
75, and 100. For batch size 75, 29 out of 30 trials (96.7%) showed a testing accuracy of 50%, with a margin of error of 2.05% (95% confidence
interval). Likewise, at batch size 100, 29 out of 30 trials (96.7%) consistently yielded a testing accuracy of 50%, with a margin of error of 2.39%

(95% confidence interval).

layers in the model increasingly focus on noisy or irrelevant
patterns rather than meaningful features. This also applies
to training accuracy, where the model becomes excessively
specialized to individual training images, thereby hindering
its ability to generalize to other training images. This
phenomenon is seen in other studies, such as Moshe et al.,
where test accuracy in PreResNet experiments initially rose
with epochs, but plateaued after 50 iterations (35). Moshe et
al. observed that the model reached peak validation accuracy
at 80 epochs, beyond which explanation-quality metrics, like
sensitivity, deteriorated despite stable loss values (35).

We should, however, raise a note of caution with regard to
our findings at higher epoch values. Given that our findings
are based on a limited number of trials, due to their especially
lengthy run times, the results from our analysis had relatively
high margins of error and should thus be treated with caution.
In addition to the limited trials, we expect these high margin
errors likely arise as a result of the inherent randomness
involved in any machine learning model (36). Therefore,
further data collection would be necessary to confirm how
excessive epochs affect model accuracy in the pulsar
candidate classification problem.

We also demonstrated that even with relatively few epochs,
training and testing accuracies remained considerably high,
and almost consistently reached accuracies exceeding
90% by 6 and 7 epochs. Achieving these results with few
epochs demonstrates the model's computational efficiency,
as it reduces training time as well as computational cost,
thus highlighting the viability of CNNs for automated pulsar
classification in real-world applications. However, it is
necessary to recognize that the exact optimal number of
epochs may vary with dataset size, and larger datasets
may require correspondingly higher epochs to learn all the
patterns.

The correlation between batch size and training and
testing accuracy is also noteworthy. Importantly, we believe
the negative correlation arises because smaller batch sizes
can introduce beneficial noise that aids in avoiding local
minima, while larger batch sizes may lead to less optimal
convergence (37). This is because larger batch sizes
typically result in convergence to sharp minima, which have
poor generalization. Conversely, smaller batch sizes utilize
stochastic noise that helps the model escape these sharp
regions and find robust flat minima, resulting in better overall
accuracy (30). This has been observed in previous studies,
such as Keskar et al., where ResNet, VGG, and LSTM
architectures were trained on CIFAR-10, CIFAR-100, and
Penn Treebank datasets (32). Comparing batch sizes ranging
from 256 to 8192, they showed that large-batch training was
prone to converging to a sharp minima, hence leading to
worse generalization and poorer model performance (32).

Additionally, a notable occurrence was observed for batch
sizes of 75 and 100: the model's testing accuracy plateaued
around 50%, implying the model was performing no better
than a random guesser in classification. This may arise as a
result of an inadequacy in training, that is to say, the model
not learning meaningful patterns from the data (38). This
is likely due to the abovementioned reasons, whereby with
large batch sizes, there are infrequent updates and therefore
convergence to sharp minima.

Our work has several limitations. First, the current study
was limited by the amount of data available to us. There is a
marked deficiency of open-access pulsar data available, and
while many deep learning models are trained and evaluated
on hundreds of thousands of samples, we were restricted
to the 298 PFP samples we found on the PSC database.
Consequently, this limits our capacity to identify trends
with vast datasets. Second, the pulsar PFPs in our dataset
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exhibited extremely strong signals. While this resulted in the
clear detection of features homogeneous to pulsar signals,
these findings may not be transferable to datasets with weak
or atypical pulsar plots. Moreover, signals from unique pulsar
types, such as binary pulsars, magnetars, and MSPs, with
more eccentric features represented in their PFPs, were not
constituents of the dataset. For this reason, our investigation
with respect to pulsar classification accuracy may not capture
the full range of patterns and variability; thus, our findings
are not representative of broader datasets that may contain
these.

Our investigations so far have only been on a small scale,
given the restricted dataset size. However, for subsequent
studies, we aim to expand our dataset and broaden our data
pool to incorporate pulsar plots of weaker pulsar signals. This
will allow us to more extensively evaluate the classification
capabilities against hyperparameters, such as epochs and
batch size. We also seek to diversify our dataset to include a
variety of unique pulsar types to better verify that our findings
are comprehensive and generalizable to an extensive
dataset. This will allow us to ensure the practical application
of this research.

Furthermore, since the radio data collected by telescopes
is rarely evenly distributed, we plan to analyze how training
the model with disproportionate distributions of pulsar and
non-pulsar classes influences performance. Prior work by
Lee et al. investigating pulsar prediction from the high time-
resolution (HTRU2) dataset, has included dataset imbalance
as a major consideration in their study, with a dataset
containing only 1639 pulsar samples out of 17898 total
samples and leading to a 1:10 ratio between pulsars and non-
pulsars (39). By investigating optimal hyperparameters for
imbalanced datasets, we can develop more robust algorithms
that effectively tackle the inherent class imbalance in pulsar
data, thus enabling their useful implementation in real-world
pulsar classification tasks where imbalanced datasets are
prevalent (40).

Additionally, while the correlations between
hyperparameters and model accuracy were statistically
significant (p < 0.001), the relatively low R? values (0.22
to 0.37) show that these hyperparameters explain only a
modest proportion of the variance. This is often seen in
complex machine learning problems involving biological and
astronomical data, as many factors such as model architecture
and optimization settings influence accuracy (41). Therefore,
while the hyperparameters epochs and batch size have a
clear effect on classification accuracy, further experimental
investigations of additional model functions are necessary to
fully understand and improve classification accuracy.

Moreover, we are interested in conducting an in-depth
exploration of how model training and testing accuracies
vary within the range of values between 20 to 50 epochs to
identify the epoch value at which model accuracy ceases to
improve and begins to decline. This would provide us with
an approximately optimal number of epochs for classifying
pulsars, given the current dataset. These insights can
aid us in making more informed hyperparameter choices
for other pulsar classification models and datasets, with
the future potential for scalability to larger datasets. We
also aim to conduct further investigations involving multi-
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class classification of pulsars, noise, and RFI rather than
binary classification to evaluate which type would result in
higher model classification accuracy with the respective
hyperparameters. We conjecture that binary classification
would perform best due to the increased complexities
presented by multi-class classification with learning multiple
decision boundaries (42). This is in line with previous results
from studies, such as Murthy et al., who reported achieving
up to 98.9% accuracy for binary classification in contrast to
94.6% for multiclass classification (43).

In summary, the CNN image classification model using
PFP inputs improved its training and testing accuracy with
more training epochs and a decreasing batch size. The
correlation between epochs and training and testing accuracy
is interesting; we found that these accuracies decline after
a certain threshold number of epochs. Further analysis
also revealed that testing accuracy plateaued at 50% for
larger batch sizes, implying random guessing. These results
offer compelling evidence for the substantial role played
by hyperparameters, such as epochs and batch size, on
overall model accuracy. This stresses the importance of
informed and optimal hyperparameter choices to ensure
the highest pulsar classification accuracy. Furthermore, we
found that the simple TensorFlow CNN model used was able
to achieve high training and testing accuracies at relatively
small epochs, consistently reaching accuracies greater than
90% by 7 epochs. The CNN’s ability to decipher complex
patterns in PFPs through convolutional layers, as well as the
data pipeline feature utilized to avoid computational memory
issues, ensures exceptional scalability with larger datasets.
Taken together, these findings implicate a significant practical
viability for real-world applications of pulsar candidate
classification using CNNs.

Our study hence provides a blueprint for ideal
hyperparameter selection and constitutes important initial
findings that will help models efficiently achieve high
classification accuracies, automating the pulsar candidate
classification process and expediting the discovery of new
pulsars to augment our existing database. These discoveries
of new pulsars have great potential to extend astrophysical
knowledge and research in areas such as cosmology,
gravitational waves, ultra-dense states of matter, extreme
particle acceleration, and stellar evolution.

MATERIALS AND METHODS
Data Sources and Acquisition

The PFPs used as inputs for the model were obtained
from the PSC database (19). Prior to gaining access to the
database, we were required to complete the PSC Online
Training Workshop and its consecutive evaluation to acquire
certification (44). The data used in our study were collected
through the Arecibo 327 MHz (AO327) drift pulsar survey.
Radio data was collected in this survey at a frequency of
327 MHz, featuring a frequency resolution of 24 kHz and a
time resolution of 82 ys (45). Raw radio data from the AO327
survey were compiled into PFPs by the open-source PRESTO
software package (14). Pulsar signal PFPs show strong peaks
in the integrated pulse profile, broadband signal in the sub-
band plot, parallel dark streaks through the time domain plot,
and a DM greater than zero (Figure 1) (18). Conversely, RFI
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is characterized by a diminutively low, or customarily zero
DM, indicating its origin from terrestrial sources, and signals
often appear as horizontal lines or narrow spikes at specific
frequencies without the dispersion curve (18). Due to the
random nature of noise, there are no clear or discernible
patterns observed in noise PFPs (18).

We utilized the Python libraries ‘Selenium’, ‘pickle’, ‘PIL,
‘csv’, ‘os’, ‘PyDrive’, and ‘NumPYy’ to pull the radio datain JSON
format directly from the PSC site database (46-52). This was
followed by recompiling the complete PFP graphic and saving
it into the respective folders based on plot type corresponding
to either pulsar, RFI, or noise. In the total of 298 samples,
70 were pulsar instances, 91 were RFI instances, and 137
were noise instances. The resulting plots were then further
split into 2 sets, that is, “Pulsars” (n = 70) and “Not Pulsars”
(n =228). To account for the imbalance in the dataset, 35 RFI
and 35 noise plots were ultimately used as the non-pulsar
plots, totaling 70, which is the size of the pulsar class. We
refined the dataset to create evenly distributed classifications,
promoting equal representation and improving the reliability
of the analysis of our model.

Data Preprocessing

All image preprocessing and investigations were
conducted in Google Colab using Python (version 3.10). In
contrast to preloading the entirety of the dataset into memory,
the Keras utility “image_dataset_from_directory” generator
was used to build a data pipeline, whereby the directory
specified was located in a Google Drive (53-55). This method
presented a neater and more practical solution, with it being
an optimal way to integrate the data into Google Colab, as
well as contributing to future scalability capacities (55). This
utility also built the classes and labels comprehensible by the
model, with 1 corresponding to “Pulsar” and 0 corresponding
to “Not Pulsar” (55). In addition to this, it implemented
preprocessing, including resizing all input images to 256 by
256 pixels, with a batch size configured according to the
specific investigation (55).

Following this, a numpy iterator was implemented to
access the generator from the data pipeline as numpy arrays
and to obtain the data required in consecutive batches using
the .next() method. Lastly, the values in the resulting numpy
array of shape (256, 256, 3) were normalized to between 0
and 1, which helps reduce computational complexity, making
it less computationally intensive and leading to faster training
times and reduced processing power requirements (56).

Experimental Setup

The total dataset was effectively split with 100 samples
assigned to training, 20 assigned to validation, and 20
assigned to testing. To maintain equitable representation,
each division contained equal aggregates of pulsar and non-
pulsar plots.

Our study used a basic TensorFlow Keras framework
consisting of two convolutional layers, two max pooling
layers, one flatten layer, and two dense layers. To compile
the model for training, the Adam optimizer was used, with
loss evaluated using BinaryCrossentropy() and the tracked
metric being accuracy (57). For testing, the true value (true
label) was compared to the that value (predicted answer), and

https://doi.org/10.59720/25-132

evaluated utilizing the precision, recall, and accuracy metrics.
The complete code can be found at our GitHub repository
(58).

We utilized R version 4.5.0 in the RStudio platform to
examine the trial results (59, 60). We integrated ".csv" result
files and computed statistics using the R packages "readr",
"dplyr", and "tidyverse” (61-63). Additionally, we created
the graphs of the findings using the R package "ggplot2”
(64). A t-test and its p-values were utilized alongside linear
regression analysis to measure the statistical significance of
our findings. Our GitHub repository contains the statistical
analysis code, located in the file “R Statistical Analysis and
Graphing Script” (58).

Investigating the Number of Epochs Against Model
Training and Testing Accuracy

The experiment aimed to investigate the influence of
number of epochs on both training and testing accuracy. We
thus varied the number of training epochs while keeping all
other model hyperparameters the same. The batch size was
also kept at a constant of 5. This choice was guided by the
small scale of our dataset, as it allowed 24 batches per epoch,
therefore allowing a sufficient number of updates per epoch
and hence more opportunities to observe accuracy trends
across epochs.

Our experimental setup bears a close resemblance to the
one used by Nakra et al. (65). Thirty trials were conducted per
epoch to uphold the principles of the Central Limit Theorem
and establish a normal distribution, and corresponding
training and testing accuracy values were recorded to a CSV
file. Three epochs were initially used, and the same method
was applied for additional epochs from four through seven.
To establish control in our experiment, the Colab notebook
kernel was killed after each trial, and the entire code was
reinitialized. We then also experimented with 10, 25, 50, and
100 epochs, but because these trials had much longer run
times, we only collected 10 trials for each epoch value.

Investigating Batch Size Against Model Training and
Testing Accuracy

All other model hyperparameters were kept the same, with
5 epochs used. This was chosen to strike an optimal balance
between computational time and the need for sufficient
epochs to allow the observation of significant trends, with
this number deemed appropriate owing to the dataset’s small
scale. Initially, a batch size of 5 was used, and we ran 30
trials and recorded training and test accuracies to a CSV file.
This procedure was repeated for a batch size of 10, 25, 50,
75, and 100. To maintain control in our experiment, the Colab
notebook kernel was killed after each trial, and the entire
code was reinitialized.
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