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pulsars, such as neutron star interiors, still remain a mystery 
(6). Therefore, broadening our known pulsar database is 
essential to improve our understanding of pulsar population 
characteristics, neutron star physics, and their broader role in 
astrophysical phenomena (7). 

Pulsars are used in a range of astronomical research, 
including the study of cosmic rays and stellar evolution, and 
the detection of gravitational waves and dark matter (8, 9). 
Pulsars’ exceptionally precise “blinking” can be used by 
scientists to detect nearby space events and for accurate 
calculation of cosmic distances by monitoring changes in 
their regularity (9). Recently, cosmic background radiation 
has been detected using pulsar timing arrays by the North 
American Nanohertz Observatory for Gravitational Waves 
(NANOGrav) (10). A further example is NASA’s Neutron Star 
Interior Composition Explorer (NICER), which uses X-ray 
observations of 6 precise millisecond pulsars (MSPs) to 
explore the nature of matter at these extreme conditions (11).

Because of the misalignment between the magnetic and 
rotational axes of a pulsar, as the pulsar spins, radiation 
beams sweep through space like a lighthouse that can be 
observed by sensitive telescopes when they cross Earth (12). 
Pulsars can therefore be detected on Earth as a result of their 
lighthouse effect (12). Radio telescopes are primarily used 
for pulsar surveys and detection because most pulsars emit 
in the radio region of the electromagnetic spectrum, making 
them more reliable than X-ray or gamma-ray telescopes 
(13). Raw radio data can then be compiled into prepfold 
plots (PFPs) by the open-source software package PRESTO 
(14–17). By aligning and stacking numerous pulse periods 
to improve the periodic signal relative to noise, PRESTO 
facilitates visualization of pulsar periodicity through these 
PFP charts (14–17). This procedure increases the accuracy 
of pulsar detection by making it easier to identify and validate 
pulsar signals (14–17). 

PFPs contain four major diagnostic subplots which 
represent patterns and features that enable pulsar signals to 
be distinguished from noise and radio frequency interference 
(RFI) (Figure 1) (18). PFPs have been utilized in the PSC 
database, which is a citizen science project for students and 
teachers that gives access to radio astronomy data from 
the Arecibo Observatory and Green Bank Telescope after 
requisite training (19). These data are then analyzed to search 
for new pulsars. 

However, the classification of pulsars remains a largely 
manual, human-centered process that is time-intensive and 
laborious, which impedes the discovery of new pulsars (20). 
Furthermore, there are tremendous volumes of radio data 
already collected by telescopes, such as the 3000 terabytes 
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SUMMARY
Pulsars play a critical role in astrophysics, serving as 
natural laboratories for studying extreme states of matter, 
testing general relativity, and detecting gravitational 
waves. With the growing volume of pulsar survey data, 
Convolutional Neural Networks (CNNs) are a promising 
approach for automating the classification of pulsar 
candidates. However, CNN performance is influenced by 
hyperparameters, such as the number of epochs, which 
refers to one complete iteration through the training 
data, and batch size. Our investigation aimed to evaluate 
the influence of these hyperparameters on classification 
accuracy using prepfold plots. Our hypotheses are as 
follows: first, that training and testing accuracy would 
increase with more epochs, and second, that training 
and testing accuracy would increase with smaller batch 
sizes. To test our hypotheses, we randomly assigned 140 
samples from the Pulsar Science Collaboratory (PSC) 
database to training (100), validation (20), and testing (20) 
datasets, and then ran pulsar classification trials using 
different epoch values and batch sizes. The findings 
of this study partially support the first hypothesis; 
classification training and testing accuracy improved 
as epochs increased, but only until a threshold number 
of 20 epochs, after which both training and testing 
accuracy declined. We also found that training and 
testing accuracy improved with decreasing batch size, 
thus supporting the second hypothesis. Additionally, 
the model consistently achieved accuracies exceeding 
90% with relatively few epochs. These results confirm 
the significant role of hyperparameters in determining 
model accuracy and offer compelling evidence for the 
viability of automated pulsar candidate classification 
for real-world applications. Hence, our work provides a 
basis for advancing high-accuracy pulsar classification 
models, with the potential of expediting the pulsar 
discovery process and accelerating astrophysical 
research.

INTRODUCTION
A pulsar is an ultra-dense, revolving neutron star that 

emanates a powerful magnetic field from its magnetic poles 
(1). It is formed when a star at least eight times the mass of 
the sun collapses and explodes in a supernova (2). Pulsars 
were first discovered by Jocelyn Bell Burnell and Anthony 
Hewish in 1967 (3). Today, 3000 pulsars are known, yet 
studies estimate the number of pulsars in our galaxy as 
~104-5, and extrapolation to the universe suggests over a 
trillion pulsars in total (4, 5). Evidently, our current database 
of known pulsars is relatively small, and many aspects of 
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of radio data solely from the Arecibo telescope, with volumes 
of data predicted to increase exponentially in the coming years 
(21). For instance, Yue and Li estimate that pulsar search data 
volume is expected to increase a 100-fold over a decade at 
the Five-hundred-meter Aperture Spherical radio Telescope 
(FAST) alone (22). More automated classification techniques 
are crucial to keep pace with these expansions. 

An attractive field for the development of automated 
classification algorithms is machine learning. Studies such as 
Zhao et al., use Multimodal Large Language Models (MLLMs) 
like StarWhisper-Pulsar to classify pulsar candidates with 
labeled data in visual, textual, and numerical modalities (23). 
Convolutional neural networks (CNNs) are an especially 
promising option for pulsar candidate classification, as they 
offer a robust method for distinguishing pulsars from non-
pulsar signals. Filters (kernels) applied to small regions of 
the input PFP graphic from convolutional layers can scan 
the image and then construct feature maps that capture local 
patterns and features such as edges or peaks in pulsar plots 

(24). A noteworthy study by Zeng et al. used a CNN to deduce 
patterns characteristic of pulsars from the diagnostic subplots 
with a classification accuracy of approximately 98.9%, 
missing only 4 real pulsars out of 326 candidates (25).

In machine learning, a model's learning process, and 
hence its learning outcomes, are governed by a configuration 
setting known as a hyperparameter. Unlike parameters, 
which are the model's internal variables learned and updated 
from the data during training, hyperparameter values are set 
before the training begins (26). Hyperparameters influence 
both the training and testing accuracy of machine learning 
models by affecting how they learn from the input data (26). 
Training accuracy gives us insights into how well the model 
can recognize and learn patterns from the training dataset 
(27). Testing accuracy, by contrast, gives a measure of how 
often a model correctly predicts the outcome on the testing 
dataset and evaluates the model’s generalizing abilities and 
performance in categorizing unseen data (27). Both metrics 
are essential for a comprehensive evaluation of a machine 

Figure 1: Pulsar sample from the Pulsar Science Collaboratory (PSC) dataset. Shown is a Prepfold Plot (PFP) of a pulsar signal 
comprising the major diagnostic plots: (A) Integrated Pulse Profile, (B) Time Domain plot, (C) Sub-band plot, and (D) Dispersion measure 
(DM) plot. Strong peaks in the integrated pulse profile, a single set of dark parallel streaks across the time domain plot, a broadband signal 
in the sub-band plot, and a DM greater than zero are all indicative of a pulsar. Graphic compiled by software package PRESTO and acquired 
from the PSC database (19).
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learning model (27).
Optimal model hyperparameters help efficient 

convergence, in addition to reducing overfitting, where 
the model memorizes training data but fails on new data, 
and underfitting, where the model is too simple to capture 
meaningful patterns (28). Proper hyperparameter tuning 
ensures the model achieves both accurate learning and 
good generalization to unseen data. In a recent 2024 study, 
Wojciuk et al. showed a 6% improvement in CNN classification 
accuracy by optimizing hyperparameters (29). Therefore, 
understanding how individual hyperparameters affect model 
performance and accuracy is crucial to selecting the optimal 
hyperparameters. 

An important hyperparameter is the number of epochs. 
Each full iteration of the training dataset is called an epoch, 
and the number of epochs greatly influences both training 
and testing accuracy (30). Multiple studies, such as Ajayi 
and Ashi (2023), observe that training and testing accuracies 
generally improve with increasing epoch number because the 
model has increased opportunities to update and optimize 
parameters and weights while minimizing the loss function, 
which quantitatively measures the difference between the 
model’s predictions and the actual target values (31). Another 
critical hyperparameter to consider is batch size. The batch 
size indicates how many samples are analyzed in a single 
iteration prior to model parameters being updated, and it 
significantly influences the model’s learning process and 
generalizing capabilities (30). Larger batch sizes generally 
lead to sharper minima in the loss landscape, meaning poorer 
recognition of patterns during training, resulting in lower test 
accuracy (32).  

Our study aimed to investigate the influence of epoch 
and batch size on CNN's learning efficacy and generalizing 

capabilities for pulsar classification by measuring model 
training and testing accuracies. We hypothesized that training 
and testing accuracies would both increase with increasing 
epoch number and decrease with increasing batch size. To 
assess training and testing accuracies, we split our dataset 
of 140 PFP samples from the PSC database, assigning 100 
samples to training, 20 to validation, and 20 to testing. All 
three datasets were then used as inputs to a TensorFlow 
CNN model. We then carried out multiple trials using varying 
epochs and batch sizes while recording corresponding 
training and testing accuracies. We found that training and 
testing accuracies indeed improved with increasing epochs; 
however, only until a critical epoch threshold of 20 epochs, 
after which accuracy declined. Notably, the model consistently 
achieved accuracies higher than 90% with a relatively small 
number of epochs. Furthermore, we found that training and 
testing accuracies decreased with larger batch sizes. These 
results further extend our knowledge of how hyperparameters, 
like epochs and batch size, affect overall model accuracy 
and offer powerful evidence of models being able to reach 
high classification accuracies with optimal hyperparameter 
selection. Taken together, these data demonstrate the viability 
of automated pulsar candidate classification for real-world 
applications, which could streamline the pulsar discovery 
process and accelerate astrophysical research.

RESULTS
Our goal was to measure the model’s training and testing 

accuracy while systematically varying epochs and batch size, 
in order to examine how these hyperparameters affect the 
CNN's learning effectiveness and, thereby, its classification 
performance in pulsar identification. The study used a dataset 
of 140 samples, split into training, validation, and testing sets. 

Figure 2: Positive correlation between model training accuracy and epochs. Using 100 training samples over a progressively increasing 
number of epochs (30 trials per number of epochs), we measured the model’s training accuracy. Our model is a convolutional neural network 
built with TensorFlow Keras, comprising two convolutional layers that extract features from the PFP, each followed by max pooling to reduce 
dimensionality of the feature maps. These are then flattened before passing through two dense layers for classification. The model was trained 
using the Adam optimizer with binary cross-entropy loss.  Three to seven training epochs were used. Each black dot represents a trial, with 
some hidden as their accuracy scores coincide with those of other trials. The dotted orange line represents random guessing, and the blue 
line represents the least-squares line of best fit.  Linear regression showed a significant relationship (t-test, p < 0.001) with an R² value of 0.37.
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For each epoch and batch size setting, we conducted 30 
trials, progressively increasing these values and recording 
the corresponding training and testing accuracies.

Investigating the Number of Epochs Against Model 
Training and Testing Accuracy

Model accuracy is substantially influenced by the number 
of epochs trained for. Studies such as those by Ajayi and 
Ashi demonstrate that model accuracy rises with increasing 
epochs (31). A linear regression analysis of our experimental 
results showed a significant positive correlation between 
model training accuracy and number of epochs, with an 
R² value of 0.37, indicating 37% of the variance in training 
accuracy was explained by the number of epochs (t-test, 
R² = 0.37, p < 0.001) (Figure 2). The model’s testing accuracy 
also improved with increasing epochs (t-test, R² = =  0.28, 
p  <  0.001) (Figure 3). Interestingly, at initial epochs, the 
CNN persistently reached low accuracies, irrespective of the 
initial randomly generated neural network weights (Figures 2 
and  3). However, after roughly 6 epochs, the training and 
testing accuracies were observed to consistently achieve 
high (>90% values), regardless of the initialization of the 
weights (Figures 2 and 3).

We also ran trials with 10, 20, 50, and 100 training epochs 
to evaluate if there was a limit to model improvement. Training 
accuracies varied across different epoch values, with mean 
(SD) values of 85.3% (SD = 23.5), 90.0% (SD = 21.1), 81.2% 
(SD = 24.3), and 71.9% (SD = 24.3) at 10, 20, 50, and 100 
epochs respectively. Testing accuracies followed a similar 
trend, with mean (SD) values of 82.0% (SD = 29.7), 89.3% 
(SD = 23.3), 81.3% (SD = 24.9), and 66.7% (SD = 29.3) across 
the same epochs. Both accuracies peaked around 20 epochs 
before declining; notably, training accuracy decreased from 
90.0% (margin of error of 15.1%) to 71.9% (margin of error of 
17.4%), and testing accuracy declined from 89.3% (margin of 

error of 16.7%) to 66.7% (margin of error of 21.0%) between 
20 and 100 epochs. All errors are reported with a 95% 
confidence interval.

Investigating Batch Size Against Model Training and 
Testing Accuracy

Significant relationships have been identified between 
batch size and model performance. In a study by Thakur, 
smaller batch sizes improved generalization and testing 
accuracies, whereby a batch size of 16 performed the best, 
and a batch size of 256 performed the worst (33). Similarly, 
measuring the training and testing accuracy at increasing 
batch sizes allows us to determine if our model may become 
more accurate in pulsar signal classification. 

We identified a negative correlation between batch 
size and both training and testing model accuracy for 
pulsar classification (Figures 4 and 5). As the batch size 
increased, training accuracy decreased (t-test, R² = 0.29, 
p < 0.001) (Figure 4). Testing accuracy also decreased as 
batch size increased (t-test, R² = 0.22, p < 0.001) (Figure 5). 
Interestingly, by batch sizes of 75 and 100, the model almost 
consistently achieved a testing accuracy of 50% (Figure 6). 
A 96.7% (29 times out of 30) recurrence with a 2.05% margin 
of error (95% confidence interval) was observed for the batch 
size of 75. A recurrence of 96.7% (29 times out of 30) with a 
2.39% margin of error (95% confidence interval) was seen 
for the batch size of 100, suggesting that the model failed to 
capture meaningful patterns from the data, and was therefore 
performing no better than random guessing.

DISCUSSION
We identified a positive correlation between the number of 

epochs and model training and testing accuracy, which held 
until a critical threshold of approximately 20 epochs. Beyond 
this point, both training and testing accuracies declined. 

Figure 3: Positive correlation between model testing accuracy and epochs. Evaluated on 20 test samples over a progressively increasing 
number of epochs (30 trials per number of epochs), we measured the model’s testing accuracy. Three to seven training epochs were used. 
Each black dot represents a trial, with some hidden as their accuracy scores coincide with those of other trials. The dotted orange line 
represents random guessing, and the blue line represents the least-squares line of best fit.  Linear regression showed a significant relationship 
(t-test, p < 0.001) with an R² value of 0.28.
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This result, however, should be interpreted with caution, as 
the observed decline is based on empirical data, and further 
investigation with intermediate epoch values is necessary 
to precisely locate the peak. We also observed a significant 
negative correlation between batch size and training and 
testing accuracies. Intriguingly, the model's accuracy 
consistently hovered around 50% for batch sizes of 75 and 
100.

The most striking observation to emerge from the data 
comparison during the investigation of epoch number was 
that training and testing accuracies decreased after a certain 
number, implying a critical threshold value of epochs. We 
expect this is due to the occurrence of overfitting, whereby 
after an excessive number of epochs, models may start to 
memorize the training sets rather than learning generalizable 
patterns (34). This results in poorer performance as hidden 

Figure 5: Negative correlation between model testing accuracy and batch size. Evaluated on 20 test samples with 5 epochs over a 
progressively increasing batch size (30 trials per batch size), we measured the model’s testing accuracy. We performed trials at batch sizes 
of 5, 10, 25, 50, 75, and 100. Each black dot represents a trial, with some hidden as their accuracy scores coincide with those of other trials. 
The dotted orange line represents random guessing, and the blue line represents the least-squares line of best fit. Linear regression showed 
a significant relationship (t-test, p < 0.001) with an R² value of 0.22.

Figure 4: Negative correlation between model training accuracy and batch size. Using 100 training samples with 5 epochs over a 
progressively increasing batch size (30 trials per batch size), we measured the model’s training accuracy. We performed trials at batch sizes 
of 5, 10, 25, 50, 75, and 100. Each black dot represents a trial, with some hidden as their accuracy scores coincide with those of other trials. 
The dotted orange line represents random guessing, and the blue line represents the least-squares line of best fit. Linear regression showed 
a significant relationship (t-test, p < 0.001) with an R² value of 0.29.
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layers in the model increasingly focus on noisy or irrelevant 
patterns rather than meaningful features. This also applies 
to training accuracy, where the model becomes excessively 
specialized to individual training images, thereby hindering 
its ability to generalize to other training images.  This 
phenomenon is seen in other studies, such as Moshe et al., 
where test accuracy in PreResNet experiments initially rose 
with epochs, but plateaued after 50 iterations (35). Moshe et 
al. observed that the model reached peak validation accuracy 
at 80 epochs, beyond which explanation-quality metrics, like 
sensitivity, deteriorated despite stable loss values (35).

We should, however, raise a note of caution with regard to 
our findings at higher epoch values. Given that our findings 
are based on a limited number of trials, due to their especially 
lengthy run times, the results from our analysis had relatively 
high margins of error and should thus be treated with caution. 
In addition to the limited trials, we expect these high margin 
errors likely arise as a result of the inherent randomness 
involved in any machine learning model (36). Therefore, 
further data collection would be necessary to confirm how 
excessive epochs affect model accuracy in the pulsar 
candidate classification problem.

We also demonstrated that even with relatively few epochs, 
training and testing accuracies remained considerably high, 
and almost consistently reached accuracies exceeding 
90% by 6 and 7 epochs. Achieving these results with few 
epochs demonstrates the model's computational efficiency, 
as it reduces training time as well as computational cost, 
thus highlighting the viability of CNNs for automated pulsar 
classification in real-world applications. However, it is 
necessary to recognize that the exact optimal number of 
epochs may vary with dataset size, and larger datasets 
may require correspondingly higher epochs to learn all the 
patterns.

The correlation between batch size and training and 
testing accuracy is also noteworthy. Importantly, we believe 
the negative correlation arises because smaller batch sizes 
can introduce beneficial noise that aids in avoiding local 
minima, while larger batch sizes may lead to less optimal 
convergence (37). This is because larger batch sizes 
typically result in convergence to sharp minima, which have 
poor generalization. Conversely, smaller batch sizes utilize 
stochastic noise that helps the model escape these sharp 
regions and find robust flat minima, resulting in better overall 
accuracy (30). This has been observed in previous studies, 
such as Keskar et al., where ResNet, VGG, and LSTM 
architectures were trained on CIFAR-10, CIFAR-100, and 
Penn Treebank datasets (32). Comparing batch sizes ranging 
from 256 to 8192, they showed that large-batch training was 
prone to converging to a sharp minima, hence leading to 
worse generalization and poorer model performance (32).

Additionally, a notable occurrence was observed for batch 
sizes of 75 and 100: the model's testing accuracy plateaued 
around 50%, implying the model was performing no better 
than a random guesser in classification. This may arise as a 
result of an inadequacy in training, that is to say, the model 
not learning meaningful patterns from the data (38). This 
is likely due to the abovementioned reasons, whereby with 
large batch sizes, there are infrequent updates and therefore 
convergence to sharp minima.  

Our work has several limitations. First, the current study 
was limited by the amount of data available to us. There is a 
marked deficiency of open-access pulsar data available, and 
while many deep learning models are trained and evaluated 
on hundreds of thousands of samples, we were restricted 
to the 298 PFP samples we found on the PSC database. 
Consequently, this limits our capacity to identify trends 
with vast datasets. Second, the pulsar PFPs in our dataset 

Figure 6: Consistent hovering of testing accuracy at 50%, specifically at batch sizes of 75 and 100. Bubble size represents the number 
of trials that achieved the corresponding testing accuracy at each batch size. Evaluated on 20 test samples with 5 epochs over a progressively 
increasing batch size (30 trials per batch size), we measured the model’s testing accuracy. We performed trials at batch sizes of 5, 10, 25, 50, 
75, and 100. For batch size 75, 29 out of 30 trials (96.7%) showed a testing accuracy of 50%, with a margin of error of 2.05% (95% confidence 
interval). Likewise, at batch size 100, 29 out of 30 trials (96.7%) consistently yielded a testing accuracy of 50%, with a margin of error of 2.39% 
(95% confidence interval).
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exhibited extremely strong signals. While this resulted in the 
clear detection of features homogeneous to pulsar signals, 
these findings may not be transferable to datasets with weak 
or atypical pulsar plots. Moreover, signals from unique pulsar 
types, such as binary pulsars, magnetars, and MSPs, with 
more eccentric features represented in their PFPs, were not 
constituents of the dataset. For this reason, our investigation 
with respect to pulsar classification accuracy may not capture 
the full range of patterns and variability; thus, our findings 
are not representative of broader datasets that may contain 
these. 

Our investigations so far have only been on a small scale, 
given the restricted dataset size. However, for subsequent 
studies, we aim to expand our dataset and broaden our data 
pool to incorporate pulsar plots of weaker pulsar signals. This 
will allow us to more extensively evaluate the classification 
capabilities against hyperparameters, such as epochs and 
batch size. We also seek to diversify our dataset to include a 
variety of unique pulsar types to better verify that our findings 
are comprehensive and generalizable to an extensive 
dataset. This will allow us to ensure the practical application 
of this research. 

Furthermore, since the radio data collected by telescopes 
is rarely evenly distributed, we plan to analyze how training 
the model with disproportionate distributions of pulsar and 
non-pulsar classes influences performance. Prior work by 
Lee et al. investigating pulsar prediction from the high time-
resolution (HTRU2) dataset, has included  dataset imbalance 
as a major consideration in their study, with a dataset 
containing only 1639 pulsar samples out of 17898 total 
samples and leading to a 1:10 ratio between pulsars and non-
pulsars (39). By investigating optimal hyperparameters for 
imbalanced datasets, we can develop more robust algorithms 
that effectively tackle the inherent class imbalance in pulsar 
data, thus enabling their useful implementation in real-world 
pulsar classification tasks where imbalanced datasets are 
prevalent (40).

Additionally, while the correlations between 
hyperparameters and model accuracy were statistically 
significant (p < 0.001), the relatively low R² values (0.22 
to 0.37) show that these hyperparameters explain only a 
modest proportion of the variance. This is often seen in 
complex machine learning problems involving biological and 
astronomical data, as many factors such as model architecture 
and optimization settings influence accuracy (41). Therefore, 
while the hyperparameters epochs and batch size have a 
clear effect on classification accuracy, further experimental 
investigations of additional model functions are necessary to 
fully understand and improve classification accuracy.

Moreover, we are interested in conducting an in-depth 
exploration of how model training and testing accuracies 
vary within the range of values between 20 to 50 epochs to 
identify the epoch value at which model accuracy ceases to 
improve and begins to decline. This would provide us with 
an approximately optimal number of epochs for classifying 
pulsars, given the current dataset. These insights can 
aid us in making more informed hyperparameter choices 
for other pulsar classification models and datasets, with 
the future potential for scalability to larger datasets.  We 
also aim to conduct further investigations involving multi-

class classification of pulsars, noise, and RFI rather than 
binary classification to evaluate which type would result in 
higher model classification accuracy with the respective 
hyperparameters. We conjecture that binary classification 
would perform best due to the increased complexities 
presented by multi-class classification with learning multiple 
decision boundaries (42). This is in line with previous results 
from studies, such as Murthy et al., who reported achieving 
up to 98.9% accuracy for binary classification in contrast to 
94.6% for multiclass classification (43).

In summary, the CNN image classification model using 
PFP inputs improved its training and testing accuracy with 
more training epochs and a decreasing batch size. The 
correlation between epochs and training and testing accuracy 
is interesting; we found that these accuracies decline after 
a certain threshold number of epochs. Further analysis 
also revealed that testing accuracy plateaued at 50% for 
larger batch sizes, implying random guessing. These results 
offer compelling evidence for the substantial role played 
by hyperparameters, such as epochs and batch size, on 
overall model accuracy. This stresses the importance of 
informed and optimal hyperparameter choices to ensure 
the highest pulsar classification accuracy. Furthermore, we 
found that the simple TensorFlow CNN model used was able 
to achieve high training and testing accuracies at relatively 
small epochs, consistently reaching accuracies greater than 
90% by 7 epochs. The CNN’s ability to decipher complex 
patterns in PFPs through convolutional layers, as well as the 
data pipeline feature utilized to avoid computational memory 
issues, ensures exceptional scalability with larger datasets. 
Taken together, these findings implicate a significant practical 
viability for real-world applications of pulsar candidate 
classification using CNNs. 

Our study hence provides a blueprint for ideal 
hyperparameter selection and constitutes important initial 
findings that will help models efficiently achieve high 
classification accuracies, automating the pulsar candidate 
classification process and expediting the discovery of new 
pulsars to augment our existing database. These discoveries 
of new pulsars have great potential to extend astrophysical 
knowledge and research in areas such as cosmology, 
gravitational waves, ultra-dense states of matter, extreme 
particle acceleration, and stellar evolution. 

MATERIALS AND METHODS
Data Sources and Acquisition

The PFPs used as inputs for the model were obtained 
from the PSC database (19). Prior to gaining access to the 
database, we were required to complete the PSC Online 
Training Workshop and its consecutive evaluation to acquire 
certification (44). The data used in our study were collected 
through the Arecibo 327 MHz (AO327) drift pulsar survey. 
Radio data was collected in this survey at a frequency of 
327 MHz, featuring a frequency resolution of 24 kHz and a 
time resolution of 82 μs (45). Raw radio data from the AO327 
survey were compiled into PFPs by the open-source PRESTO 
software package (14). Pulsar signal PFPs show strong peaks 
in the integrated pulse profile, broadband signal in the sub-
band plot, parallel dark streaks through the time domain plot, 
and a DM greater than zero (Figure 1) (18). Conversely, RFI 
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is characterized by a diminutively low, or customarily zero 
DM, indicating its origin from terrestrial sources, and signals 
often appear as horizontal lines or narrow spikes at specific 
frequencies without the dispersion curve (18). Due to the 
random nature of noise, there are no clear or discernible 
patterns observed in noise PFPs (18).

We utilized the Python libraries ‘Selenium’, ‘pickle’, ‘PIL’, 
‘csv’, ‘os’, ‘PyDrive’, and ‘NumPy’ to pull the radio data in JSON 
format directly from the PSC site database (46–52). This was 
followed by recompiling the complete PFP graphic and saving 
it into the respective folders based on plot type corresponding 
to either pulsar, RFI, or noise. In the total of 298 samples, 
70 were pulsar instances, 91 were RFI instances, and 137 
were noise instances. The resulting plots were then further 
split into 2 sets, that is, “Pulsars” (n = 70) and “Not Pulsars” 
(n = 228). To account for the imbalance in the dataset, 35 RFI 
and 35 noise plots were ultimately used as the non-pulsar 
plots, totaling 70, which is the size of the pulsar class. We 
refined the dataset to create evenly distributed classifications, 
promoting equal representation and improving the reliability 
of the analysis of our model.

Data Preprocessing
All image preprocessing and investigations were 

conducted in Google Colab using Python (version 3.10). In 
contrast to preloading the entirety of the dataset into memory, 
the Keras utility “image_dataset_from_directory” generator 
was used to build a data pipeline, whereby the directory 
specified was located in a Google Drive (53–55). This method 
presented a neater and more practical solution, with it being 
an optimal way to integrate the data into Google Colab, as 
well as contributing to future scalability capacities (55). This 
utility also built the classes and labels comprehensible by the 
model, with 1 corresponding to “Pulsar” and 0 corresponding 
to “Not Pulsar” (55). In addition to this, it implemented 
preprocessing, including resizing all input images to 256 by 
256 pixels, with a batch size configured according to the 
specific investigation (55). 

Following this, a numpy iterator was implemented to 
access the generator from the data pipeline as numpy arrays 
and to obtain the data required in consecutive batches using 
the .next() method. Lastly, the values in the resulting numpy 
array of shape (256, 256, 3) were normalized to between 0 
and 1, which helps reduce computational complexity, making 
it less computationally intensive and leading to faster training 
times and reduced processing power requirements (56).

Experimental Setup
The total dataset was effectively split with 100 samples 

assigned to training, 20 assigned to validation, and 20 
assigned to testing. To maintain equitable representation, 
each division contained equal aggregates of pulsar and non-
pulsar plots. 

Our study used a basic TensorFlow Keras framework 
consisting of two convolutional layers, two max pooling 
layers, one flatten layer, and two dense layers. To compile 
the model for training, the Adam optimizer was used, with 
loss evaluated using BinaryCrossentropy() and the tracked 
metric being accuracy (57). For testing, the true value (true 
label) was compared to the that value (predicted answer), and 

evaluated utilizing the precision, recall, and accuracy metrics. 
The complete code can be found at our GitHub repository 
(58).

We utilized R version 4.5.0 in the RStudio platform to 
examine the trial results (59, 60). We integrated ".csv" result 
files and computed statistics using the R packages "readr", 
"dplyr", and "tidyverse” (61–63). Additionally, we created 
the graphs of the findings using the R package "ggplot2” 
(64). A t-test and its p-values were utilized alongside linear 
regression analysis to measure the statistical significance of 
our findings. Our GitHub repository contains the statistical 
analysis code, located in the file “R Statistical Analysis and 
Graphing Script” (58).

Investigating the Number of Epochs Against Model 
Training and Testing Accuracy

The experiment aimed to investigate the influence of 
number of epochs on both training and testing accuracy. We 
thus varied the number of training epochs while keeping all 
other model hyperparameters the same. The batch size was 
also kept at a constant of 5. This choice was guided by the 
small scale of our dataset, as it allowed 24 batches per epoch, 
therefore allowing a sufficient number of updates per epoch 
and hence more opportunities to observe accuracy trends 
across epochs.

Our experimental setup bears a close resemblance to the 
one used by Nakra et al. (65). Thirty trials were conducted per 
epoch to uphold the principles of the Central Limit Theorem 
and establish a normal distribution, and corresponding 
training and testing accuracy values were recorded to a CSV 
file. Three epochs were initially used, and the same method 
was applied for additional epochs from four through seven. 
To establish control in our experiment, the Colab notebook 
kernel was killed after each trial, and the entire code was 
reinitialized. We then also experimented with 10, 25, 50, and 
100 epochs, but because these trials had much longer run 
times, we only collected 10 trials for each epoch value. 

Investigating Batch Size Against Model Training and 
Testing Accuracy

All other model hyperparameters were kept the same, with 
5 epochs used. This was chosen to strike an optimal balance 
between computational time and the need for sufficient 
epochs to allow the observation of significant trends, with 
this number deemed appropriate owing to the dataset’s small 
scale.  Initially, a batch size of 5 was used, and we ran 30 
trials and recorded training and test accuracies to a CSV file. 
This procedure was repeated for a batch size of 10, 25, 50, 
75, and 100. To maintain control in our experiment, the Colab 
notebook kernel was killed after each trial, and the entire 
code was reinitialized.
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