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can be limiting as it may fail to capture the underlying 
molecular and genetic diversity of tumors (3). The paradigm 
shift towards pan-cancer research has opened new avenues 
of understanding. At the genetic and molecular levels, 
uncovering shared oncogenic pathways across different 
cancers has led to a deeper understanding of cancer 
biology and therapeutic targets (4, 5). Previous biomarker 
studies for cancer have been highly successful in identifying 
potential markers for cancer diagnosis and prognosis (6, 7).
	 In addition to other more commonly studied cell death 
pathways, such as apoptosis and necrosis, cells can die by 
being phagocytosed by other cells - a form of cell death termed 
phagoptosis, cell cannibalism, programmed cell removal, or 
primary phagocytosis (8).  Immunity against cancer is also 
partly mediated by macrophage phagocytosis of cancer 
cells, but cancer cells can also phagocytose host cells and 
other cancer cells to survive (9).  Protein kinases belong 
to the phosphoryl-transferases superfamily of enzymes, 
which activate enzymes via phosphorylation. These protein 
kinases are involved in almost all cellular functions such 
as transcription, translation, cell division, and apoptosis 
(10). Protein kinase-mediated phagocytosis is increasingly 
recognized as a critical mechanism for maintaining cell 
homeostasis and innate immunity (10). Emerging studies 
have demonstrated that innate immune checkpoints, which 
interfere with the detection and clearance of malignant 
cells through phagocytosis and suppress innate immune 
sensing, also have a key role in tumour-mediated immune 
escape and might, therefore, be potential targets for cancer 
immunotherapy (11). Hence, dysregulation of protein kinases 
in phagocytic cells can lead to impaired immune response, 
which may contribute to the development and progression 
of cancer (11, 12). Targeting the CD47-SIRPα axis is such 
an emerging cancer therapy strategy (11). Many types of 
cancer cells overexpress the immunoglobulin CD47 on their 
cell surfaces. CD47 forms a signalling complex with signal-
regulatory protein α (SIRPα), enabling the escape of these 
cancer cells from macrophage-mediated phagocytosis 
(11). The CD47–SIRPα axis is a dual-function checkpoint. 
It suppresses innate immunity by preventing macrophage 
phagocytosis.	 It indirectly suppresses adaptive immunity 
by limiting antigen presentation and T cell activation. A 
growing number of studies have since demonstrated that 
inhibiting the CD47-SIRPα signalling pathway promotes 
immune response and enhances the phagocytosis of 
tumour cells by macrophages (11-15).
	 The kinome of an organism is the total set of genes in 
the genome that encode all the protein kinases. A subset of 
such kinases is crucial for mediating phagocytosis (16). We 
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SUMMARY
Cancer is a complex disease characterized by genetic 
diversity, often involving dysregu-lation of critical 
cellular pathways. Protein kinases, particularly those 
involved in phagocytosis, play pivotal roles in cellular 
homeostasis and immune response. This study 
systematically exam-ines the genetic alterations and 
expression profiles of protein kinases associated with 
phagocy-tosis (phagocytotic kinome) across cancer 
types, using data from the Cancer Genome Atlas 
(TCGA) and other publicly available verified resources. 
We hypothesized that the protein kinase genes show 
alterations and expressions in various cancer tissues, 
unlike in normal tissues, and that this is significant. 
Our results indicate that MET and MERTK were the 
most mutated protein kinase genes, with missense 
mutations predominating across cancers. Copy 
Number Variations (CNVs) are structural alterations 
in the genome where sections of DNA are duplicated 
or deleted. Analysis of CNV profiles of the protein 
kinase genes associated with phagocytosis re-vealed 
that heterozygous amplifications and deletions were 
predominant types with significant positive correlation 
to survival in some uterine and kidney cancers, 
while methylation analysis shows cancer-specific 
regulatory patterns influencing gene expression. 
Differential expression analysis uncovered distinct 
cancer-type-specific expression profiles, with genes 
like MET and BTK exhibiting significant variation. 
Crosstalk pathway analysis further demonstrated the 
in-volvement of these kinases in key cancer-related 
processes, importantly, epithelial-mesenchymal 
transition (EMT) and apoptosis. Drug sensitivity 
analysis identified potential thera-peutic targets, with 
gene expression significantly correlating with cancer 
cell line responsiveness to specific compounds. 
These discoveries underscore the importance of the 
phagocytotic ki-nome in cancer biology and suggest 
potential therapeutic approaches to enhance immune 
re-sponses and improve treatment outcomes in the 
future.

INTRODUCTION
	 The global cancer burden is expected to be 28.4 million 
cases in 2040, a 47% rise from 2020 (1, 2). Traditionally, 
cancer research has focused on the tissue of origin, which 
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hypothesized that a non-random and statistically significant 
relationship exists between recurring mutation patterns and 
expressions in the phagocytotic kinome of cancer cells. The 
study employed multi-omic data analysis from TCGA (The 
Cancer Genome Atlas), GDSC (Genomics of Drug Sensitivity 
in Cancer), CTRP (Cancer Therapeutics Response Portal) 
and other databases to examine mutations, copy number 
variations, methylation and expression of phagocytotic kinases 
across cancers, using tools like Maftools, GISTIC2.0 (Genomic 
Identification of Significant Targets in Cancer), GSVA (Gene 
Set Variation Analysis) and Cox regression models for survival 
and drug sensitivity correlations. This research reveals that 
protein kinases involved in phagocytosis are not just cellular 
workhorses but potential game-changers in cancer therapy. 
The phagocytotic kinome holds promise as a biomarker set 
and therapeutic target in cancer, offering new avenues for 
precision medicine and immune-based treatments.

RESULTS
	 To identify commonly mutated genes across cancer 
types, we analyzed the TGCA dataset for single-nucleotide 
variants (SNVs). An SNV is a change in a single nucleotide 
in the genome (17). SNVs are the most common type 
of sequence change in the  human genome  and play an 
important role in disease susceptibility and an individual›s 
response to therapy (18). The analysis of SNVs in protein 

kinase genes associated with phagocytosis revealed 
that MET and MERTK were the most frequently mutated 
across different cancer types. MERTK exhibited the 
highest mutation frequency with 51 SNV samples in 468 
SKCM (Skin Cutaneous Melanoma). Overall, UCEC 
(Uterine Corpus Endometrial Carcinoma) had a higher 
SNV mutation rate across the genes; however, SKCM and 
COAD (Colon Adenocarcinoma) also presented significant 
mutation frequencies in several genes (Figure 1A). The 
SNV landscape showed that most of the mutations were 
missense mutations and the most common SNV classes 
were C>T and C>A (Figure 1B). Additionally, we analyzed 
the association between SNVs of the genes and patient 
survival. While SNVs of TYRO3, LYN, and PTK3 genes 
significantly exhibit positive correlations with survival in 
specific cancer types, most other gene SNV expressions did 
not exhibit significant associations with survival outcomes 
across most cancer types analyzed (Figure 1C).
	 Copy Number Variations (CNVs) are segments of DNA 
that vary in copy number between individuals or between 
normal and diseased cells (19). CNVs are crucial in 
cancer genome studies because they often drive tumour 
development, progression, and treatment response (20). 
The analysis of the CNV profile of the protein kinase genes 
associated with phagocytosis revealed diverse CNV patterns 
with notable variations observed across different types of 

Figure 1:Protein kinase genome mutations in single-nucleotide variations (SNV) class and their relation to survival outcomes. A) 
Heatmap of mutation frequency. The color represents the frequency of mutations per cancer type; MERTK exhibited the highest mutation 
frequency, with 51 SNV samples in 468 SKCM (skin cutaneous melanoma). UCEC (Uterine Corpus Endometrial Carcinoma) had a higher 
SNV mutation rate across the genes. B) An overview of SNV classes in protein kinase genes showing the count of each type of harmful 
mutation and the number of different variant types (Single Nucleotide Polymorphism, Insertion, and Deletion). The SNV landscape shows that 
most of the mutations were missense mutations, and the most common SNV classes were C>T and C>A. C) Correlation between SNV and 
survival in normal and tumor samples. TYRO3, LYN and PTK3 show significant correlations with survival in specific cancer types, most gene 
expressions do not exhibit strong associations with survival outcomes across most cancer types analyzed.

https://www.cd-genomics.com/longseq/human-whole-genome-sequencing.html
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cancer. The distribution of CNVs revealed that heterozygous 
amplifications and deletions were predominant among CNV 
types, and their prevalence across different cancer types 
was visualized to highlight tissue-specific patterns (Figure 
2A, 2B). We evaluated how CNVs influence gene expression 
across various cancer types. The strongest correlations 
were observed in BRCA (Breast Invasive Carcinoma), 
OV (Ovarian Serous Cystadenocarcinoma), LUAD (Lung 
Adenocarcinoma), HNSC (Head and Neck Squamous Cell 
Carcinoma), and COAD (Colon Adenocarcinoma). While 
the strength of correlation varied, most cancers showed 
a generally positive relationship between CNV and gene 
expression (Figure 2C). We found significant associations 
between CNV and survival across various cancer types, 
especially in UCEC, KIRP (Kidney renal papillary cell 
carcinoma), LGG (Brain Lower grade Glioma), and KIRC 
(Kidney renal clear cell carcinoma) (Figure 2D). This 
indicates that CNV levels in these cancers may be linked 
to differences in patient survival. Our analysis suggests 
a possible association between heterozygous CNV of 
protein kinase genes involved in phagocytosis and cancer 
prognosis.
	 Studying DNA methylation differences between normal 
and cancer tissues helps uncover epigenetic alterations that 
drive tumor development and progression. The analysis of 

methylation differences between tumor and normal tissues 
revealed significant disparities. For instance, the genes 
MERTK and LYN show high methylation levels in BRCA, 
while EIF2AK has low methylation levels in the same cancer 
type. The methylation differences are not uniform across 
all cancer types, indicating that each cancer type has a 
unique methylation profile for these genes (Figure 3A). 
The analysis of the correlation between methylation and 
mRNA expression profiles uncovered a consistent pattern 
across various cancer types, highlighting significant, largely 
negative associations between methylation levels and 
mRNA expression. However, there were certain genes like 
PTK2 and PRKCD in UVM (Uveal Melanoma) which showed 
a strong positive association between their methylation 
levels and mRNA expression levels. (Figure 3B). In the 
survival profile analysis, only a few cancers demonstrated 
either a consistent positive or negative relation between 
methylation levels and patient survival (Figure 3C). The 
analysis suggests that hypermethylation may lead to 
the down-regulation of specific genes, impacting their 
expression and potentially influencing patient outcomes in 
various cancer types.
	 The analysis of differential expression of protein kinase 
genes associated with phagocytosis across various cancer 
types revealed some notable expression differences 

Figure 2: Protein kinase genome alterations in copy number variation (CNV) class and their correlation with mRNA expression 
and survival in cancers. A) Pie charts of CNV distribution across cancers showing that heterozygous amplifications and deletions were 
predominant among the various CNV types. B) Profile of heterozygous CNV and homozygous. The dark color of the graph shows the high 
percentage of heterozygous amplification and deletion of the CNVs for each gene in each cancer. C) Correlation between CNV and “mRNA” 
expression. The cancers with the strongest correlations were BRCA (Breast invasive carcinoma), OV (Ovarian serous cystadenocarcinoma), 
LUAD (Lung adenocarcinoma), HNSC (Head and Neck squamous cell carcinoma), and COAD (Colon adenocarcinoma); however, most 
cancers showed a positive correlation with expression. D) The survival difference between CNV groups. There is a significant association 
between CNV and survival across various cancer types, especially in UCEC (Uterine Corpus Endometrial Carcinoma), KIRP (Kidney renal 
papillary cell carcinoma), LGG (Brain Lower Grade Glioma) and KIRC (Kidney renal clear cell carcinoma).
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between cancer and non-cancer tissues. Using TCGA 
data, we examined the expression of protein kinase genes 
associated with phagocytosis in multiple cancer types 
(Figure 4A). In LUSC (Lung Squamous cell carcinoma), 
genes like BTK, FGR and PRKCE were significantly down-
regulated. Conversely, in THCA, MET was up-regulated. 
Additionally, BRCA displayed a mix of up-regulated and 
down-regulated genes, with notable changes in EIF2AK1 
and MET. Overall, the expression profiles across cancer 
types indicate that, there are unique expression patterns 
that are specific to a few cancer types. Nonetheless, for 
most cancer types, there were minimal notable variations 
in the expression of the protein kinase genes controlling 
phagocytosis between cancerous and normal tissues. In 
the analysis of protein kinase gene expression subtype 
differences, the top cancers that showed consistently 
high expression were BRCA, KIRC, STAD (Stomach 
Adenocarcinoma), and LUAD, with FDR < 0.05 being 
significant (Figure 4B). The survival analysis revealed 
that KIRC and LGG were the top cancer types associated 
with the phagocytotic kinome genes (Figure 4C). TYRO3 
has a higher survival rate when overexpressed in KIRP 
and ACC (Adrenocortical Carcinoma). It also shows that 
overexpression of LYN in UVM is associated with a higher 
survival rate of patients. At this point, we can safely conclude 
that the expression of certain protein kinase genes predicts 
survival better than others across cancers. These indicate 
the statistical significance of each predictor, which has a 
diverse association with survival outcomes across a few 
cancer types.

	 Pathway activity scores for 7,876 samples were calculated 
using Reverse-phase protein array (RPPA) data from the 
TCPA (The Cancer Proteome Atlas) database. To investigate 
the potential cross-talk of protein kinase genes involved 
in phagocytosis with other cancer-related pathways, 
we analyzed the data from pathway activity scores for 
7,876 samples from the TCPA database to determine 
the association of these genes with various biological 
processes. Among the 7,876 tumor samples analyzed, 
44% of samples expressing FYN, 41% expressing AXL 
and FGR, and 38% expressing HCK showed EMT pathway 
activation, suggesting that these kinases may play a role 
in promoting cancer cell migration and invasion. (Figure 
5) (21). Additionally, 41% of samples expressing AXL were 
linked to cell cycle inhibition, highlighting its potential role 
in controlling cell proliferation. In the context of apoptosis 
activation, genes such as CSK, LYN, LIMK1, and FGR 
showed associations, indicating their involvement in 
programmed cell death pathways. Furthermore, 38% of 
samples expressing HCK were related to hormone estrogen 
receptor activation (ER_A), and both MET and LIMK1 
showed associations with hormone androgen receptor 
inhibition (AR_I), suggesting a complex interplay between 
these protein kinases and hormone signaling pathways.
	 We also investigated the relationship between the 
expression of protein kinase genes in phagocytosis and the 
tumor immune microenvironment. We calculated a gene set 
signature (GSVA score) to evaluate the infiltration levels of 
different immune cells across various cancer types. The 
results indicated a significant correlation between the GSVA 

Figure 3: Methylation differences in cancer cells vs normal cells and the correlation between mRNA expression and survival. A) 
Methylation between normal and tumor samples, where methylation differences are not uniform across all cancer types, indicating that each 
cancer type has a unique methylation profile for these genes. B) The correlation between methylation and ‘mRNA’ expression uncovered a 
consistent pattern across various cancer types, highlighting significant associations between methylation levels and expression that were 
mostly negative. C) Difference in survival between high and low methylation of the genes. In the survival profile analysis, only a few cancers 
demonstrated a relation between methylation levels and patient survival.
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score and the infiltration levels of numerous immune cells. 
Particularly, the GSVA score showed a strong negative 
correlation with neutrophil cells and a positive correlation 
with macrophage cells (Figure 6A). Additionally, we 
examined the association between these protein kinase 
genes and drug sensitivity in cancer cell lines using data 
from the GDSC (Genomics of Drug Sensitivity in Cancer) 
and CTRP (Cancer Therapeutics Response Portal) 
databases. The results revealed that the protein kinase 
genes related to phagocytosis were significantly correlated 
with the sensitivity of cancer cells to multiple compounds 
(Figure 6B, 6C). These findings underscore the potential 
impact of protein kinase genes in phagocytosis on immune 
cell infiltration in cancers and suggest new avenues for 
targeted drug development.

DISCUSSION
	 The results of this study provide important insights into 
the genetic and molecular alterations of protein kinase 
genes involved in phagocytosis across various cancer types. 
These findings underscore the relevance of these genes 
not only in cancer progression but also in their potential as 
therapeutic targets
	 The analysis of SNVs revealed that MET and MERTK were 
the most frequently mutated genes across multiple cancer 
types, with MET showing the highest mutation frequency in 

SKCM and an overall higher mutation rate in UCEC. The 
presence of predominantly missense mutations, particularly 
in MET and MERTK, suggests these genes may be critical 
in the oncogenic processes of various cancers. These 
findings are consistent with previous studies that highlight 
MET’s role in cancer progression, where its mutation and 
overexpression drive tumor growth and metastasis (22). 
Furthermore, while genes such as TYRO3, LYN, and PTK3 
exhibited significant correlations with survival in specific 
cancers, these associations were not universally observed 
across all cancer types, indicating a complex, context-
dependent role of these kinases in cancer biology (23-25). 
Future studies should explore the mechanistic implications 
of these mutations to identify potential targets for therapeutic 
intervention.
	 CNV profiling revealed widespread heterozygous 
amplifications and deletions across cancer types, with 
significant survival associations observed particularly in 
UCEC, KIRP, and KIRC. The observed positive correlations 
between CNVs and gene expression in cancers like BRCA, 
OV, and LUAD suggest that CNVs play a critical role in 
modulating gene expression, which in turn may influence 
tumor behavior and patient outcomes. It is a well-established 
scientific fact that CNV profiling plays a critical role in cancer 
by identifying gene amplifications or deletions that influence 
tumour aggressiveness, treatment resistance, and patient 

Figure 4: mRNA expression in protein kinase genes in normal and tumor samples. A) mRNA expression levels between normal 
and tumor samples. In LUSC (Lung squamous cell carcinoma), genes like BTK, FGR, and PRKCE were significantly down-regulated. 
Conversely, in THCA (Thyroid carcinoma), MET was up-regulated. Overall, the expression profiles across cancer types indicate that while 
there are some consistently up-regulated or down-regulated genes in certain cancers, there are unique expression patterns that are specific 
to each cancer type. B) Difference of expression levels between high and low subtypes. BRCA (Breast invasive carcinoma) and KIRC (Kidney 
renal clear cell carcinoma) emerged as the most significant cancer types. However, STAD (Stomach adenocarcinoma) and LUAD (Lung 
adenocarcinoma) also demonstrated notable significance. C) Difference of survival between high and low expression. The size of the dot 
represents the significance of the gene's impact on survival across different cancer types, while the color indicates the hazard ratio. DFI: 
disease-free interval; DSS: disease-specific survival; OS: overall survival; PFS: progression-free survival.
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prognosis (26). These genomic alterations help stratify 
patients for targeted therapies and guide clinical decisions, 
ultimately improving outcomes across cancers like breast, 
lung, glioblastoma, neuroblastoma, and colorectal cancer 
(9, 27). Hence, our findings align with previous reports that 
highlight CNVs as key drivers of cancer heterogeneity (28). 
The identification of significant CNV-survival associations 
further reinforces the clinical relevance of these alterations, 
suggesting that CNV profiling could serve as a valuable 
prognostic tool for personalized cancer treatment strategies.
	 DNA methylation is an epigenetic modification—a 
chemical change to DNA that does not alter the sequence 
but affects how genes are expressed. In cancer, the 
methylation process can silence protective genes and 
activate harmful ones (29). Our methylation analysis 
highlighted cancer-specific patterns, with genes such as 
MERTK and LYN showing hypermethylation in BRCA 
and an inverse relationship between methylation levels 
and mRNA expression in most cancers. Interestingly, 
while hypermethylation was generally associated with 
gene silencing, a few exceptions, such as PTK2 in UVM, 
demonstrated a positive correlation between methylation and 
expression, suggesting alternative regulatory mechanisms 
at play (30, 31). These findings imply that methylation 
may serve as a regulatory mechanism for protein kinase 
gene expression in cancer, with potential implications for 
early diagnosis, formulating targeted epigenetic therapies, 
combating therapy resistance, synergizing immunotherapy, 
and methylation editing. 
	 Differential expression analysis demonstrated significant 
cancer-specific variations in the expression of protein kinases 
associated with phagocytosis. While some genes, such as 
MET, were consistently upregulated in certain cancers like 
THCA, others, including BTK and FGR, were downregulated 

in LUSC. These results suggest that the phagocytotic kinome 
plays diverse roles in cancer biology, with specific genes 
either promoting or inhibiting tumor progression depending 
on the cancer type (32). The observed correlations between 
gene expression and survival, particularly for KIRC and 
LGG, offer new therapeutic avenues, like kinases being 
used as biomarkers and their levels for prognostication and 
targeting them with drugs might lead to better outcomes in 
some cancers at least.
	 The crosstalk between the phagocytotic kinome and 
key cancer-related pathways, such as EMT and apoptosis, 
further emphasizes the importance of these kinases in 
tumor progression. The involvement of genes like FYN, 
AXL, and HCK in EMT highlights their potential role in 
promoting cancer cell migration and invasion. In contrast, the 
association of genes such as CSK and LYN with apoptosis 
underscores their role in modulating cell death pathways. 
These findings suggest that targeting the crosstalk between 
the phagocytotic kinome and these critical pathways 
could disrupt key processes in cancer development and 
progression, presenting new opportunities for therapeutic 
intervention (33). There are many other cancer-related 
pathways, such as MAPK, RAD-related pathways, and 
IGFBP-related pathways, that should be studied in the 
future (34 - 36).
	 The observed correlations between protein kinase gene 
expression and drug sensitivity across multiple cancer cell 
lines indicate that these genes may influence cancer cell 
responsiveness to targeted therapies. In particular, the 
negative correlation between gene expression and sensitivity 
to certain compounds suggests that the overexpression of 
specific kinases may confer drug resistance. These findings 
offer valuable insights for the development of personalized 
cancer treatments, where targeting the phagocytotic 
kinome could enhance the efficacy of existing therapies or 
help overcome drug resistance (37). Targeted research is 
needed to validate how protein kinases influence cancer 
drug resistance, using molecular experiments, clinical 
trials, and computational models. Collaborative efforts 
across disciplines could lead to personalized treatments 
that overcome resistance by profiling kinase activity and 
modulating the tumour microenvironment.
	 While this study provides a comprehensive overview 
of the genetic and molecular alterations of protein kinases 
involved in phagocytosis across cancers, several limitations 
must be acknowledged. The reliance on publicly available 
datasets, such as TCGA, may introduce biases related to 
sample composition and data quality. Additionally, while this 
study identified significant associations between genetic 
alterations and survival, further experimental validation is 
required to establish causal relationships. Future research 
should focus on the functional characterization of these 
protein kinase genes in cancer models to better understand 
their roles in tumor progression and immune modulation. 
In summary, this study aimed to present a comprehensive 
multi-omic analysis of protein kinase genes involved in 
phagocytosis—termed the phagocytotic kinome—across 
various cancer types. It reveals that genes like MET and 
MERTK are frequently mutated, with structural variations 
and methylation patterns significantly influencing gene 
expression and patient survival. Differential expression 
profiles and pathway crosstalk highlight their roles in tumor 

Figure 5: Correlation between expression and pathway activity 
of the genes. In the analysis of the total samples, 44% of FYN, 
41% of AXL and FGR, and 38% of HCK were associated with the 
activation of the epithelial-mesenchymal transition (EMT) and 41% 
of AXL was linked to cell cycle inhibition, highlighting its potential 
role in controlling cell proliferation. In the context of apoptosis 
activation, genes such as CSK, LYN, LIMK1, and FGR showed 
associations. The percentages indicate the number of samples out of 
the total samples analysed, which showed a consistent effect (either 
activation / inhibition) on the specific cancer associated pathways 
tested.
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progression, immune cell modulation, and apoptosis. 
Importantly, these kinases show strong associations with 
immune cell infiltration and drug sensitivity, positioning 
them as promising biomarkers and therapeutic targets in 
precision oncology.

MATERIALS AND METHODS
	 The genome of protein kinases involved in phagocytosis, 
often referred to as the phagocytotic kinome, comprises 
a curated set of genes encoding kinases that regulate 
various stages of phagocytosis—from receptor signaling 
and cytoskeletal rearrangement to vesicle trafficking and 
immune modulation. This genome includes mainly ABL1, 
AXL, BCR, BTK, CAMK1D, CSK, EIF2AK1, FGR, FYN, 
HCK, LIMK1, LYN, MERTK, MET, MST1R, PAK1, PRKCD, 
PRKCE, PRKCG, PTK2, SRC, SYK and TYRO3 (16).

Data Acquisition
	 Expression data, including clinical information, SNVs, 
CNVs, and methylation data, were obtained from TCGA and 
the NCI Genomic Data Commons (38, 39). Reverse phase 
protein array (RPPA) data were retrieved from The Cancer 
Proteome Atlas (TCPA) (40). Immunotherapy response 
and survival data were retrieved from the TIDE (Tumor 
Immune Dysfunction and Exclusion) database (41). Gene-
drug sensitivity data were collected from the Genomic Drug 
Sensitivity in Cancer (GDSC) database and the Cancer 
Therapeutics Response Portal (CTRP) (42, 43). The data 
was pre-processed with normalisation to TPM (Transcripts 
per Million) using TPMCalculator version v0.0.1 (44). 

Gene Alterations and Expression Analysis
	 SNV visualizations were generated with the Maftools 
v2.10.0 , while CNV data were processed with GISTIC2.0 
v2.0.23 (45, 46). Correlation between CNV and mRNA 
expression, and between methylation levels and mRNA was 
assessed by Spearman correlation analysis. The statistical 
significance employed in this model is Cox’s hazard ratio 
(P value and FDR). Before differential methylation analysis, 
correlation analysis was performed to filter the sites 
most negatively correlated with gene expression into this 
analysis. Differential analysis was performed using the 
Bioconductor package minfi v1.36.0 to compare methylation 
patterns between tumor and normal samples, and individual 
variations in gene expression were also assessed (47). 
Gene Set Variation Analysis (GSVA) was performed using the 
GSVA platform v1.46.0 to analyze mRNA expression data 
for the gene set using both the Wilcoxon test and ANOVA for 
statistical comparisons (48). 

Survival Analysis 
	 Disease-free interval, progression-free interval, overall 
survival, and disease-specific survival were evaluated at in 
survival analysis. Methylation data and clinical survival data 
were merged by sample barcode; the median methylation 
level was used to divide tumour samples into high and low 
methylation groups. A median value indicates a hazard ratio 
value of 1.0. If the hazard ratio was greater than or equal to 
1.0, then it was binned as the higher methylation group; if 
the ratio was less than 1.0, then it was binned as the lower 
methylation group. Tumor samples were divided into high and 

Figure 6: Relationship between Protein kinase genes with drug sensitivity in cancer cells. A) Association between GSVA (Gene Set 
Variation Analysis) score and activity of cancer-related pathways in selected cancers. *p-value ≤ 0.05; #: FDR ≤ 0.05. B) Expression of the 
genes and the sensitivity of cancer cell lines analyzed using GDSC (Genomics of Drug Sensitivity in Cancer) and CTRP (Cancer Therapeutics 
Response Portal) data, which showed the protein kinase genes related to phagocytosis were significantly correlated with the sensitivity of 
cancer cells to multiple compounds.
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low groups based on median values or specific alterations, 
such as mutations and CNV classifications like amplification 
and deletion. Survival time and status were fitted using the R 
survival package, and the Cox Proportional-Hazards model 
was employed to calculate hazard ratios (HR) for each gene, 
indicating survival risk. Statistical significance of survival 
differences between groups was assessed using log-rank 
tests, and Kaplan-Meier survival analysis was conducted to 
further evaluate gene-specific survival impacts.

Pathway Analysis
	 Pathway activity scores for 7,876 samples were 
calculated using reverse-phase protein array (RPPA) data 
from the TCPA database (40). The analysis covered ten 
cancer-associated pathways: hormone estrogen receptor 
(ER), hormone androgen receptor (AR), receptor tyrosine 
kinase (RTK), phosphatidylinositol-4,5-bisphosphate-
3-kinase (PI3K)/protein kinase B (AKT), RAS/mitogen-
activated protein kinase (MAPK), tuberous sclerosis complex 
(TSC)/mechanistic target of rapamycin (mTOR), epithelial-
mesenchymal transition (EMT), cell cycle, and apoptosis 
pathways. Pathway scores were calculated by aggregating 
the relative concentrations of all positive regulatory proteins 
and subtracting those of negative regulators. To estimate 
Pathway Activity Scores (PAS), gene expression data were 
divided into high and low categories based on median values 
as in previous studies. PAS differences between these 
categories were assessed using Student’s t-test, where 
the p-value was adjusted using the false discovery rate 
(FDR), given an FDR ≤ 0.05 was considered significant. A 
gene was found to exert an activating effect on a signaling 
pathway if PAS (Low expression of Gene A) < PAS (High 
expression of Gene A); otherwise, it was considered to 
exert an inhibitory effect. No specific IDs were given to the 
pathways apart from the names.

Immune Association Analysis
	 Immune cell infiltration levels within various cancers 
were analyzed using data from the TCGA database (38). 
The infiltrates of 24 immune cell types were evaluated 
using ImmuCellAI webtool (49). Gene set variation analysis 
(GSVA) scores of the genes were used to visualize the data. 
The relationship between immune cell infiltration and gene 
expression was quantified using Spearman correlation 
analysis, with correlation coefficients indicating the strength 
of associations. P-values were adjusted using FDR.

Drug Sensitivity Analysis
	 Drugs were screened based on their Centromere protein 
A (CENPA) correlation with gene expression and drug 
sensitivity, using a stringent significance cutoff (p <0.05).
GDSC: The IC50 of 265 small molecules in 860 cell lines and 
the corresponding mRNA gene expression were collected 
from the Genomics of Drug Sensitivity in Cancer (GDSC) 
(42). The mRNA expression data and drug sensitivity data 
were merged. Pearson correlation analysis was performed 
to get the correlation between gene mRNA expression and 
drug IC50. P-value was adjusted by FDR. 
	 CTRP: The IC50 of 481 small molecules in 1001 cell 
lines and the corresponding mRNA gene expression were 
collected from the Genomics of Therapeutics Response 
Portal (CTRP) (43). The mRNA expression data and drug 

sensitivity data were merged. Pearson correlation analysis 
was performed to get the correlation between gene mRNA 
expression and drug IC50. P-value was adjusted by FDR.
	 The analysis employed GSCA Lite (50) to calculate 
the area under the dose-response curve (AUC) values for 
drugs and the expression profiles of protein kinase genes 
involved in phagocytosis across various cancer cell lines. 
Drug sensitivity and gene expression data from the GDSC 
and CTRP databases were integrated for a comprehensive 
evaluation (42, 43). Spearman correlation analysis was 
used to assess the relationship between gene expression 
and drug sensitivity.

Statistical Analysis
	 Statistical analyses were conducted using R software 
v4.0.3 (51). The Spearman correlation test was used to 
assess correlation, and the Cox proportional hazards model 
was used to determine survival risk and HR. Kaplan-Meier 
curves and log-rank tests were used to evaluate prognostic 
values. T-tests or ANOVA were used for group comparisons, 
with a rank-sum test for two datasets unless specified 
otherwise. P-values have been FDR corrected.
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