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SUMMARY

Cancer is a complex disease characterized by genetic
diversity, often involving dysregu-lation of critical
cellular pathways. Protein kinases, particularly those
involved in phagocytosis, play pivotal roles in cellular
homeostasis and immune response. This study
systematically exam-ines the genetic alterations and
expression profiles of protein kinases associated with
phagocy-tosis (phagocytotic kinome) across cancer
types, using data from the Cancer Genome Atlas
(TCGA) and other publicly available verified resources.
We hypothesized that the protein kinase genes show
alterations and expressions in various cancer tissues,
unlike in normal tissues, and that this is significant.
Our results indicate that MET and MERTK were the
most mutated protein kinase genes, with missense
mutations predominating across cancers. Copy
Number Variations (CNVs) are structural alterations
in the genome where sections of DNA are duplicated
or deleted. Analysis of CNV profiles of the protein
kinase genes associated with phagocytosis re-vealed
that heterozygous amplifications and deletions were
predominanttypes with significant positive correlation
to survival in some uterine and kidney cancers,
while methylation analysis shows cancer-specific
regulatory patterns influencing gene expression.
Differential expression analysis uncovered distinct
cancer-type-specific expression profiles, with genes
like MET and BTK exhibiting significant variation.
Crosstalk pathway analysis further demonstrated the
in-volvement of these kinases in key cancer-related
processes, importantly, epithelial-mesenchymal
transition (EMT) and apoptosis. Drug sensitivity
analysis identified potential thera-peutic targets, with
gene expression significantly correlating with cancer
cell line responsiveness to specific compounds.
These discoveries underscore the importance of the
phagocytotic ki-nome in cancer biology and suggest
potential therapeutic approaches to enhance immune
re-sponses and improve treatment outcomes in the
future.

INTRODUCTION

The global cancer burden is expected to be 28.4 million
cases in 2040, a 47% rise from 2020 (1, 2). Traditionally,
cancer research has focused on the tissue of origin, which

can be limiting as it may fail to capture the underlying
molecular and genetic diversity of tumors (3). The paradigm
shift towards pan-cancer research has opened new avenues
of understanding. At the genetic and molecular levels,
uncovering shared oncogenic pathways across different
cancers has led to a deeper understanding of cancer
biology and therapeutic targets (4, 5). Previous biomarker
studies for cancer have been highly successful in identifying
potential markers for cancer diagnosis and prognosis (6, 7).

In addition to other more commonly studied cell death
pathways, such as apoptosis and necrosis, cells can die by
being phagocytosed by other cells - a form of cell death termed
phagoptosis, cell cannibalism, programmed cell removal, or
primary phagocytosis (8). Immunity against cancer is also
partly mediated by macrophage phagocytosis of cancer
cells, but cancer cells can also phagocytose host cells and
other cancer cells to survive (9). Protein kinases belong
to the phosphoryl-transferases superfamily of enzymes,
which activate enzymes via phosphorylation. These protein
kinases are involved in almost all cellular functions such
as transcription, translation, cell division, and apoptosis
(10). Protein kinase-mediated phagocytosis is increasingly
recognized as a critical mechanism for maintaining cell
homeostasis and innate immunity (10). Emerging studies
have demonstrated that innate immune checkpoints, which
interfere with the detection and clearance of malignant
cells through phagocytosis and suppress innate immune
sensing, also have a key role in tumour-mediated immune
escape and might, therefore, be potential targets for cancer
immunotherapy (11). Hence, dysregulation of protein kinases
in phagocytic cells can lead to impaired immune response,
which may contribute to the development and progression
of cancer (11, 12). Targeting the CD47-SIRPa axis is such
an emerging cancer therapy strategy (11). Many types of
cancer cells overexpress the immunoglobulin CD47 on their
cell surfaces. CD47 forms a signalling complex with signal-
regulatory protein a (SIRPa), enabling the escape of these
cancer cells from macrophage-mediated phagocytosis
(11). The CD47-SIRPa axis is a dual-function checkpoint.
It suppresses innate immunity by preventing macrophage
phagocytosis. It indirectly suppresses adaptive immunity
by limiting antigen presentation and T cell activation. A
growing number of studies have since demonstrated that
inhibiting the CD47-SIRPa signalling pathway promotes
immune response and enhances the phagocytosis of
tumour cells by macrophages (11-15).

The kinome of an organism is the total set of genes in
the genome that encode all the protein kinases. A subset of
such kinases is crucial for mediating phagocytosis (16). We

Journal of Emerging Investigators - www.emerginginvestigators.org

16 JANUARY 2026 | VOL 9 | 1



DURNAI

EMERGING INVESTIGATORS

hypothesized that a non-random and statistically significant
relationship exists between recurring mutation patterns and
expressions in the phagocytotic kinome of cancer cells. The
study employed multi-omic data analysis from TCGA (The
Cancer Genome Atlas), GDSC (Genomics of Drug Sensitivity
in Cancer), CTRP (Cancer Therapeutics Response Portal)
and other databases to examine mutations, copy number
variations, methylation and expression of phagocytotic kinases
across cancers, using tools like Maftools, GISTIC2.0 (Genomic
Identification of Significant Targets in Cancer), GSVA (Gene
Set Variation Analysis) and Cox regression models for survival
and drug sensitivity correlations. This research reveals that
protein kinases involved in phagocytosis are not just cellular
workhorses but potential game-changers in cancer therapy.
The phagocytotic kinome holds promise as a biomarker set
and therapeutic target in cancer, offering new avenues for
precision medicine and immune-based treatments.

RESULTS

To identify commonly mutated genes across cancer
types, we analyzed the TGCA dataset for single-nucleotide
variants (SNVs). An SNV is a change in a single nucleotide
in the genome (17). SNVs are the most common type
of sequence change in the human genome and play an
important role in disease susceptibility and an individuabs
response to therapy (18). The analysis of SNVs in protein
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kinase genes associated with phagocytosis revealed
that MET and MERTK were the most frequently mutated
across different cancer types. MERTK exhibited the
highest mutation frequency with 51 SNV samples in 468
SKCM (Skin Cutaneous Melanoma). Overall, UCEC
(Uterine Corpus Endometrial Carcinoma) had a higher
SNV mutation rate across the genes; however, SKCM and
COAD (Colon Adenocarcinoma) also presented significant
mutation frequencies in several genes (Figure 1A). The
SNV landscape showed that most of the mutations were
missense mutations and the most common SNV classes
were C>T and C>A (Figure 1B). Additionally, we analyzed
the association between SNVs of the genes and patient
survival. While SNVs of TYRO3, LYN, and PTK3 genes
significantly exhibit positive correlations with survival in
specific cancer types, most other gene SNV expressions did
not exhibit significant associations with survival outcomes
across most cancer types analyzed (Figure 1C).

Copy Number Variations (CNVs) are segments of DNA
that vary in copy number between individuals or between
normal and diseased cells (19). CNVs are crucial in
cancer genome studies because they often drive tumour
development, progression, and treatment response (20).
The analysis of the CNV profile of the protein kinase genes
associated with phagocytosis revealed diverse CNV patterns
with notable variations observed across different types of
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Figure 1:Protein kinase genome mutations in single-nucleotide variations (SNV) class and their relation to survival outcomes. A)
Heatmap of mutation frequency. The color represents the frequency of mutations per cancer type; MERTK exhibited the highest mutation
frequency, with 51 SNV samples in 468 SKCM (skin cutaneous melanoma). UCEC (Uterine Corpus Endometrial Carcinoma) had a higher
SNV mutation rate across the genes. B) An overview of SNV classes in protein kinase genes showing the count of each type of harmful
mutation and the number of different variant types (Single Nucleotide Polymorphism, Insertion, and Deletion). The SNV landscape shows that
most of the mutations were missense mutations, and the most common SNV classes were C>T and C>A. C) Correlation between SNV and
survival in normal and tumor samples. TYRO3, LYN and PTK3 show significant correlations with survival in specific cancer types, most gene
expressions do not exhibit strong associations with survival outcomes across most cancer types analyzed.
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cancer. The distribution of CNVs revealed that heterozygous
amplifications and deletions were predominant among CNV
types, and their prevalence across different cancer types
was visualized to highlight tissue-specific patterns (Figure
2A, 2B). We evaluated how CNVs influence gene expression
across various cancer types. The strongest correlations
were observed in BRCA (Breast Invasive Carcinoma),
OV (Ovarian Serous Cystadenocarcinoma), LUAD (Lung
Adenocarcinoma), HNSC (Head and Neck Squamous Cell
Carcinoma), and COAD (Colon Adenocarcinoma). While
the strength of correlation varied, most cancers showed
a generally positive relationship between CNV and gene
expression (Figure 2C). We found significant associations
between CNV and survival across various cancer types,
especially in UCEC, KIRP (Kidney renal papillary cell
carcinoma), LGG (Brain Lower grade Glioma), and KIRC
(Kidney renal clear cell carcinoma) (Figure 2D). This
indicates that CNV levels in these cancers may be linked
to differences in patient survival. Our analysis suggests
a possible association between heterozygous CNV of
protein kinase genes involved in phagocytosis and cancer
prognosis.

Studying DNA methylation differences between normal
and cancer tissues helps uncover epigenetic alterations that
drive tumor development and progression. The analysis of

https://doi.org/10.59720/24-352

methylation differences between tumor and normal tissues
revealed significant disparities. For instance, the genes
MERTK and LYN show high methylation levels in BRCA,
while EIF2AK has low methylation levels in the same cancer
type. The methylation differences are not uniform across
all cancer types, indicating that each cancer type has a
unique methylation profile for these genes (Figure 3A).
The analysis of the correlation between methylation and
mRNA expression profiles uncovered a consistent pattern
across various cancer types, highlighting significant, largely
negative associations between methylation levels and
mRNA expression. However, there were certain genes like
PTK2and PRKCD in UVM (Uveal Melanoma) which showed
a strong positive association between their methylation
levels and mRNA expression levels. (Figure 3B). In the
survival profile analysis, only a few cancers demonstrated
either a consistent positive or negative relation between
methylation levels and patient survival (Figure 3C). The
analysis suggests that hypermethylation may lead to
the down-regulation of specific genes, impacting their
expression and potentially influencing patient outcomes in
various cancer types.

The analysis of differential expression of protein kinase
genes associated with phagocytosis across various cancer
types revealed some notable expression differences
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Figure 2: Protein kinase genome alterations in copy number variation (CNV) class and their correlation with mRNA expression
and survival in cancers. A) Pie charts of CNV distribution across cancers showing that heterozygous amplifications and deletions were
predominant among the various CNV types. B) Profile of heterozygous CNV and homozygous. The dark color of the graph shows the high
percentage of heterozygous amplification and deletion of the CNVs for each gene in each cancer. C) Correlation between CNV and “mRNA”
expression. The cancers with the strongest correlations were BRCA (Breast invasive carcinoma), OV (Ovarian serous cystadenocarcinoma),
LUAD (Lung adenocarcinoma), HNSC (Head and Neck squamous cell carcinoma), and COAD (Colon adenocarcinoma); however, most
cancers showed a positive correlation with expression. D) The survival difference between CNV groups. There is a significant association
between CNV and survival across various cancer types, especially in UCEC (Uterine Corpus Endometrial Carcinoma), KIRP (Kidney renal
papillary cell carcinoma), LGG (Brain Lower Grade Glioma) and KIRC (Kidney renal clear cell carcinoma).
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Figure 3: Methylation differences in cancer cells vs normal cells and the correlation between mRNA expression and survival. A)
Methylation between normal and tumor samples, where methylation differences are not uniform across all cancer types, indicating that each
cancer type has a unique methylation profile for these genes. B) The correlation between methylation and ‘mRNA’ expression uncovered a
consistent pattern across various cancer types, highlighting significant associations between methylation levels and expression that were
mostly negative. C) Difference in survival between high and low methylation of the genes. In the survival profile analysis, only a few cancers
demonstrated a relation between methylation levels and patient survival.

between cancer and non-cancer tissues. Using TCGA
data, we examined the expression of protein kinase genes
associated with phagocytosis in multiple cancer types
(Figure 4A). In LUSC (Lung Squamous cell carcinoma),
genes like BTK, FGR and PRKCE were significantly down-
regulated. Conversely, in THCA, MET was up-regulated.
Additionally, BRCA displayed a mix of up-regulated and
down-regulated genes, with notable changes in EIF2AKT
and MET. Overall, the expression profiles across cancer
types indicate that, there are unique expression patterns
that are specific to a few cancer types. Nonetheless, for
most cancer types, there were minimal notable variations
in the expression of the protein kinase genes controlling
phagocytosis between cancerous and normal tissues. In
the analysis of protein kinase gene expression subtype
differences, the top cancers that showed consistently
high expression were BRCA, KIRC, STAD (Stomach
Adenocarcinoma), and LUAD, with FDR < 0.05 being
significant (Figure 4B). The survival analysis revealed
that KIRC and LGG were the top cancer types associated
with the phagocytotic kinome genes (Figure 4C). TYRO3
has a higher survival rate when overexpressed in KIRP
and ACC (Adrenocortical Carcinoma). It also shows that
overexpression of LYN in UVM is associated with a higher
survival rate of patients. At this point, we can safely conclude
that the expression of certain protein kinase genes predicts
survival better than others across cancers. These indicate
the statistical significance of each predictor, which has a
diverse association with survival outcomes across a few
cancer types.

Pathway activity scores for 7,876 samples were calculated
using Reverse-phase protein array (RPPA) data from the
TCPA (The Cancer Proteome Atlas) database. To investigate
the potential cross-talk of protein kinase genes involved
in phagocytosis with other cancer-related pathways,
we analyzed the data from pathway activity scores for
7,876 samples from the TCPA database to determine
the association of these genes with various biological
processes. Among the 7,876 tumor samples analyzed,
44% of samples expressing FYN, 41% expressing AXL
and FGR, and 38% expressing HCK showed EMT pathway
activation, suggesting that these kinases may play a role
in promoting cancer cell migration and invasion. (Figure
5) (21). Additionally, 41% of samples expressing AXL were
linked to cell cycle inhibition, highlighting its potential role
in controlling cell proliferation. In the context of apoptosis
activation, genes such as CSK, LYN, LIMK1, and FGR
showed associations, indicating their involvement in
programmed cell death pathways. Furthermore, 38% of
samples expressing HCK were related to hormone estrogen
receptor activation (ER_A), and both MET and LIMK1
showed associations with hormone androgen receptor
inhibition (AR_I), suggesting a complex interplay between
these protein kinases and hormone signaling pathways.

We also investigated the relationship between the
expression of protein kinase genes in phagocytosis and the
tumor immune microenvironment. We calculated a gene set
signature (GSVA score) to evaluate the infiltration levels of
different immune cells across various cancer types. The
results indicated a significant correlation between the GSVA
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Figure 4: mRNA expression in protein kinase genes in normal and tumor samples. A) mRNA expression levels between normal
and tumor samples. In LUSC (Lung squamous cell carcinoma), genes like BTK, FGR, and PRKCE were significantly down-regulated.
Conversely, in THCA (Thyroid carcinoma), MET was up-regulated. Overall, the expression profiles across cancer types indicate that while
there are some consistently up-regulated or down-regulated genes in certain cancers, there are unique expression patterns that are specific
to each cancer type. B) Difference of expression levels between high and low subtypes. BRCA (Breast invasive carcinoma) and KIRC (Kidney
renal clear cell carcinoma) emerged as the most significant cancer types. However, STAD (Stomach adenocarcinoma) and LUAD (Lung
adenocarcinoma) also demonstrated notable significance. C) Difference of survival between high and low expression. The size of the dot
represents the significance of the gene's impact on survival across different cancer types, while the color indicates the hazard ratio. DFI:
disease-free interval; DSS: disease-specific survival; OS: overall survival; PFS: progression-free survival.

score and the infiltration levels of numerous immune cells.
Particularly, the GSVA score showed a strong negative
correlation with neutrophil cells and a positive correlation
with macrophage cells (Figure 6A). Additionally, we
examined the association between these protein kinase
genes and drug sensitivity in cancer cell lines using data
from the GDSC (Genomics of Drug Sensitivity in Cancer)
and CTRP (Cancer Therapeutics Response Portal)
databases. The results revealed that the protein kinase
genes related to phagocytosis were significantly correlated
with the sensitivity of cancer cells to multiple compounds
(Figure 6B, 6C). These findings underscore the potential
impact of protein kinase genes in phagocytosis on immune
cell infiltration in cancers and suggest new avenues for
targeted drug development.

DISCUSSION

The results of this study provide important insights into
the genetic and molecular alterations of protein kinase
genes involved in phagocytosis across various cancer types.
These findings underscore the relevance of these genes
not only in cancer progression but also in their potential as
therapeutic targets

Theanalysisof SNVsrevealedthat METand MERTKwere
the most frequently mutated genes across multiple cancer
types, with MET showing the highest mutation frequency in

SKCM and an overall higher mutation rate in UCEC. The
presence of predominantly missense mutations, particularly
in MET and MERTK, suggests these genes may be critical
in the oncogenic processes of various cancers. These
findings are consistent with previous studies that highlight
MET’s role in cancer progression, where its mutation and
overexpression drive tumor growth and metastasis (22).
Furthermore, while genes such as TYRO3, LYN, and PTK3
exhibited significant correlations with survival in specific
cancers, these associations were not universally observed
across all cancer types, indicating a complex, context-
dependent role of these kinases in cancer biology (23-25).
Future studies should explore the mechanistic implications
of these mutations to identify potential targets for therapeutic
intervention.

CNV profiling revealed widespread heterozygous
amplifications and deletions across cancer types, with
significant survival associations observed particularly in
UCEC, KIRP, and KIRC. The observed positive correlations
between CNVs and gene expression in cancers like BRCA,
QV, and LUAD suggest that CNVs play a critical role in
modulating gene expression, which in turn may influence
tumor behavior and patient outcomes. It is a well-established
scientific fact that CNV profiling plays a critical role in cancer
by identifying gene amplifications or deletions that influence
tumour aggressiveness, treatment resistance, and patient
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Figure 5: Correlation between expression and pathway activity
of the genes. In the analysis of the total samples, 44% of FYN,
41% of AXL and FGR, and 38% of HCK were associated with the
activation of the epithelial-mesenchymal transition (EMT) and 41%
of AXL was linked to cell cycle inhibition, highlighting its potential
role in controlling cell proliferation. In the context of apoptosis
activation, genes such as CSK, LYN, LIMK1, and FGR showed
associations. The percentages indicate the number of samples out of
the total samples analysed, which showed a consistent effect (either
activation / inhibition) on the specific cancer associated pathways
tested.

prognosis (26). These genomic alterations help stratify
patients for targeted therapies and guide clinical decisions,
ultimately improving outcomes across cancers like breast,
lung, glioblastoma, neuroblastoma, and colorectal cancer
(9, 27). Hence, our findings align with previous reports that
highlight CNVs as key drivers of cancer heterogeneity (28).
The identification of significant CNV-survival associations
further reinforces the clinical relevance of these alterations,
suggesting that CNV profiling could serve as a valuable
prognostic tool for personalized cancer treatment strategies.

DNA methylation is an epigenetic modification—a
chemical change to DNA that does not alter the sequence
but affects how genes are expressed. In cancer, the
methylation process can silence protective genes and
activate harmful ones (29). Our methylation analysis
highlighted cancer-specific patterns, with genes such as
MERTK and LYN showing hypermethylation in BRCA
and an inverse relationship between methylation levels
and mRNA expression in most cancers. Interestingly,
while hypermethylation was generally associated with
gene silencing, a few exceptions, such as PTK2 in UVM,
demonstrated a positive correlation between methylation and
expression, suggesting alternative regulatory mechanisms
at play (30, 31). These findings imply that methylation
may serve as a regulatory mechanism for protein kinase
gene expression in cancer, with potential implications for
early diagnosis, formulating targeted epigenetic therapies,
combating therapy resistance, synergizing immunotherapy,
and methylation editing.

Differential expression analysis demonstrated significant
cancer-specific variationsin the expression of protein kinases
associated with phagocytosis. While some genes, such as
MET, were consistently upregulated in certain cancers like
THCA, others, including BTK and FGR, were downregulated
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in LUSC. These results suggest that the phagocytotic kinome
plays diverse roles in cancer biology, with specific genes
either promoting or inhibiting tumor progression depending
on the cancer type (32). The observed correlations between
gene expression and survival, particularly for KIRC and
LGG, offer new therapeutic avenues, like kinases being
used as biomarkers and their levels for prognostication and
targeting them with drugs might lead to better outcomes in
some cancers at least.

The crosstalk between the phagocytotic kinome and
key cancer-related pathways, such as EMT and apoptosis,
further emphasizes the importance of these kinases in
tumor progression. The involvement of genes like FYN,
AXL, and HCK in EMT highlights their potential role in
promoting cancer cell migration and invasion. In contrast, the
association of genes such as CSK and LYN with apoptosis
underscores their role in modulating cell death pathways.
These findings suggest that targeting the crosstalk between
the phagocytotic kinome and these critical pathways
could disrupt key processes in cancer development and
progression, presenting new opportunities for therapeutic
intervention (33). There are many other cancer-related
pathways, such as MAPK, RAD-related pathways, and
IGFBP-related pathways, that should be studied in the
future (34 - 36).

The observed correlations between protein kinase gene
expression and drug sensitivity across multiple cancer cell
lines indicate that these genes may influence cancer cell
responsiveness to targeted therapies. In particular, the
negative correlation between gene expression and sensitivity
to certain compounds suggests that the overexpression of
specific kinases may confer drug resistance. These findings
offer valuable insights for the development of personalized
cancer treatments, where targeting the phagocytotic
kinome could enhance the efficacy of existing therapies or
help overcome drug resistance (37). Targeted research is
needed to validate how protein kinases influence cancer
drug resistance, using molecular experiments, clinical
trials, and computational models. Collaborative efforts
across disciplines could lead to personalized treatments
that overcome resistance by profiling kinase activity and
modulating the tumour microenvironment.

While this study provides a comprehensive overview
of the genetic and molecular alterations of protein kinases
involved in phagocytosis across cancers, several limitations
must be acknowledged. The reliance on publicly available
datasets, such as TCGA, may introduce biases related to
sample composition and data quality. Additionally, while this
study identified significant associations between genetic
alterations and survival, further experimental validation is
required to establish causal relationships. Future research
should focus on the functional characterization of these
protein kinase genes in cancer models to better understand
their roles in tumor progression and immune modulation.
In summary, this study aimed to present a comprehensive
multi-omic analysis of protein kinase genes involved in
phagocytosis—termed the phagocytotic kinome—across
various cancer types. It reveals that genes like MET and
MERTK are frequently mutated, with structural variations
and methylation patterns significantly influencing gene
expression and patient survival. Differential expression
profiles and pathway crosstalk highlight their roles in tumor
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Figure 6: Relationship between Protein kinase genes with drug sensitivity in cancer cells. A) Association between GSVA (Gene Set
Variation Analysis) score and activity of cancer-related pathways in selected cancers. *p-value < 0.05; #: FDR < 0.05. B) Expression of the
genes and the sensitivity of cancer cell lines analyzed using GDSC (Genomics of Drug Sensitivity in Cancer) and CTRP (Cancer Therapeutics
Response Portal) data, which showed the protein kinase genes related to phagocytosis were significantly correlated with the sensitivity of

cancer cells to multiple compounds.

progression, immune cell modulation, and apoptosis.
Importantly, these kinases show strong associations with
immune cell infiltration and drug sensitivity, positioning
them as promising biomarkers and therapeutic targets in
precision oncology.

MATERIALS AND METHODS

The genome of protein kinases involved in phagocytosis,
often referred to as the phagocytotic kinome, comprises
a curated set of genes encoding kinases that regulate
various stages of phagocytosis—from receptor signaling
and cytoskeletal rearrangement to vesicle trafficking and
immune modulation. This genome includes mainly ABLT,
AXL, BCR, BTK, CAMK1D, CSK, EIF2AK1, FGR, FYN,
HCK, LIMK1, LYN, MERTK, MET, MST1R, PAK1, PRKCD,
PRKCE, PRKCG, PTK2, SRC, SYK and TYRO3 (16).

Data Acquisition

Expression data, including clinical information, SNVs,
CNVs, and methylation data, were obtained from TCGA and
the NCI Genomic Data Commons (38, 39). Reverse phase
protein array (RPPA) data were retrieved from The Cancer
Proteome Atlas (TCPA) (40). Immunotherapy response
and survival data were retrieved from the TIDE (Tumor
Immune Dysfunction and Exclusion) database (41). Gene-
drug sensitivity data were collected from the Genomic Drug
Sensitivity in Cancer (GDSC) database and the Cancer
Therapeutics Response Portal (CTRP) (42, 43). The data
was pre-processed with normalisation to TPM (Transcripts
per Million) using TPMCalculator version v0.0.1 (44).

Gene Alterations and Expression Analysis

SNV visualizations were generated with the Maftools
v2.10.0 , while CNV data were processed with GISTIC2.0
v2.0.23 (45, 46). Correlation between CNV and mRNA
expression, and between methylation levels and mRNA was
assessed by Spearman correlation analysis. The statistical
significance employed in this model is Cox’s hazard ratio
(P value and FDR). Before differential methylation analysis,
correlation analysis was performed to filter the sites
most negatively correlated with gene expression into this
analysis. Differential analysis was performed using the
Bioconductor package minfi v1.36.0 to compare methylation
patterns between tumor and normal samples, and individual
variations in gene expression were also assessed (47).
Gene Set Variation Analysis (GSVA) was performed using the
GSVA platform v1.46.0 to analyze mRNA expression data
for the gene set using both the Wilcoxon test and ANOVA for
statistical comparisons (48).

Survival Analysis

Disease-free interval, progression-free interval, overall
survival, and disease-specific survival were evaluated at in
survival analysis. Methylation data and clinical survival data
were merged by sample barcode; the median methylation
level was used to divide tumour samples into high and low
methylation groups. A median value indicates a hazard ratio
value of 1.0. If the hazard ratio was greater than or equal to
1.0, then it was binned as the higher methylation group; if
the ratio was less than 1.0, then it was binned as the lower
methylation group. Tumor samples were divided into high and
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low groups based on median values or specific alterations,
such as mutations and CNV classifications like amplification
and deletion. Survival time and status were fitted using the R
survival package, and the Cox Proportional-Hazards model
was employed to calculate hazard ratios (HR) for each gene,
indicating survival risk. Statistical significance of survival
differences between groups was assessed using log-rank
tests, and Kaplan-Meier survival analysis was conducted to
further evaluate gene-specific survival impacts.

Pathway Analysis

Pathway activity scores for 7,876 samples were
calculated using reverse-phase protein array (RPPA) data
from the TCPA database (40). The analysis covered ten
cancer-associated pathways: hormone estrogen receptor
(ER), hormone androgen receptor (AR), receptor tyrosine
kinase (RTK), phosphatidylinositol-4,5-bisphosphate-
3-kinase (PI3K)/protein kinase B (AKT), RAS/mitogen-
activated protein kinase (MAPK), tuberous sclerosis complex
(TSC)/mechanistic target of rapamycin (mTOR), epithelial-
mesenchymal transition (EMT), cell cycle, and apoptosis
pathways. Pathway scores were calculated by aggregating
the relative concentrations of all positive regulatory proteins
and subtracting those of negative regulators. To estimate
Pathway Activity Scores (PAS), gene expression data were
divided into high and low categories based on median values
as in previous studies. PAS differences between these
categories were assessed using Student’s t-test, where
the p-value was adjusted using the false discovery rate
(FDR), given an FDR = 0.05 was considered significant. A
gene was found to exert an activating effect on a signaling
pathway if PAS (Low expression of Gene A) < PAS (High
expression of Gene A); otherwise, it was considered to
exert an inhibitory effect. No specific IDs were given to the
pathways apart from the names.

Immune Association Analysis

Immune cell infiltration levels within various cancers
were analyzed using data from the TCGA database (38).
The infiltrates of 24 immune cell types were evaluated
using ImmuCellAl webtool (49). Gene set variation analysis
(GSVA) scores of the genes were used to visualize the data.
The relationship between immune cell infiltration and gene
expression was quantified using Spearman correlation
analysis, with correlation coefficients indicating the strength
of associations. P-values were adjusted using FDR.

Drug Sensitivity Analysis

Drugs were screened based on their Centromere protein
A (CENPA) correlation with gene expression and drug
sensitivity, using a stringent significance cutoff (p <0.05).
GDSC: The IC50 of 265 small molecules in 860 cell lines and
the corresponding mRNA gene expression were collected
from the Genomics of Drug Sensitivity in Cancer (GDSC)
(42). The mRNA expression data and drug sensitivity data
were merged. Pearson correlation analysis was performed
to get the correlation between gene mRNA expression and
drug IC50. P-value was adjusted by FDR.

CTRP: The IC50 of 481 small molecules in 1001 cell
lines and the corresponding mRNA gene expression were
collected from the Genomics of Therapeutics Response
Portal (CTRP) (43). The mRNA expression data and drug

https://doi.org/10.59720/24-352

sensitivity data were merged. Pearson correlation analysis
was performed to get the correlation between gene mRNA
expression and drug IC50. P-value was adjusted by FDR.

The analysis employed GSCA Lite (50) to calculate
the area under the dose-response curve (AUC) values for
drugs and the expression profiles of protein kinase genes
involved in phagocytosis across various cancer cell lines.
Drug sensitivity and gene expression data from the GDSC
and CTRP databases were integrated for a comprehensive
evaluation (42, 43). Spearman correlation analysis was
used to assess the relationship between gene expression
and drug sensitivity.

Statistical Analysis

Statistical analyses were conducted using R software
v4.0.3 (51). The Spearman correlation test was used to
assess correlation, and the Cox proportional hazards model
was used to determine survival risk and HR. Kaplan-Meier
curves and log-rank tests were used to evaluate prognostic
values. T-tests or ANOVA were used for group comparisons,
with a rank-sum test for two datasets unless specified
otherwise. P-values have been FDR corrected.
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