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SUMMARY

Achieving precise control of hand prosthetics
is essential for enhancing the quality of life for
individuals with arm amputations. Electromyography
(EMG) signals are widely used as interfaces for these
prosthetics. A key challenge in developing such
interfaces is hand gesture recognition, where EMG
signalsareanalyzedtopredicttheintended hand shape
of the user. This study advances machine learning
models for EMG-based hand gesture recognition
by exploring the use of peak detection algorithms
for feature extraction. We evaluated three distinct
algorithms and a baseline without peak features with
features derived from the detected peaks as well as
other common methods. Our initial hypothesis was
that peak features from a savitzky-golay filter would
provide the highest accuracy because it uniquely
smoothens the signal. Contrary to our hypothesis,
however, when trained with a random forest model,
the features from the wavelet-based peak detection
algorithm achieved a higher classification accuracy
than the maxima-based and savitzky-golay-based
algorithms as well as the data without peak detection
features when classifying two gestures (hand open/
close). Further, the extracted peak features were
among the most important features for all three
algorithms. These results demonstrate that peak
features, particularly those extracted using the best-
performing, wavelet-based approach, can enhance
the performance of hand gesture recognition models.
This improvement could significantly benefit patients
relying on prosthetic devices by enabling more
accurate translation of their intended motions into
device actions, ultimately improving their quality of
life.

INTRODUCTION

Amputation is a profound and life-altering event affecting
millions of people worldwide, often resulting from trauma, dis-
ease, or congenital conditions (1). For many of these individu-
als, prostheses become essential for restoring mobility and
independence, and significant research has focused on de-
veloping effective interfacing tools for prostheses to improve
their quality of life. One common area of study, specifically
for arm amputees, is hand gesture recognition, where an in-
terfacing tool detects the hand gesture a patient attempts to
create (2). Developing advanced interfaces holds the prom-
ise of significantly enhancing the quality of life for millions of
arm amputees, enabling them to perform everyday tasks with
greater ease and precision.

Electromyography (EMG) is a standard measurement
technique used for prosthetic control. EMG measures the
electrical activity of specific muscle groups in the body (3).
This activity is measured through the use of electrodes placed
either on the surface skin of the subject, called surface elec-
tromyography (SEMG), or in the muscle itself via needle elec-
trodes, called intramuscular electromyography (iEMG) (3).
For prosthetic interfaces, sSEMG data is widely used as it is
easy to collect and requires little physical effort by the patient
(4). However, sEMG signals are noisy and unreliable as skin
electrodes may measure the electrical activity of multiple mo-
tor units at a time, causing disturbances between signals (4).
While iEMG can yield better results direct access to muscle
activity, collecting iEMG data can be uncomfortable for the
subject and difficult to set up (5). For these reasons, sSEMG
has been more commonly used in literature studying EMG-
based prosthetic control (2).

Over the past few years, many studies have been con-
ducted with the goal of using ML to interpret sSEMG data in the
realm of prostheses and make predictions, specifically with
hand gesture recognition (2). In 2008, a decision-level fusion
of k-NN and Bayes linear classifiers and achieved a classi-
fication accuracy of 94% with different hand gestures (6). In
2009, mean and median frequencies (MMNF) for robust fea-
ture extraction in EMG data with white Gaussian noise were
used, achieving 5-10% error with MMNF in a weak EMG sig-
nal with high noise (7). In 2020, a convolutional auto-encoder
and a convolutional neural network (CAE+CNN) was used
to classify a dataset containing 10 different hand gestures,
achieving an accuracy of 98.13% with a Gaussian noise level
of 1e-5 applied to the data (8). Ultimately, the common trend
among these and other studies exploring the topic of EMG
hand gesture recognition is that they aim to add or change the
model or inputted features in developing the model to improve
accuracy.

The specific application of our research is EMG-based
hand gesture recognition using machine learning (ML). In this
task, a patient generates electrical activity from intact motor
units in the arm. EMG data is generated from these intact
muscles and passed into a model that predicts what hand
shape a subject is trying to make (2). A hand prosthetic would
then create these gestures in real time. ML is well suited for
EMG analysis as certain feature extraction and pre-process-
ing methods integrated with machine learning models can al-
leviate the inherent noise in EMG data and better convey the
muscle movement of a subject. Pre-processing techniques,
such as Butterworth filtering, can minimize irrelevant frequen-
cies using a bandpass filter, and specific feature extraction
techniques can enhance the quality of data (9).

We aim to enhance EMG-based prosthesis control by ex-
perimenting with the use of features derived from peak de-
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tection algorithms for EMG hand gesture recognition models.
Specifically, this model will be a binary classification model
that distinguishes between EMG signals that show hand open
and hand close. These peaks are significant for EMG signals
because they can represent the relevant contractions of a
muscle, which may help an ML model to differentiate between
hand gestures, as different gestures may involve different
contractions at various times and magnitudes. While these
detection algorithms have been studied in EMG signal analy-
sis, they have yet to be extensively applied to hand gesture
recognition (10). In addition, the model was tested without us-
ing any peak detection-derived features, providing a baseline
for comparison.

We tested three distinct algorithms, with features ex-
tracted from each algorithm and passed into a ML model. A
random forest classifier was used to analyze the features ex-
tracted from the peaks and other methods; the model works
by combining the outputs of multiple simpler models, which
allow the random forest to handle complex relationships be-
tween features.

Our initial hypothesis was that peak features derived from
a savitzky-golay filter—a method that smooths data by fitting
successive subsets of it to low-degree polynomials and then
doing point by point analysis to determine peaks—would be
the most effective instead of the wavelet-based or maxima-
based algorithms. The filter’'s smoothing process can remove
unwanted peaks caused by noise, potentially increasing class
separability between gestures. Contrary to our hypothesis,
however, features from the wavelet-based peak detection ap-
proach using Continuous Wavelet Transform (CWT), which
analyzes signals at multiple scales using mathematical func-
tions called wavelets, provided the highest accuracy. When
trained with a random forest classifier, the features derived
from this algorithm achieved the highest classification accu-
racy compared to accuracies of the maxima-based and sav-
itzky-golay-based algorithms, as well as the accuracy without
peak detection features when classifying two gestures (hand
open/close). Further, the extracted peak features were among
the most important for all algorithms evaluated, highlighting
the class separability that these features provide. These find-
ings demonstrate the critical role of advanced peak detec-
tion techniques in enhancing the performance of EMG-based
gesture recognition models.

RESULTS

To determine whether or not incorporating peak features
caused relevant improvements in EMG hand gesture recog-
nition, a maxima-based, savitzky-golay-based, and wavelet-
based peak detection algorithm were each run on EMG data
to extract features, with each algorithm having a separate
dataset. These datasets contained the peak features such
as number of peaks or mean peak height as well as other
common time series features and were used to predict the
hand gesture a subject was making. A random forest model,
which is effective at handling complex relationships between
features, was used as the primary model for training.

To effectively understand how well the random forest pre-
dicted what hand gesture a given EMG signal was showing
based on the given data, Stratified K-Fold cross-validation
(SKF) was used as the training pipeline. SKF is particularly
useful because, unlike a single train-test split where the eval-
uation might be highly dependent on the specific data split,

https://doi.org/10.59720/24-321

SKF reduces this variance by measuring the performance
across multiple splits. This method achieves a more accurate
representation of the performance of a model on a dataset.
Each dataset was split into five subsets, meaning that 20% of
the datasets were used for

Before feature extraction, EMG signals must be prepro-
cessed to remove noise and simplify analysis. For this experi-
ment, a bandpass filter was used as it is commonly applied to
isolate dominant frequencies by removing unwanted ranges.
After filtering, a periodogram of an EMG signal from the data-
base shows a notable reduction in 400-600 Hz frequencies
(Figure 1).

After pre-processing, we extracted peaks using the three
algorithms. For comparison, the peaks were graphed on a
random EMG signal from the database, illustrating the differ-
ences in which peaks are detected and which ones are missed
by each algorithm. The maxima-based detection found the
most peaks (n=71), with the savitzky-golay-based algorithm
finding less (n=56), and the wavelet-based algorithm finding
the least number of peaks (n=22) (Figure 2).

After extracting features, the random forest model was
trained on the peak feature datasets and the dataset without
peak features using SKF. The first clear difference is that all
three peak feature datasets, which all had an accuracy above
90%, outperformed the dataset without peak features, which
had an accuracy of 88.5% (Table 1). Among the datasets that
used peak detection algorithms for feature extraction, peak
features derived from the wavelet-based algorithm delivered
the best performance, achieving an accuracy of 96.5% and
lowest standard deviation of 2.9, surpassing features ex-
tracted from the maxima-based and savitzky-golay-based
algorithms, which produced accuracies of 94.2% and 91.8%,
respectively (Table 1). Additionally, the precision, recall, and
F1-scores for the wavelet-based peaks were the highest
among the other two algorithms and baseline (Table 1). Pre-
cision measures how many of the predicted positives were
actually correct, recall reflects the ability to identify all actual
positives, and the F1-score balances both metrics to provide
a single measure of accuracy.

P-values were also calculated using a paired t-test be-
tween each algorithm and the baseline. The paired t-test
compares the means of two related groups to determine
whether their differences are statistically significant. In this
case, it assesses whether the feature sets lead to significantly
different model performances. The wavelet-based features
were the most statistically significant with a p-value of 0.032
compared to the maxima-based and savitzky-golay-based
features, which produced p-values of 0.054 and 0.109, re-
spectively (Table 1).

In addition to testing the accuracy of the peak feature da-
tasets, feature importances were extracted to determine if
the peak features had a real effect on accuracy. The feature
importances showed the mean peak height (MPH) and num-
ber of peak (NP) features were among the top 10 for all 3
algorithms (Figure 3). Additionally, electrodes placed on the
wrist demonstrated better predictive capability than those on
the forearm as most of the features in the top ten were signal
features from electrodes in the wrist (Figure 3).

A logistic regression model was also tested to show that
the random forest classifier adds value for analyzing extract-
ed peak features compared to simpler models. The regres-
sion model was trained with the highest-performing wavelet-
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Figure 1. Effect of band-pass filtering on EMG signals using a Butterworth filter. Periodogram showing the power spectral density of an
EMG signal before and after applying a 20-400Hz Butterworth band-pass filter (order 6) with recommended parameters (13). a) Graph and
b) periodogram of original signal. ¢) Graph and d) periodogram of signal after band-pass is applied

based peak features using the same SKF framework and
achieved an accuracy of 57% when distinguishing between
hand open and hand closed (Table 1).

DISCUSSION

To evaluate whether incorporating peak features led to
meaningful improvements in EMG hand gesture recognition,
three peak detection algorithms—maxima-based, savitzky-
golay-based, and wavelet-based—were applied separately to
EMG data to extract features, with each algorithm generating
its own dataset. The model achieved a baseline accuracy of
88.5% without using peak detection-derived features (Table
1). Incorporating peak features enhanced the model’s accu-
racy, demonstrating their importance in providing valuable in-
formation to improve hand gesture classification and among
the peak-feature datasets, the wavelet-based approach for
peak detection was most effective, achieving an accuracy
of 96.5 £+ 2.9%, the highest accuracy and the lowest stan-
dard deviation for all three algorithms (Table 1). The wavelet-
based approach also achieved a p-value of 0.032 when com-
pared to the baseline, showing that adding wavelet-based
peak features created a statistically significant difference in
model performance (Table 1). These results show that mea-
sured wavelet-based peaks were the most distinct between
each hand gesture, leading to better class separability and

accuracy.

The comparison between a simple logistic regression
model with the more complex random forest model shows
that the more complex model is better suited for EMG signal
analysis and categorization. When a logistic regression mod-
el was trained with the wavelet-based peak features, which
were the best-performing features, the model achieved an
accuracy of 57.0 + 19.8% (Table 1). With the accuracy being
close to 50% and the deviation being extremely high coupled
with the much higher 96% achieved by a random forest, it
is clear that the simpler logistic regression model could not
make effective distinctions between the EMG signals.

The savitzky-golay-based algorithm unexpectedly un-
derperformed compared to the maxima-based and wavelet-
based methods (Table 1). Further, the savitzky-golay-based
algorithm had a high p-value of 0.109, illustrating that adding
the savitzky-golay features did not provide a statistically sig-
nificant difference relative to the baseline model (Table 1).
This outcome could be attributed to the filter’s tendency to
eliminate critical information. While the savitzky-golay-based
algorithm detected more peaks than the wavelet-based meth-
od, it identified fewer than the maxima-based approach (Fig-
ure 2). However, the quality of the peaks the savitzky-golay-
based algorithm identified was inferior to those detected by
the wavelet-based method, as it primarily analyzed amplitude
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Figure 2. EMG signal with peaks identified by three different detection algorithms. EMG signal with peaks identified by the three
algorithms analyzed in this study. As an EMG signal measures the electrical activity of a muscle, points of high activity or peaks represent
relevant muscle contractions in the measurement area and are represented in the graphs. Peaks detected by the a) savitzky-golay-based
algorithm (blue), b) maxima-based algorithm (red), and c) wavelet-based algorithm (green). Only peaks with an amplitude above 0.6 within an
interval of 0.5 seconds are shown. Peaks detected by the savitzky-golay-based algorithm are displayed on the smoothed signal after applying

the filter.

rather than shape. Additionally, the filtering process may
have inadvertently removed significant peaks identified by the
maxima-based method, both of which likely contributed to its
diminished performance.

The effectiveness of the wavelet-based method can be
attributed to its focus on signal shape rather than solely on
amplitude, as seen in the savitzky-golay-based and maxima-
based methods. Unlike these methods, which rely on point-
by-point comparisons to detect peaks, the wavelet-based ap-
proach analyzes the overall shape of a range of values by
comparing it to a predefined wavelet (10). This enables it to
identify a wider variety of peaks, making it a more robust and
versatile technique (10).

Regarding feature importance, the NP and MPH were
among the most significant features, consistently ranking
in the top 10 across all 3 datasets, showing that these fea-
tures greatly contributed to the model’s ability to distinguish
between hand gestures (Figure 3). Additionally, electrodes
placed on the wrist demonstrated better predictive capability
than those on the forearm, as most of the top-ranked fea-
tures were from wrist channels (Figure 3). This is likely due to
the wrist’s proximity to the hand, making it more sensitive to
changes in gesture.

These findings underscore the effectiveness of including
peak detection features, particularly from wavelet-based al-
gorithms, in EMG-based hand gesture recognition models.
The high accuracy of the wavelet-based features compared
to the other two algorithms and the baseline, coupled with the
high importance of the peak features, underscores the impact
that these peak detection algorithms have on model

Our study trained a binary classifier, but hand gesture
models are more useful when they can perform multi-clas-
sification on many different gestures, and much of the prior
work on EMG hand gesture recognition handles more than
two gestures (2). While our study has shown the possibility of
using peak features, further work must be done on using peak
features in a larger dataset with more gestures to truly see the
performance of these features on a more real-world scale.
Further work could also be done to test more peak detection
algorithms. While this study focused on three, many more ex-
ist, which could provide better results. Additionally, our study
extracted only four peak features from the algorithms: num-
ber of peaks, mean peak height, standard deviation of peak
height, and time of max peak height. Other peak features may
offer more class separability.

Improvements in EMG-based prosthesis control models
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. . .. P-values vs
Method Classification Precision Recall F1-Score baseline
Hand Open 874+8.0 908 +13.0 885+84 -
Without Peak Features | Hand Closed 923+107 858+124 88.0+86 -
Overall Accuracy 885+8.0 - - -
Hand Open 958 +5.2 93.1+5.7 942 +3.5 0.054
Maxima-Based Peak
Detection Hand Closed 935x+54 85.0+6.1 941 +4.0 -
Overall Accuracy 942+ 3.7 - - -
Hand Open 958+5.2 978+4.4 966 +2.8 0.032
Wavelet-Based Peak | a0 closed 978 + 4.4 953+58 | 963+3.0 -
Detection
Overall Accuracy 965129 - - -
Hand Open 90.1+8.6 956 +5.4 925+5.2 0.109
Savitzky-Golay-Based | o cjosed 951+641 | 878:112 | 9097.1 ;
Peak Detection
Overall Accuracy 918+7.1 - - -
Hand Open 570+ 165 706 +164 62.9 +16.3 -
Wavelet-Based Peak
Detection with Logistic | Hand Closed 560+262 | 433+251 | 4851256 -
Regression
Overall Accuracy 570+ 198 - - -

Table 1. Comparison of peak detection algorithms for EMG-based hand gesture recognition. Peak features were extracted from three
different detection algorithms, generating separate datasets for each algorithm. A baseline dataset without peak features and a Logistic
Regression model using wavelet-based peak features were also included for comparison. Each dataset, excluding the Logistic Regression,
was trained using a hyperparameter-tuned random forest model. Accuracy metrics (mean * standard deviation) were calculated across
all datasets using K-Fold cross-validation. Performance metrics include classification accuracy, precision, recall, and F1 score. P-values
(calculated using paired t-test) was also calculated for each algorithm compared to the baseline dataset without peak features to determine if
adding peak features provided a statistically significant difference in model performance.

can have a significant positive impact on the lives of arm am-
putees. Enhanced model accuracy and reliability can lead to
more intuitive and responsive prosthetic devices, allowing us-
ers to perform daily tasks more easily and confidently (11).
This can improve arm amputees’ overall quality of life by in-

creasing their independence and ability to engage in various
activities. Additionally, advancements in this field could pave
the way for further innovations in prosthetic technology, ulti-
mately benefiting a larger population of individuals who rely
on these devices.
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Figure 3. Top 10 most important features for each peak detection algorithm. The 10 most important features identified by a random
forest model for each peak detection algorithm (n=3). Top 10 feature importances for a) maxima-based, b) wavelet-based, and c) savitzky-
golay-based peaks. The feature naming convention includes the feature acronym, electrode location, and channel number. Corresponding

feature acronyms and full feature names are detailed in Table 2.

MATERIALS AND METHODS
Dataset Description

The Gesture Recognition and Biometrics ElectroMyo-
Gram (GRABMyo) dataset from the PhysioNet library was
used in this study (12—14). This dataset contains EMG record-
ings sampled at 2048 Hz from 43 participants (23 men and 20
women) with an average age of 26.35 + 2.89 years, perform-
ing 17 distinct hand gestures, including rest. On the forearm
and wrist of each individual, 16 and 12 monopolar sEMG elec-
trodes (AM-NOOS/E, Ambu, Denmark) were placed, respec-
tively, each in the form of two rings (12) (Figure 4).

The collection process took 3 days, during which all 43
participants performed 17 gestures for 7 trials, with 5 seconds
of recorded sEMG data for 28 channels per trial and a 10-sec-
ond rest period between contractions (12).

Elbow crease

/.

.& E

This data set was selected for its open-access availabil-
ity, recent publication date, and ease of use. Its files follow a
consistent naming scheme that clearly indicates the partici-
pant, trial, and gesture, making it straightforward to download
and integrate into code. Additionally, the publishers provided
transparent details about the equipment used and the partici-
pants’ demographics, further enhancing its suitability for this
study.

In the GRABMyo database, there are many separate
5-second EMG recordings; using them all would lead to ex-
tensive training time and complexity. To address this, the data
was reduced to the most relevant gestures and channels.

Out of the 17 different gestures recorded in the database,
this study focused on classifying two: Hand open and Hand
closed (Figure 5). These steps reduced the over 100,000

......... ~1D¥ R Channels
forearm setup

1 2x 6 channels
wrist setup

(k) Original electrode numbering

Figure 4. Forearm and wrist electrode locations. From the GRABMyo database (12-14). Location of the 28 electrodes on the forearm and
wrist. Each of these electrodes generates a separate EMG signal for each gesture. No changes were made to the original image, and the
database was published under an Open Data Commons Attribution License v1.0 (https://opendatacommons.org/licenses/by/1-0/).
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Gesture Description

Hand open
(HO)

Hand close
(HC)

Figure 5: Gesture List. From the GRABMyo database, image of
two gestures that were created by participants in the study (12-14).
This study distinguishes between the Hand Open and Hand Close
gestures. Original image was altered to show 2 of the 16 gestures,
and the database was published under an Open Data Commons
Attribution License v1.0 (https://opendatacommons.org/licenses/
by/1-0/).

separate recordings to 86, with 43 recordings per gesture.
This amount was much more manageable for training and
testing.

Pre-processing

Pre-processing is an essential step in EMG signal analysis
to remove unwanted noise and make data suitable for analy-
sis. Multiple such techniques were employed in this study for
each signal used in training.

Firstly, a Butterworth band-pass filter of 20-400Hz with
an order of 6 is applied to the signal to remove unwanted
frequencies (Figure 1). The high-pass and low-pass values
were proposed to effectively reduce noise and artifact con-
tamination while preserving the essential information in the
signal (13).

After applying the band-pass filter, the signals are normal-
ized using the min-max scaling method, which transforms the
original data to a range between 0 and 1. This normalization
is particularly useful as it ensures features are on a similar
scale, preventing very large features from skewing the learn-
ing process. The min-max normalization is defined by equa-
tion 1:

x' X Xmin )

X —min (Equation 1)

Where x is the original data value, x . and x__ are the mini-

mum and maximum values of the signal, respectively, and x’
is the normalized value.

Peak Detection Algorithms

Three peak detection algorithms were tested to evaluate
whether these peaks impact model performance. A maxima-
based peak detection algorithm was the first to be tested. In
this algorithm, a point x, in a signal x(t) is identified as a peak
if it satisfies:

X; > x;_jandx; > X;;1 (Equation 2)
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Feature Name Type

Mean (ME) Time-Domain

Standard Deviation (SD) Time-Domain

Maximum Power Frequency (MPF) Frequency-domain

Maximum Power Spectral Density
(MSD)

Frequency-domain

Power Weighted Mean Frequency
(PWMF)

Frequency-domain

Mean Absolute Value 4th Level
Decomposition (CD4)

Time-Frequency

Number of Peaks (NP) Time-Domain

Time of Greatest Peak (MPT) Time-Domain

Mean Height of Peaks (MPH) Time-Domain

Standard Deviation of Peak Height
(SPDH)

Time-Domain

Table 2. List of features utilized for EMG signal analysis.
The features extracted from EMG signals for machine learning
applications, categorized into time-domain, frequency-domain,
and frequency-time-domain features. Additionally, it includes peak
features generated by the peak detection algorithms employed in the
study. Each feature is accompanied by its corresponding acronym.

A given point in the signal will be set as a peak if the amplitude
of points directly before (i - 1) and after (i + 1) are less than the
amplitude of the current point.

Next is a wavelet-based peak detection algorithm, which
detects peaks using a Continuous Wavelet Transform (CWT)
on a specified wavelet. If x(f) is the original signal and W (a,
b) is the wavelet coefficient, CWT is defined as:

W(a,b) = [7 x(0)p (52) dt (Equation 3)

where y(t) is the wavelet function, scaled by a and translated
by b. a controls the dilation and compression of the wave-
let while b translates the wavelet across the time-series.
The wavelet is compared to the signal at different scales by
stretching or compressing to match peaks of various sizes.
Peaks that consistently stand out in these scales are set as
true peaks, as this consistency indicates that the shape is not
due to noise or random fluctuations. Simply, this algorithm will
take the given wavelet and compare it to different shapes in
the signal, and if these shapes match close enough to the giv-
en wavelet, a peak will be detected. The algorithm takes two
parameters that define the minimum and maximum scales of
the wavelet, which control how much the wavelet is stretched
or compressed when scanning the signal. Since EMG signals
typically exhibit sharp, narrow peaks rather than broad ones,
smaller scale values are more appropriate.

The Ricker wavelet (also known as the Mexican Hat wave-
let) was used as its shape resembles a peak, with a central
maximum and symmetric tails on each side (10). The Ricker
wavelet is also easily scalable by changing the value of a;
thus, this wavelet can detect both narrow and wide peaks
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Model Nu_:_r: 22; of Max Tree Depth | Max Features Bootstrapping
Maxima-Based 845 18 log2 False
Savitzky-Golay-

Based 229 sqrt False
Wavelet-Based 403 14 log2 False

Table 3. Hyperparameter values for each random forest model. The hyperparameter values for each of the peak detection datasets. Four
key hyperparameters for random forest Models are optimized for each model using Bayesian Optimization and the Optuna package. Number
of Trees specifies how many decision trees are in the forest; more trees generally improve performance but increase computational cost. Max
Tree Depth limits how deep each tree can grow, controlling model complexity to prevent overfitting. Max Features determines the maximum
number of features considered when splitting nodes, introducing randomness and helping reduce overfitting. Bootstrapping enables random
sampling of data points with replacement for training each tree, ensuring diversity among trees and improving generalization.

without complex non-linear fitting (10).

Lastly, a savitzky-golay-based peak detection algorithm
was tested. In this algorithm, the savitzky-golay filter, which
smooths the signal while preserving its general shape, is
applied to the signal as it reduces noise. Maxima are then
detected in the signal as peaks. Smoothing the signal before-
hand could remove unwanted peaks caused by noise. The
savitzky-golay filter smooths a signal by fitting a polynomial
to a sliding window of data points. For a signal x, smoothed
value x; is computed as:

' i+ -
xl — Z_Z_E C]—l . x] (Equatlon 4)
J=t=
where c_are the filter coefficients determined by polynomial
fitting within the window of length w. The size of the sliding
window, which is directly proportional to how smooth the sig-
nal becomes, and the degree of polynomial fitting, is passed
to the algorithm as a parameter. As EMG signals are only
moderately complex, a polynomial degree of fitting of 2 was
used with a window length of 10 to smooth the signal without
removing significant information.

Feature Extraction

Extracting relevant features from biomedical signals is a
crucial step in the machine learning pipeline, as the quality of
features can directly impact the model’s accuracy. This study
utilizes multiple time-domain, frequency-domain, and fre-
quency-time-domain features (Table 2). These features are
commonly used in signal processing or suggested for EMG
analysis. The mentioned peak detection algorithms were also
used to generate four peak features: number of peaks, mean
peak height, standard deviation of peak height, and time of
max peak height.

For the Time-Frequency domain feature, the Discrete
Wavelet Transform (DWT) is utilized, which is particularly ef-
fective for analyzing non-stationary signals at multiple

resolutions (14). In this paper, we employ second-order
Daubechies wavelets based on previously published recom-
mendations as it was found that these wavelets achieved the
highest class separability for EMG signals (14). The mean ab-
solute value (MAV) of the fourth level detail component was

used as other MAV features were redundant due to high cor-
relation.

Because each recording had 28 different channels in the
wrist and forearm, feature reduction was necessary to limit
over-fitting and redundancy when training. To this end, each
feature was compared to every other feature, and if a feature
pair had a correlation equal to or above 0.75, one of the two
was removed.

Models

This study uses a random forest model to analyze the
features extracted from EMG signals. Random forest models
leverage ensemble learning, which combines multiple deci-
sion trees to improve prediction accuracy compared to using
a single model (15). Each decision tree in the random forest
comprises decision nodes, where conditions are evaluated to
create branches leading to further nodes, ultimately reaching
an outcome at the leaf nodes (15).

While a single decision tree may struggle with complex
data, random forests offer more robust and accurate results
by aggregating the predictions of many trees (15). This col-
laborative approach reduces overfitting and enhances perfor-
mance on diverse datasets.

Random forest is especially effective for EMG-based ges-
ture recognition because it can manage high-dimensional
feature spaces and capture intricate interactions among
the features derived from EMG signals (15). Having Time-
Domain, Frequency-Domain, and Time-Frequency Domain
features requires a model like random forest, which can ef-
ficiently manage and integrate these diverse feature types.
To further improve the model's predictive capability, hyper-
parameter tuning was conducted for the number of trees in
the forest, the maximum depth of each tree, the number of
features to consider when splitting a node, and whether to
use bootstrapping (Table 3).

To effectively understand how well the random forest pre-
dicted what hand gesture a given EMG signal was showing
based on the given data, Stratified K-Fold cross-validation
(SKF) was used as the training pipeline. SKF works by split-
ting the dataset into a specific number of subsets, where each
iteration of the model validates on one subset and trains on
the rest of the data. SKF further ensures that the validation
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and training sets have the same proportion of each classifica-
tion. After training and testing all the subsets, the final met-
rics are calculated by averaging the accuracy metrics from
each subset. The standard deviation for each metric is also
included.

After testing the random forest and finding that the wavelet
features were the most effective, a logistic regression algo-
rithm was tested on the wavelet features to determine how
well a simpler model would perform on the data. Logistic
regression works by combining the extracted EMG features
with weights, then passing the result through a sigmoid func-
tion to produce a value between 0 and 1. The model adjusts
the weights during training to make better predictions.

Software and Tools

The code for this project was written in python (v3.10.12)
in Google Colab. In addition, many libraries assisted in the
pre-processing, model creation, and hyperparameter tuning
steps. Pandas (v2.2.2) was used for data manipulation and
pre-processing, Matplotlib (v3.8.0) was used to graph figures,
scikit-learn (v1.6.0) was used to create and train the models
used in the study, and Optuna (v4.1.0) was used to conduct
hyperparameter tuning on the random forest.
The complete code for this study can be found on GitHub
which includes clear descriptions and the code for each step
in the process (16).
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