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INTRODUCTION
Amputation is a profound and life-altering event affecting 

millions of people worldwide, often resulting from trauma, dis-
ease, or congenital conditions (1). For many of these individu-
als, prostheses become essential for restoring mobility and 
independence, and significant research has focused on de-
veloping effective interfacing tools for prostheses to improve 
their quality of life. One common area of study, specifically 
for arm amputees, is hand gesture recognition, where an in-
terfacing tool detects the hand gesture a patient attempts to 
create (2). Developing advanced interfaces holds the prom-
ise of significantly enhancing the quality of life for millions of 
arm amputees, enabling them to perform everyday tasks with 
greater ease and precision. 

Electromyography (EMG) is a standard measurement 
technique used for prosthetic control. EMG measures the 
electrical activity of specific muscle groups in the body (3). 
This activity is measured through the use of electrodes placed 
either on the surface skin of the subject, called surface elec-
tromyography (sEMG), or in the muscle itself via needle elec-
trodes, called intramuscular electromyography (iEMG) (3). 
For prosthetic interfaces, sEMG data is widely used as it is 
easy to collect and requires little physical effort by the patient 
(4). However, sEMG signals are noisy and unreliable as skin 
electrodes may measure the electrical activity of multiple mo-
tor units at a time, causing disturbances between signals (4). 
While iEMG can yield better results direct access to muscle 
activity, collecting iEMG data can be uncomfortable for the 
subject and difficult to set up (5). For these reasons, sEMG 
has been more commonly used in literature studying EMG-
based prosthetic control (2). 

Over the past few years, many studies have been con-
ducted with the goal of using ML to interpret sEMG data in the 
realm of prostheses and make predictions, specifically with 
hand gesture recognition (2). In 2008, a decision-level fusion 
of k-NN and Bayes linear classifiers and achieved a classi-
fication accuracy of 94% with different hand gestures (6). In 
2009, mean and median frequencies (MMNF) for robust fea-
ture extraction in EMG data with white Gaussian noise were 
used, achieving 5-10% error with MMNF in a weak EMG sig-
nal with high noise (7). In 2020, a convolutional auto-encoder 
and a convolutional neural network (CAE+CNN) was used 
to classify a dataset containing 10 different hand gestures, 
achieving an accuracy of 98.13% with a Gaussian noise level 
of 1e-5 applied to the data (8). Ultimately, the common trend 
among these and other studies exploring the topic of EMG 
hand gesture recognition is that they aim to add or change the 
model or inputted features in developing the model to improve 
accuracy.

The specific application of our research is EMG-based 
hand gesture recognition using machine learning (ML). In this 
task, a patient generates electrical activity from intact motor 
units in the arm. EMG data is generated from these intact 
muscles and passed into a model that predicts what hand 
shape a subject is trying to make (2). A hand prosthetic would 
then create these gestures in real time. ML is well suited for 
EMG analysis as certain feature extraction and pre-process-
ing methods integrated with machine learning models can al-
leviate the inherent noise in EMG data and better convey the 
muscle movement of a subject. Pre-processing techniques, 
such as Butterworth filtering, can minimize irrelevant frequen-
cies using a bandpass filter, and specific feature extraction 
techniques can enhance the quality of data (9). 

We aim to enhance EMG-based prosthesis control by ex-
perimenting with the use of features derived from peak de-

Feature extraction from peak detection algorithms for 
enhanced EMG-based hand gesture recognition models

SUMMARY
Achieving precise control of hand prosthetics 
is essential for enhancing the quality of life for 
individuals with arm amputations. Electromyography 
(EMG) signals are widely used as interfaces for these 
prosthetics. A key challenge in developing such 
interfaces is hand gesture recognition, where EMG 
signals are analyzed to predict the intended hand shape 
of the user. This study advances machine learning 
models for EMG-based hand gesture recognition 
by exploring the use of peak detection algorithms 
for feature extraction. We evaluated three distinct 
algorithms and a baseline without peak features with 
features derived from the detected peaks as well as 
other common methods. Our initial hypothesis was 
that peak features from a savitzky-golay filter would 
provide the highest accuracy because it uniquely 
smoothens the signal. Contrary to our hypothesis, 
however, when trained with a random forest model, 
the features from the wavelet-based peak detection 
algorithm achieved a higher classification accuracy 
than the maxima-based and savitzky-golay-based 
algorithms as well as the data without peak detection 
features when classifying two gestures (hand open/
close). Further, the extracted peak features were 
among the most important features for all three 
algorithms. These results demonstrate that peak 
features, particularly those extracted using the best-
performing, wavelet-based approach, can enhance 
the performance of hand gesture recognition models. 
This improvement could significantly benefit patients 
relying on prosthetic devices by enabling more 
accurate translation of their intended motions into 
device actions, ultimately improving their quality of 
life.

Adikesh Nathan¹, Shanmuganathan Raju¹
1Cambridge Center for International Research, Princeton Junction, New Jersey



10 JANUARY 2026  |  VOL 9 |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/24-321

tection algorithms for EMG hand gesture recognition models. 
Specifically, this model will be a binary classification model 
that distinguishes between EMG signals that show hand open 
and hand close. These peaks are significant for EMG signals 
because they can represent the relevant contractions of a 
muscle, which may help an ML model to differentiate between 
hand gestures, as different gestures may involve different 
contractions at various times and magnitudes. While these 
detection algorithms have been studied in EMG signal analy-
sis, they have yet to be extensively applied to hand gesture 
recognition (10). In addition, the model was tested without us-
ing any peak detection-derived features, providing a baseline 
for comparison.

We tested three distinct algorithms, with features ex-
tracted from each algorithm and passed into a ML model. A 
random forest classifier was used to analyze the features ex-
tracted from the peaks and other methods; the model works 
by combining the outputs of multiple simpler models, which 
allow the random forest to handle complex relationships be-
tween features.

Our initial hypothesis was that peak features derived from 
a savitzky-golay filter—a method that smooths data by fitting 
successive subsets of it to low-degree polynomials and then 
doing point by point analysis to determine peaks—would be 
the most effective instead of the wavelet-based or maxima-
based algorithms. The filter’s smoothing process can remove 
unwanted peaks caused by noise, potentially increasing class 
separability between gestures. Contrary to our hypothesis, 
however, features from the wavelet-based peak detection ap-
proach using Continuous Wavelet Transform (CWT), which 
analyzes signals at multiple scales using mathematical func-
tions called wavelets, provided the highest accuracy. When 
trained with a random forest classifier, the features derived 
from this algorithm achieved the highest classification accu-
racy compared to accuracies of the maxima-based and sav-
itzky-golay-based algorithms, as well as the accuracy without 
peak detection features when classifying two gestures (hand 
open/close). Further, the extracted peak features were among 
the most important for all algorithms evaluated, highlighting 
the class separability that these features provide. These find-
ings demonstrate the critical role of advanced peak detec-
tion techniques in enhancing the performance of EMG-based 
gesture recognition models.

 RESULTS
To determine whether or not incorporating peak features 

caused relevant improvements in EMG hand gesture recog-
nition, a maxima-based, savitzky-golay-based, and wavelet-
based peak detection algorithm were each run on EMG data 
to extract features, with each algorithm having a separate 
dataset. These datasets contained the peak features such 
as number of peaks or mean peak height as well as other 
common time series features and were used to predict the 
hand gesture a subject was making.  A random forest model, 
which is effective at handling complex relationships between 
features, was used as the primary model for training. 

To effectively understand how well the random forest pre-
dicted what hand gesture a given EMG signal was showing 
based on the given data, Stratified K-Fold cross-validation 
(SKF) was used as the training pipeline. SKF is particularly 
useful because, unlike a single train-test split where the eval-
uation might be highly dependent on the specific data split, 

SKF reduces this variance by measuring the performance 
across multiple splits. This method achieves a more accurate 
representation of the performance of a model on a dataset. 
Each dataset was split into five subsets, meaning that 20% of 
the datasets were used for 

Before feature extraction, EMG signals must be prepro-
cessed to remove noise and simplify analysis. For this experi-
ment, a bandpass filter was used as it is commonly applied to 
isolate dominant frequencies by removing unwanted ranges. 
After filtering, a periodogram of an EMG signal from the data-
base shows a notable reduction in 400–600 Hz frequencies 
(Figure 1).

After pre-processing, we extracted peaks using the three 
algorithms. For comparison, the peaks were graphed on a 
random EMG signal from the database, illustrating the differ-
ences in which peaks are detected and which ones are missed 
by each algorithm. The maxima-based detection found the 
most peaks (n=71), with the savitzky-golay-based algorithm 
finding less (n=56), and the wavelet-based algorithm finding 
the least number of peaks (n=22) (Figure 2). 

After extracting features, the random forest model was 
trained on the peak feature datasets and the dataset without 
peak features using SKF. The first clear difference is that all 
three peak feature datasets, which all had an accuracy above 
90%, outperformed the dataset without peak features, which 
had an accuracy of 88.5% (Table 1). Among the datasets that 
used peak detection algorithms for feature extraction, peak 
features derived from the wavelet-based algorithm delivered 
the best performance, achieving an accuracy of 96.5% and 
lowest standard deviation of 2.9, surpassing features ex-
tracted from the maxima-based and savitzky-golay-based 
algorithms, which produced accuracies of 94.2% and 91.8%, 
respectively (Table 1). Additionally, the precision, recall, and 
F1-scores for the wavelet-based peaks were the highest 
among the other two algorithms and baseline (Table 1). Pre-
cision measures how many of the predicted positives were 
actually correct, recall reflects the ability to identify all actual 
positives, and the F1-score balances both metrics to provide 
a single measure of accuracy.

P-values were also calculated using a paired t-test be-
tween each algorithm and the baseline. The paired t-test 
compares the means of two related groups to determine 
whether their differences are statistically significant. In this 
case, it assesses whether the feature sets lead to significantly 
different model performances. The wavelet-based features 
were the most statistically significant with a p-value of 0.032 
compared to the maxima-based and savitzky-golay-based 
features, which produced p-values of 0.054 and 0.109, re-
spectively (Table 1).

In addition to testing the accuracy of the peak feature da-
tasets, feature importances were extracted to determine if 
the peak features had a real effect on accuracy. The feature 
importances showed the mean peak height (MPH) and num-
ber of peak (NP) features were among the top 10 for all 3 
algorithms (Figure 3). Additionally, electrodes placed on the 
wrist demonstrated better predictive capability than those on 
the forearm as most of the features in the top ten were signal 
features from electrodes in the wrist (Figure 3).

A logistic regression model was also tested to show that 
the random forest classifier adds value for analyzing extract-
ed peak features compared to simpler models. The regres-
sion model was trained with the highest-performing wavelet-
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based peak features using the same SKF framework and 
achieved an accuracy of 57% when distinguishing between 
hand open and hand closed (Table 1).

DISCUSSION
To evaluate whether incorporating peak features led to 

meaningful improvements in EMG hand gesture recognition, 
three peak detection algorithms—maxima-based, savitzky-
golay-based, and wavelet-based—were applied separately to 
EMG data to extract features, with each algorithm generating 
its own dataset. The model achieved a baseline accuracy of 
88.5% without using peak detection-derived features (Table 
1). Incorporating peak features enhanced the model’s accu-
racy, demonstrating their importance in providing valuable in-
formation to improve hand gesture classification and among 
the peak-feature datasets, the wavelet-based approach for 
peak detection was most effective, achieving an accuracy 
of 96.5 ± 2.9%, the highest accuracy and the lowest stan-
dard deviation for all three algorithms (Table 1). The wavelet-
based approach also achieved a p-value of 0.032 when com-
pared to the baseline, showing that adding wavelet-based 
peak features created a statistically significant difference in 
model performance (Table 1). These results show that mea-
sured wavelet-based peaks were the most distinct between 
each hand gesture, leading to better class separability and 

accuracy.
The comparison between a simple logistic regression 

model with the more complex random forest model shows 
that the more complex model is better suited for EMG signal 
analysis and categorization. When a logistic regression mod-
el was trained with the wavelet-based peak features, which 
were the best-performing features, the model achieved an 
accuracy of 57.0 ± 19.8% (Table 1). With the accuracy being 
close to 50% and the deviation being extremely high coupled 
with the much higher 96% achieved by a random forest, it 
is clear that the simpler logistic regression model could not 
make effective distinctions between the EMG signals.

The savitzky-golay-based algorithm unexpectedly un-
derperformed compared to the maxima-based and wavelet-
based methods (Table 1). Further, the savitzky-golay-based 
algorithm had a high p-value of 0.109, illustrating that adding 
the savitzky-golay features did not provide a statistically sig-
nificant difference relative to the baseline model (Table 1). 
This outcome could be attributed to the filter’s tendency to 
eliminate critical information. While the savitzky-golay-based 
algorithm detected more peaks than the wavelet-based meth-
od, it identified fewer than the maxima-based approach (Fig-
ure 2). However, the quality of the peaks the savitzky-golay-
based algorithm identified was inferior to those detected by 
the wavelet-based method, as it primarily analyzed amplitude 

Figure 1. Effect of band-pass filtering on EMG signals using a Butterworth filter. Periodogram showing the power spectral density of an 
EMG signal before and after applying a 20–400Hz Butterworth band-pass filter (order 6) with recommended parameters (13). a) Graph and 
b) periodogram of original signal. c) Graph and d) periodogram of signal after band-pass is applied
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rather than shape. Additionally, the filtering process may 
have inadvertently removed significant peaks identified by the 
maxima-based method, both of which likely contributed to its 
diminished performance.

The effectiveness of the wavelet-based method can be 
attributed to its focus on signal shape rather than solely on 
amplitude, as seen in the savitzky-golay-based and maxima-
based methods. Unlike these methods, which rely on point-
by-point comparisons to detect peaks, the wavelet-based ap-
proach analyzes the overall shape of a range of values by 
comparing it to a predefined wavelet (10). This enables it to 
identify a wider variety of peaks, making it a more robust and 
versatile technique (10).

Regarding feature importance, the NP and MPH were 
among the most significant features, consistently ranking 
in the top 10 across all 3 datasets, showing that these fea-
tures greatly contributed to the model’s ability to distinguish 
between hand gestures (Figure 3). Additionally, electrodes 
placed on the wrist demonstrated better predictive capability 
than those on the forearm, as most of the top-ranked fea-
tures were from wrist channels (Figure 3). This is likely due to 
the wrist’s proximity to the hand, making it more sensitive to 
changes in gesture.

These findings underscore the effectiveness of including 
peak detection features, particularly from wavelet-based al-
gorithms, in EMG-based hand gesture recognition models. 
The high accuracy of the wavelet-based features compared 
to the other two algorithms and the baseline, coupled with the 
high importance of the peak features, underscores the impact 
that these peak detection algorithms have on model 

Our study trained a binary classifier, but hand gesture 
models are more useful when they can perform multi-clas-
sification on many different gestures, and much of the prior 
work on EMG hand gesture recognition handles more than 
two gestures (2). While our study has shown the possibility of 
using peak features, further work must be done on using peak 
features in a larger dataset with more gestures to truly see the 
performance of these features on a more real-world scale. 
Further work could also be done to test more peak detection 
algorithms. While this study focused on three, many more ex-
ist, which could provide better results. Additionally, our study 
extracted only four peak features from the algorithms: num-
ber of peaks, mean peak height, standard deviation of peak 
height, and time of max peak height. Other peak features may 
offer more class separability.

Improvements in EMG-based prosthesis control models 

Figure 2. EMG signal with peaks identified by three different detection algorithms. EMG signal with peaks identified by the three 
algorithms analyzed in this study. As an EMG signal measures the electrical activity of a muscle, points of high activity or peaks represent 
relevant muscle contractions in the measurement area and are represented in the graphs. Peaks detected by the a) savitzky-golay-based 
algorithm (blue), b) maxima-based algorithm (red), and c) wavelet-based algorithm (green). Only peaks with an amplitude above 0.6 within an 
interval of 0.5 seconds are shown. Peaks detected by the savitzky-golay-based algorithm are displayed on the smoothed signal after applying 
the filter.
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can have a significant positive impact on the lives of arm am-
putees. Enhanced model accuracy and reliability can lead to 
more intuitive and responsive prosthetic devices, allowing us-
ers to perform daily tasks more easily and confidently (11). 
This can improve arm amputees’ overall quality of life by in-

creasing their independence and ability to engage in various 
activities. Additionally, advancements in this field could pave 
the way for further innovations in prosthetic technology, ulti-
mately benefiting a larger population of individuals who rely 
on these devices.

Table 1. Comparison of peak detection algorithms for EMG-based hand gesture recognition. Peak features were extracted from three 
different detection algorithms, generating separate datasets for each algorithm. A baseline dataset without peak features and a Logistic 
Regression model using wavelet-based peak features were also included for comparison. Each dataset, excluding the Logistic Regression, 
was trained using a hyperparameter-tuned random forest model. Accuracy metrics (mean ± standard deviation) were calculated across 
all datasets using K-Fold cross-validation. Performance metrics include classification accuracy, precision, recall, and F1 score. P-values 
(calculated using paired t-test) was also calculated for each algorithm compared to the baseline dataset without peak features to determine if 
adding peak features provided a statistically significant difference in model performance.
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MATERIALS AND METHODS
Dataset Description

The Gesture Recognition and Biometrics ElectroMyo-
Gram (GRABMyo) dataset from the PhysioNet library was 
used in this study (12–14). This dataset contains EMG record-
ings sampled at 2048 Hz from 43 participants (23 men and 20 
women) with an average age of 26.35 ± 2.89 years, perform-
ing 17 distinct hand gestures, including rest. On the forearm 
and wrist of each individual, 16 and 12 monopolar sEMG elec-
trodes (AM-N00S/E, Ambu, Denmark) were placed, respec-
tively, each in the form of two rings (12) (Figure 4).

The collection process took 3 days, during which all 43 
participants performed 17 gestures for 7 trials, with 5 seconds 
of recorded sEMG data for 28 channels per trial and a 10-sec-
ond rest period between contractions (12).

This data set was selected for its open-access availabil-
ity, recent publication date, and ease of use. Its files follow a 
consistent naming scheme that clearly indicates the partici-
pant, trial, and gesture, making it straightforward to download 
and integrate into code. Additionally, the publishers provided 
transparent details about the equipment used and the partici-
pants’ demographics, further enhancing its suitability for this 
study.

In the GRABMyo database, there are many separate 
5-second EMG recordings; using them all would lead to ex-
tensive training time and complexity. To address this, the data 
was reduced to the most relevant gestures and channels.

Out of the 17 different gestures recorded in the database, 
this study focused on classifying two: Hand open and Hand 
closed (Figure 5). These steps reduced the over 100,000 

Figure 3. Top 10 most important features for each peak detection algorithm. The 10 most important features identified by a random 
forest model for each peak detection algorithm (n=3). Top 10 feature importances for a) maxima-based, b) wavelet-based, and c) savitzky-
golay-based peaks. The feature naming convention includes the feature acronym, electrode location, and channel number. Corresponding 
feature acronyms and full feature names are detailed in Table 2.

Figure 4. Forearm and wrist electrode locations. From the GRABMyo database (12-14). Location of the 28 electrodes on the forearm and 
wrist. Each of these electrodes generates a separate EMG signal for each gesture. No changes were made to the original image, and the 
database was published under an Open Data Commons Attribution License v1.0 (https://opendatacommons.org/licenses/by/1-0/).

https://opendatacommons.org/licenses/by/1-0/
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separate recordings to 86, with 43 recordings per gesture. 
This amount was much more manageable for training and 
testing.

Pre-processing
Pre-processing is an essential step in EMG signal analysis 

to remove unwanted noise and make data suitable for analy-
sis. Multiple such techniques were employed in this study for 
each signal used in training. 

Firstly, a Butterworth band-pass filter of 20-400Hz with 
an order of 6 is applied to the signal to remove unwanted 
frequencies (Figure 1). The high-pass and low-pass values 
were proposed to effectively reduce noise and artifact con-
tamination while preserving the essential information in the 
signal (13).

After applying the band-pass filter, the signals are normal-
ized using the min-max scaling method, which transforms the 
original data to a range between 0 and 1. This normalization 
is particularly useful as it ensures features are on a similar 
scale, preventing very large features from skewing the learn-
ing process. The min-max normalization is defined by equa-
tion 1:

           (Equation 1)

Where x is the original data value, xmin and xmax are the mini-
mum and maximum values of the signal, respectively, and x’ 
is the normalized value.

Peak Detection Algorithms
Three peak detection algorithms were tested to evaluate 

whether these peaks impact model performance. A maxima-
based peak detection algorithm was the first to be tested. In 
this algorithm, a point xi in a signal x(t) is identified as a peak 
if it satisfies:

   (Equation 2)

A given point in the signal will be set as a peak if the amplitude 
of points directly before (i - 1) and after (i + 1) are less than the 
amplitude of the current point. 

Next is a wavelet-based peak detection algorithm, which 
detects peaks using a Continuous Wavelet Transform (CWT) 
on a specified wavelet. If x(t) is the original signal and   W (a, 
b) is the wavelet coefficient, CWT is defined as:

          (Equation 3)	 

where ψ(t) is the wavelet function, scaled by a and translated 
by b. a controls the dilation and compression of the wave-
let while b translates the wavelet across the time-series. 
The wavelet is compared to the signal at different scales by 
stretching or compressing to match peaks of various sizes. 
Peaks that consistently stand out in these scales are set as 
true peaks, as this consistency indicates that the shape is not 
due to noise or random fluctuations. Simply, this algorithm will 
take the given wavelet and compare it to different shapes in 
the signal, and if these shapes match close enough to the giv-
en wavelet, a peak will be detected. The algorithm takes two 
parameters that define the minimum and maximum scales of 
the wavelet, which control how much the wavelet is stretched 
or compressed when scanning the signal. Since EMG signals 
typically exhibit sharp, narrow peaks rather than broad ones, 
smaller scale values are more appropriate.

The Ricker wavelet (also known as the Mexican Hat wave-
let) was used as its shape resembles a peak, with a central 
maximum and symmetric tails on each side (10). The Ricker 
wavelet is also easily scalable by changing the value of a; 
thus, this wavelet can detect both narrow and wide peaks 

Figure 5: Gesture List. From the GRABMyo database, image of 
two gestures that were created by participants in the study (12-14). 
This study distinguishes between the Hand Open and Hand Close 
gestures. Original image was altered to show 2 of the 16 gestures, 
and the database was published under an Open Data Commons 
Attribution License v1.0 (https://opendatacommons.org/licenses/
by/1-0/).

Table 2. List of features utilized for EMG signal analysis. 
The features extracted from EMG signals for machine learning 
applications, categorized into time-domain, frequency-domain, 
and frequency-time-domain features. Additionally, it includes peak 
features generated by the peak detection algorithms employed in the 
study. Each feature is accompanied by its corresponding acronym.

https://opendatacommons.org/licenses/by/1-0/
https://opendatacommons.org/licenses/by/1-0/
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without complex non-linear fitting (10). 
Lastly, a savitzky-golay-based peak detection algorithm 

was tested. In this algorithm, the savitzky-golay filter, which 
smooths the signal while preserving its general shape, is 
applied to the signal as it reduces noise. Maxima are then 
detected in the signal as peaks. Smoothing the signal before-
hand could remove unwanted peaks caused by noise. The 
savitzky-golay filter smooths a signal by fitting a polynomial 
to a sliding window of data points. For a signal xi smoothed 
value x ̇ i is computed as:

       (Equation 4)

where cj-i are the filter coefficients determined by polynomial 
fitting within the window of length w. The size of the sliding 
window, which is directly proportional to how smooth the sig-
nal becomes, and the degree of polynomial fitting, is passed 
to the algorithm as a parameter. As EMG signals are only 
moderately complex, a polynomial degree of fitting of 2 was 
used with a window length of 10 to smooth the signal without 
removing significant information.

Feature Extraction
Extracting relevant features from biomedical signals is a 

crucial step in the machine learning pipeline, as the quality of 
features can directly impact the model’s accuracy. This study 
utilizes multiple time-domain, frequency-domain, and fre-
quency-time-domain features (Table 2). These features are 
commonly used in signal processing or suggested for EMG 
analysis. The mentioned peak detection algorithms were also 
used to generate four peak features: number of peaks, mean 
peak height, standard deviation of peak height, and time of 
max peak height.

For the Time-Frequency domain feature, the Discrete 
Wavelet Transform (DWT) is utilized, which is particularly ef-
fective for analyzing non-stationary signals at multiple

resolutions (14). In this paper, we employ second-order 
Daubechies wavelets based on previously published recom-
mendations as it was found that these wavelets achieved the 
highest class separability for EMG signals (14). The mean ab-
solute value (MAV) of the fourth level detail component was 

used as other MAV features were redundant due to high cor-
relation.

Because each recording had 28 different channels in the 
wrist and forearm, feature reduction was necessary to limit 
over-fitting and redundancy when training. To this end, each 
feature was compared to every other feature, and if a feature 
pair had a correlation equal to or above 0.75, one of the two 
was removed.

Models
This study uses a random forest model to analyze the 

features extracted from EMG signals. Random forest models 
leverage ensemble learning, which combines multiple deci-
sion trees to improve prediction accuracy compared to using 
a single model (15). Each decision tree in the random forest 
comprises decision nodes, where conditions are evaluated to 
create branches leading to further nodes, ultimately reaching 
an outcome at the leaf nodes (15).

While a single decision tree may struggle with complex 
data, random forests offer more robust and accurate results 
by aggregating the predictions of many trees (15). This col-
laborative approach reduces overfitting and enhances perfor-
mance on diverse datasets.

Random forest is especially effective for EMG-based ges-
ture recognition because it can manage high-dimensional 
feature spaces and capture intricate interactions among 
the features derived from EMG signals (15). Having Time-
Domain, Frequency-Domain, and Time-Frequency Domain 
features requires a model like random forest, which can ef-
ficiently manage and integrate these diverse feature types. 
To further improve the model’s predictive capability, hyper-
parameter tuning was conducted for the number of trees in 
the forest, the maximum depth of each tree, the number of 
features to consider when splitting a node, and whether to 
use bootstrapping (Table 3). 

To effectively understand how well the random forest pre-
dicted what hand gesture a given EMG signal was showing 
based on the given data, Stratified K-Fold cross-validation 
(SKF) was used as the training pipeline. SKF works by split-
ting the dataset into a specific number of subsets, where each 
iteration of the model validates on one subset and trains on 
the rest of the data. SKF further ensures that the validation 

Table 3. Hyperparameter values for each random forest model. The hyperparameter values for each of the peak detection datasets. Four 
key hyperparameters for random forest Models are optimized for each model using Bayesian Optimization and the Optuna package. Number 
of Trees specifies how many decision trees are in the forest; more trees generally improve performance but increase computational cost. Max 
Tree Depth limits how deep each tree can grow, controlling model complexity to prevent overfitting. Max Features determines the maximum 
number of features considered when splitting nodes, introducing randomness and helping reduce overfitting. Bootstrapping enables random 
sampling of data points with replacement for training each tree, ensuring diversity among trees and improving generalization.
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and training sets have the same proportion of each classifica-
tion. After training and testing all the subsets, the final met-
rics are calculated by averaging the accuracy metrics from 
each subset. The standard deviation for each metric is also 
included. 

After testing the random forest and finding that the wavelet 
features were the most effective, a logistic regression algo-
rithm was tested on the wavelet features to determine how 
well a simpler model would perform on the data. Logistic 
regression works by combining the extracted EMG features 
with weights, then passing the result through a sigmoid func-
tion to produce a value between 0 and 1. The model adjusts 
the weights during training to make better predictions. 

Software and Tools
The code for this project was written in python (v3.10.12) 

in Google Colab. In addition, many libraries assisted in the 
pre-processing, model creation, and hyperparameter tuning 
steps. Pandas (v2.2.2) was used for data manipulation and 
pre-processing, Matplotlib (v3.8.0) was used to graph figures, 
scikit-learn (v1.6.0) was used to create and train the models 
used in the study, and Optuna (v4.1.0) was used to conduct 
hyperparameter tuning on the random forest.
The complete code for this study can be found on GitHub 
which includes clear descriptions and the code for each step 
in the process (16). 
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