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SUMMARY

With an estimated offshore potential wind energy
capacity of 575 gigawatts, the Great Lakes region is
a promising area for future wind energy development.
Electric utilities that use wind energy rely on accurate
day-ahead wind energy forecasts, mainly informed by
predicted wind speed, to account for the variability
of wind energy production. Since wind turbines
have not yet been developed in the Great Lakes,
observational wind data is collected at very few sites.
Hence, utilities may seek to use synthetic wind data to
pre-train accurate day-ahead wind speed prediction
models. Yet, prior studies have only utilized synthetic
data in predicting sub-hourly winds speeds. We
hypothesized that training long short-term memory
neural networks to predict day-ahead wind speeds on
synthetic wind data instead of observational wind data
would increase accuracy since synthetic wind data is
available over longer time spans than observational
wind data. We used observational data from the Lake
Michigan Wind Assessment and synthetic data from
the National Offshore Wind Great Lakes dataset and
found that networks trained on synthetic data had a
lower mean absolute percentage error score in day-
ahead wind speed prediction than networks trained
on observational data. We also optimized additional
parameters of the networks for both synthetic and
observational network types, further improving
accuracy. The availability of a wind speed prediction
model trained on synthetic data will reduce reliance
on historical observational data at future sites of
wind energy infrastructure, allowing utilities to swiftly
adapt accurate prediction methods to new sites.

INTRODUCTION

The Great Lakes have an estimated offshore wind energy
potential of 575 gigawatts (1). With most sites throughout
the Great Lakes reaching annual average wind speeds of
nine meters per second or greater, the Great Lakes region
has significant opportunities for offshore wind energy
development (2). However, challenges remain, such as the
potential for ice cover causing ice jamming of turbines and
the limited width of current ports that restrict the maximum
size of wind turbines on certain lakes (3). Yet, offshore wind
energy development in the Great Lakes has also been
deemed technically and economically feasible in some areas
(3). Wind energy development in the Great Lakes would also
assist states in meeting their clean energy goals and provide

economic benefits to nearby population centers (1). For
example, government mandates such as New York’s Climate
Act have spurred demand for new renewable energy projects,
in a bid to reduce greenhouse gas emissions (3). These new
sources of renewable energy will be used to heat buildings,
power electric transportation methods, and reduce industrial
and agricultural emissions (3). The strong wind energy
resources available in the Great Lakes have sparked interest
in the development of offshore wind energy to meet emission
reduction goals (3). When wind energy development begins
at larger scales in the Great Lakes, electric utilities will need
to be able to integrate this new source of energy effectively.

Researchers have proposed pathways to bring commercial
wind energy to the Great Lakes within the next decade (2).
However, the variability of wind energy production can make
its integration burdensome, as electric utilities must adapt
to changes between forecasted and realized wind energy
(4). Grid operators rely on accurate day-ahead wind speed
forecasts to make decisions about energy pricing, and to
balance energy production from other sources (5). Since wind
energy production is variable by nature, accurate wind energy
forecasts can assist utilities in integrating wind energy reliably
(6). Thus, more accurate wind speed predictions would
allow utilities to improve wind energy production estimates,
enhancing the reliability of wind energy. Overprediction of
wind speeds forces utilities to compensate for shortfalls in
production by sourcing energy from more expensive sources,
whereas underprediction can result in energy waste as
more electricity is produced than is necessary (6). Previous
projects to improve the forecasting of wind speed production
have demonstrated that improvements in predictive wind
speed models can reduce wind energy overprediction and
underprediction, directly corresponding to a decrease in the
excess costs incurred by electric utilities (6).

A comparison of previous studies found that deep learning
approaches have surpassed traditional machine learning
methods, obtaining a lower mean absolute percentage error
(MAPE) in wind speed predictions on prediction timescales
ranging from one minute to six hours (7). One deep learning
method, the long short-term memory (LSTM) network, is a
recurrent neural network that is particularly well-suited to
modeling short- and long-term dependencies in time series
data due to its low error in multi-step ahead predictions
(8). Two previous studies have utilized multiple variations
of LSTM networks to predict wind speeds (9-10). However,
because the locations, data, and forecasting periods involved
in each study varied dramatically, their comparability to each
other is limited (9-10). Additionally, both studies relied only on
observational data (9-10). Because wind turbines have not yet
been developed in the Great Lakes, the observational wind
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data typically needed to train wind speed prediction models
may not yet be available at potential wind turbine locations.
However, synthetic wind data, which is developed through
mathematical simulations and has a high spatial resolution,
could be used to pre-train wind speed prediction models when
observational wind data is not available (5). Synthetic data is
available at a spatial resolution of two kilometers throughout
the entire Great Lakes region, making it much more widely
available than observational data, and has been confirmed
to realistically represent observational wind speed data over
larger timescales (5).

While previous studies have used synthetic wind data to
improve sub-hourly wind speed predictions, it is unknown
whether synthetic wind data is beneficial for day-ahead
wind speed prediction (5). In our study, we aimed to create
more accurate day-ahead wind speed prediction models
using synthetic wind data. We hypothesized that LSTM
neural networks trained on synthetic wind data would have
a lower MAPE in predicting day-ahead wind speeds than
LSTM neural networks trained on observational wind data.
We leveraged synthetic data from the National Offshore Wind
(NOW-23) Great Lakes dataset generated through version
4.2.1 of the Weather Research & Forecasting (WRF) program
and observational data captured during the Lake Michigan
Wind Assessment off the coast of Muskegon, Michigan (11-
12). We used multiple experiments to determine parameters
for a comparison between networks trained on observational
and synthetic wind data. We determined that LSTM networks
trained with 50 epochs and a batch size of 8 resulted in the
lowest variance for networks trained on observational wind
data. We found that networks trained on synthetic data had a
lower mean MAPE score in day-ahead wind speed prediction
than networks trained on observational data. When little or
no observational data is available, LSTM networks trained
on synthetic data could be more accurate in day-ahead wind
speed prediction. The usage of synthetic data to pre-train
day-ahead wind speed prediction models could assist utilities
in integrating new sources of wind energy developed in the
Great Lakes.

RESULTS

We aimed to evaluate the effectiveness of synthetic data
for day-ahead wind speed prediction in the Great Lakes,
hypothesizing that LSTM neural networks trained on synthetic
wind data would have a lower MAPE than networks trained on
observational wind data. To test our hypothesis, we developed
and tuned an LSTM network for time series prediction using
data from either the Lake Michigan Wind Assessment
observational data (April 2013 to November 2013) or the
synthetic wind data from the NOW-23 Great Lakes dataset
(January 2000 to November 2013) (11-12). For each network,
MAPE scores were found by testing on the final month of
data from the Lake Michigan Wind Assessment (December
2013). Data from the 2013 Lake Michigan Wind Assessment
was taken from a buoy approximately ten kilometers from the
eastern shoreline of Lake Michigan near Muskegon, Michigan,
and data from the NOW-23 Great Lakes dataset was taken
from the closest site to this buoy, approximately 520 meters
away (Figure 1). The networks used the previous 24 hours of
wind speed and direction data at a temporal resolution of 1
hour to predict the wind speed 24 hours later at a given site.
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Figure 1: Map of Muskegon, Michigan with site locations. The
physical locations of the sites selected from the NOW-23 Great
Lakes dataset (synthetic data) and Lake Michigan Wind Assessment
(observational data) are displayed over a map of Muskegon,
Michigan. Map data is available from openstreetmap.org under the
Open Database License.
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Parameter optimization

Through multiple experiments, we discovered that using
two or fewer years of synthetic training data resulted in higher
MAPE and thus were not comprehensive enough to train an
LSTM network effectively, while using 10 or more years of
training data yielded diminishing returns in accuracy (Figure
2). Networks with ten or more years of training data plateaued
around 29.3% MAPE, while networks with two or fewer years
had over 30% MAPE (Figure 2). Furthermore, we observed
that larger increases in the number of epochs used to train
networks on synthetic data also had diminishing returns in
accuracy, with the best accuracy being 28% MAPE with 100
epochs, and that additional epochs worsened accuracy in
models trained on observational wind data (Figures 3, 4).

We also experimented with the batch size used to train
networks, discovering that batch size had little effect on
the accuracy of networks trained on synthetic data but was
influential in determining the accuracy of networks trained on
observational wind data (Figures 4, 5). For the observational
network type, the MAPE scores for batch sizes of 8 and 128,
respectively, were 30.5% and 33.6%, a 3.1% difference, while

32%
31% |
30% Il

29%

Mean MAPE

28%

Years of Data

Figure 2: Effect of years of data on network mean absolute
percentage error (MAPE) scores. The mean MAPE scores
compared to years of synthetic data from the NOW-23 dataset used
to train long short-term memory (LSTM) networks (n = 10). LSTM
networks were trained for 50 epochs with a batch size of 128. Error
bars represent the standard deviation of the MAPE scores.
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Figure 3: Effect of the number of epochs trained on network
mean absolute percentage error (MAPE) scores. Mean MAPE
scores for the number of trained epochs using synthetic data from
the NOW-23 dataset. Long short-term memory networks (n = 10)
were trained on synthetic data with a batch size of 128. Error bars
represent the standard deviation of the MAPE scores.

there was a difference of only 0.5% for the synthetic network
type (Figure 4). Thus, networks trained on observational
wind data often overfit to training data at higher numbers of
epochs because of the limited amount of data and require
smaller batch sizes to better learn their datasets. Due to this,
we used 50 epochs and a batch size of 8 to train networks on
observational and synthetic wind data for comparison since
these parameters resulted in the lowest standard deviation in
MAPE of 1.09% for the observational network type (Figure
4).

Network comparison

We evaluated the MAPE scores for each network on the
final month of data from the Lake Michigan Wind Assessment
(December 2013), which was withheld from training. While
the mean MAPE of LSTM networks trained on synthetic
wind data was lower than that of networks trained using

https://doi.org/10.59720/24-307

observational data, it was not by a large margin (Figure
6). To determine statistical significance, we recreated our
experiment by retraining each network type 30 times to
compile a distribution of MAPE scores for both (Figure 6). The
sample mean MAPE of networks trained on observational and
synthetic wind data were 30.66% and 29.06%, respectively.
The standard deviation of MAPE scores for networks trained
on observational and synthetic wind data were 1.09% and
0.79%, respectively. A z-test for skewness showed the MAPE
score distribution of networks trained on observational data
was significantly different from a normal distribution (z =
4133, p < 0.001). We observed that LSTM networks trained
on synthetic data had a lower mean MAPE score in day-ahead
wind speed prediction than networks trained on observational
data (Welch’s t-test, t = 6.395, p < 0.001).

As a benchmark, we also compared the LSTM networks
trained on synthetic data to a persistence model, which uses
the last known wind speed measurement to predict the next.
The LSTM networks trained on synthetic data were more
effective, with their MAPE score of 29.06% being 35% lower
than the mean score of 44.95% achieved by a persistence
model.

DISCUSSION

Our study aimed to utilize synthetic data from the NOW-23
Great Lakes dataset and LSTM networks to create a practical
wind speed prediction model. We hypothesized that LSTM
neural networks trained on synthetic wind data would have
a lower MAPE in predicting day-ahead wind speeds than
LSTM neural networks trained on observational wind data.
We tested LSTM networks using data from the Lake Michigan
Wind Assessment and found convincing evidence for our
hypothesis that LSTM networks trained using synthetic data
had a lower MAPE in day-ahead wind speed prediction than
those trained using observational data (p < 0.001). We found
three to ten years of synthetic training data to be optimal and
a fewer number of epochs helpful in reducing overfitting.
Although the use of dropout layers and regularization help
to reduce overfitting, we still saw network overfitting based
on some training parameters (13). For networks trained on
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Figure 4: Comparison of mean absolute percentage error (MAPE) scores for models with varying parameters. Mean MAPE scores for
networks trained with synthetic data from the NOW-23 dataset or observational data from the Lake Michigan Wind Assessment over different
epochs and batch sizes. Long short-term memory networks (n = 30) were trained for each training data type and parameter combination. Error

bars represent the standard deviation of the MAPE scores.
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Figure 5: Effect of batch size on network mean absolute
percentage error (MAPE) scores. Mean MAPE scores for networks
trained with data from the NOW-23 Great Lakes dataset. Long short-
term memory networks (n = 10) were trained for 50 epochs. Error
bars represent the standard deviation of the MAPE scores.

synthetic data, we found that using two or fewer years of
training data lowered accuracy, indicating that using this
little synthetic training data may lead to network overfitting
and might not be a representative enough sample of wind
patterns. For both network types, we also found that using
greatly beyond 50 epochs, or iterations of training on an entire
dataset, led to increased error, particularly when networks
were trained on observational data. This indicates that the
networks became overfit to the training data at a higher
number of epochs.

The difference in performance between the synthetic
and observational network types might be explained by
the larger number of samples in the synthetic dataset than
the observational dataset and the inclusion of the relevant
predictive month in the synthetic dataset. The synthetic data
contained a total of about 184,000 observations, while the
observational data contained only about 5,700. Furthermore,
the relevant predictive month of December was contained
in only the synthetic wind data, as the observational data

https://doi.org/10.59720/24-307

spanned only April 2013 to November 2013. Since wind
patterns are typically subject to seasonal variations, the
representation of patterns during the relevant predictive
month may have contributed to the increased performance
seen with synthetic data.

Previous studies have approached wind speed prediction
using machine learning, deep learning, and artificial
intelligence (7). Yet, these approaches have typically been
confined to areas where wind speed data is historically
available, limiting the extent to which they can be applied. A
previous study focused on day-ahead wind speed prediction
with LSTM networks reported a maximum improvement in
mean absolute error over a persistence model of approximately
17% across all models tested (10). Persistence models use
the last known wind speed measurement to predict the next
and are a typical benchmark for the performance of wind
speed prediction models. When evaluated on observational
data withheld from training, our LSTM networks trained on
synthetic data had a mean MAPE score approximately 35%
lower than that obtained using a persistence model. However,
a direct comparison of our results to this study’s is not
possible since it was set at an unrealistic elevation for wind
turbines of 20 meters (10). As of 2018, the average hub height
for turbines in the United States was about 88 meters (14).

Considering the data available, our study is limited in
scale and generalizability. While we considered day-ahead
predictions with an hourly sampling rate in this study, future
studies could train additional models at different prediction
timescales, compare models trained on data sampled
at different rates, and train similar networks on different
prediction timeframes to suit various applications. We also
considered only one region from the NOW-23 dataset, so
further studies on this topic may also seek to extrapolate
results to the additional regions of the NOW-23 dataset.
Additionally, future research could utilize the optimizations
to network parameters made in this study to improve the
accuracy of the LSTM model presented. Nevertheless, by its
nature, synthetic data is limited in its realism to observational
data. While it realistically represents observational data at the
timescale used in this study, it is not a perfect indicator of
actual wind features (5). Synthetic data may not always be
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I Observational Training Data

L 1 L L 1 1 L L
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Figure 6: Box plots of distributions of mean absolute percentage error (MAPE) scores. The distribution of mean MAPE scores for
long short-term memory (LSTM) networks (n = 30) trained with synthetic data from the NOW-23 dataset or observational data from the Lake
Michigan Wind Assessment. The center line denotes the median. The black circles denote means and white circles denote outliers in each
distribution. Network types were trained using 50 epochs and a batch size of 8. Welch’s t-test shows a significant difference in MAPE scores
between network types (t = 6.395, p < 0.001).
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Figure 7: Wind speed distributions from 2004 to 2013 for synthetic data. Distributions of wind speeds in meters per second (m/s) in the
NOW-23 synthetic dataset from 2004 to 2013 were plotted by year with outliers not shown (n = 8760). Mean wind speeds by year are shown
by the dotted blue line.

available over a recent time period for a given site, so it may  second and wind direction in degrees as features. These
need to be regenerated using new data that reflect recent  observations were taken at either 75 or 80 meters, reflecting

wind patterns. the height of most turbines in the United States, which was
Creating more accurate wind speed prediction models  about 88 meters in 2018 (14).
can help mitigate the inefficiencies due to predictable We retrieved synthetic wind data from 2000 to 2013 for the

variances in wind energy production. Our work contributes to  NOW-23 Great Lakes dataset from the National Renewable
the trend of utilizing deep learning for wind speed prediction,  Energy Laboratory developer network APl and concatenated
demonstrating that LSTM networks can achieve higher for the Muskegon site using a script available on GitHub (16).
accuracy in day-ahead prediction when using synthetic  To create the NOW-23 Great Lakes dataset, researchers
data. Furthermore, sites viable for wind energy production ran 16 WRF setups over a one-year period and selected the
that lack historical observational data can utilize wind speed  best-performing setup combination in predicting wind speeds
prediction models trained on synthetic data, which can be  when validated using LIiDAR data (15). The WRF setup
further finetuned as observational data becomes available.  provides the boundary conditions and mathematical models
Future wind energy infrastructure in the Great Lakes region  used in generating the dataset (15). The dataset was created
will benefit from the greater availability of accurate wind by concatenating multiple one-month segments of WRF

prediction models, encouraging further development. simulations, which ran with a startup period beginning two
days before the start of each month (15).

MATERIALS AND METHODS We retrieved observational wind data from April 2013 to

Data December 2013 for the Lake Michigan Wind Assessment

We used synthetic data from the National Renewable from the Atmosphere to Electrons website (12). Synthetic
Energy Laboratory’s NOW-23 Great Lakes dataset simulated  and observational wind data were then split into training and
at an elevation of 80 meters, which was generated using testing groups and normalized using min-max normalization.
the Weather Research & Forecasting (WRF) program and  We trained LSTM neural networks on either synthetic or
validated with light detection and ranging (LiDAR) data from  observational data to predict day-ahead wind speeds at the
Lake Michigan (15). We used observational data from a buoy = same location near the coast of Muskegon, Michigan (Figure
approximately 10 kilometers from the eastern shoreline of  1).
Lake Michigan in the 2013 Lake Michigan Wind Assessment
near Muskegon, Michigan, at an elevation of 75 meters (12).

We utilized both datasets at a temporal resolution of one Layer Output Shape Number of Parameters
hour. We used a set of about 750 observational samples

from December 2013 as the testing dataset (12). The date LSTM (None, 16) 1.280

column of the observational data was normalized to match Dropout (None, 16) 0

that of the synthetic data, and the wipd §peed and directign Dense (None, 8) 198

columns were cleaned by replacing missing data values with

the last known value from the column (16). Missing data made Dense (None, 1) 9

up approximately 5% of the data in the testing set and outliers

made up about 1%. Table 1: Keras long-short term memory (LSTM) network

architecture. The architecture of the LSTM network used in this

The use of weather variables other than wind features : :
. ind speed forecasting is generally not associated with study as given by Keras. The parameters are the totals of the weights
In-win p g 9 y and biases associated with each layer. An output shape of (None,

improvements in prediction accuracy (7). Henc_e= to train our 46 ingicates that one or more lists of length 16 are passed as output
LSTM networks, we selected only wind speed in meters per  from a layer.
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Python setup

We used TensorFlow, a machine learning library, and
Keras, a deep learning library, run on Jupyter Notebook
in Python 3.11 to train the networks used in this study (17-
18). Each network used for comparison was trained for 50
epochs, cycling through the entire training dataset 50 times,
with a batch size of 8, which is how many samples from the
dataset were taken before updating the network’s weights in
each cycle. Each network was also composed of the same
architecture, which utilized an LSTM layer, two densely
connected layers, and a dropout layer to reduce overfitting
to training data by randomly dropping model weights (Table
1). Multi-layer neural networks with dropout layers show
better convergence when using the Adam optimizer, so it was
chosen as the optimizer for training (19). Each network layer
containing weights was regularized using L2 regularization to
reduce overfitting further by penalizing any excessively large
weights in the neural networks. In all, each network contained
about 1,400 total parameters (Table 1). Each network’s MAPE
accuracy was calculated using functions from the Scikit-learn
library (20).

Parameter optimization

To minimize the MAPE of networks trained on synthetic
data, we experimented with the number of epochs, years
of data, and batch size used in training the networks on the
Muskegon site. In three separate experiments, we tested
years of data spanning from 1 year to 14 years in 1-year
intervals, epochs spanning from 50 to 500 in 50 epoch
intervals, and batch sizes spanning from 8 to 128 in intervals
of 8. We altered one parameter while holding the other two
constant. For the parameters held constant, 14 years of data
were used, 50 epochs, and a batch size of 128. To evaluate the
effect of altering these variables, we considered a network’s
MAPE score when tested on the month of observational data
(December 2013) that had been withheld from training.

We used the results of these experiments to inform the
parameters of the networks trained on synthetic data we
tested, which utilized ten years of data spanning from 2004
to 2013. The distributions of wind speeds and mean wind
speeds in the synthetic dataset were consistent throughout
this timeframe (Figure 7). We also compared networks
trained on synthetic and observational data with various
training parameters, which led us to train the synthetic and
observational networks we compared with 50 epochs and a
batch size of 8. We trained these LSTM networks on synthetic
wind data 30 times and observational wind data 30 times to
compile distributions of the MAPE of each type of network.

Statistical tests

We used Welch's t-test to compare the distributions
of MAPE scores for networks trained on synthetic and
observational data. A z-test for skewness showed the score
distribution of observational networks was significantly
different from a normal distribution. Because of this, we used
a bootstrap t-distribution to interpret the result of the t-test.
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