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economic benefits to nearby population centers (1). For 
example, government mandates such as New York’s Climate 
Act have spurred demand for new renewable energy projects, 
in a bid to reduce greenhouse gas emissions (3). These new 
sources of renewable energy will be used to heat buildings, 
power electric transportation methods, and reduce industrial 
and agricultural emissions (3). The strong wind energy 
resources available in the Great Lakes have sparked interest 
in the development of offshore wind energy to meet emission 
reduction goals (3). When wind energy development begins 
at larger scales in the Great Lakes, electric utilities will need 
to be able to integrate this new source of energy effectively.
	 Researchers have proposed pathways to bring commercial 
wind energy to the Great Lakes within the next decade (2). 
However, the variability of wind energy production can make 
its integration burdensome, as electric utilities must adapt 
to changes between forecasted and realized wind energy 
(4). Grid operators rely on accurate day-ahead wind speed 
forecasts to make decisions about energy pricing, and to 
balance energy production from other sources (5). Since wind 
energy production is variable by nature, accurate wind energy 
forecasts can assist utilities in integrating wind energy reliably 
(6). Thus, more accurate wind speed predictions would 
allow utilities to improve wind energy production estimates, 
enhancing the reliability of wind energy. Overprediction of 
wind speeds forces utilities to compensate for shortfalls in 
production by sourcing energy from more expensive sources, 
whereas underprediction can result in energy waste as 
more electricity is produced than is necessary (6). Previous 
projects to improve the forecasting of wind speed production 
have demonstrated that improvements in predictive wind 
speed models can reduce wind energy overprediction and 
underprediction, directly corresponding to a decrease in the 
excess costs incurred by electric utilities (6).
	 A comparison of previous studies found that deep learning 
approaches have surpassed traditional machine learning 
methods, obtaining a lower mean absolute percentage error 
(MAPE) in wind speed predictions on prediction timescales 
ranging from one minute to six hours (7). One deep learning 
method, the long short-term memory (LSTM) network, is a 
recurrent neural network that is particularly well-suited to 
modeling short- and long-term dependencies in time series 
data due to its low error in multi-step ahead predictions 
(8). Two previous studies have utilized multiple variations 
of LSTM networks to predict wind speeds (9-10). However, 
because the locations, data, and forecasting periods involved 
in each study varied dramatically, their comparability to each 
other is limited (9-10). Additionally, both studies relied only on 
observational data (9-10). Because wind turbines have not yet 
been developed in the Great Lakes, the observational wind 
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SUMMARY
With an estimated offshore potential wind energy 
capacity of 575 gigawatts, the Great Lakes region is 
a promising area for future wind energy development. 
Electric utilities that use wind energy rely on accurate 
day-ahead wind energy forecasts, mainly informed by 
predicted wind speed, to account for the variability 
of wind energy production. Since wind turbines 
have not yet been developed in the Great Lakes, 
observational wind data is collected at very few sites. 
Hence, utilities may seek to use synthetic wind data to 
pre-train accurate day-ahead wind speed prediction 
models. Yet, prior studies have only utilized synthetic 
data in predicting sub-hourly winds speeds. We 
hypothesized that training long short-term memory 
neural networks to predict day-ahead wind speeds on 
synthetic wind data instead of observational wind data 
would increase accuracy since synthetic wind data is 
available over longer time spans than observational 
wind data. We used observational data from the Lake 
Michigan Wind Assessment and synthetic data from 
the National Offshore Wind Great Lakes dataset and 
found that networks trained on synthetic data had a 
lower mean absolute percentage error score in day-
ahead wind speed prediction than networks trained 
on observational data. We also optimized additional 
parameters of the networks for both synthetic and 
observational network types, further improving 
accuracy. The availability of a wind speed prediction 
model trained on synthetic data will reduce reliance 
on historical observational data at future sites of 
wind energy infrastructure, allowing utilities to swiftly 
adapt accurate prediction methods to new sites.

INTRODUCTION
	 The Great Lakes have an estimated offshore wind energy 
potential of 575 gigawatts (1). With most sites throughout 
the Great Lakes reaching annual average wind speeds of 
nine meters per second or greater, the Great Lakes region 
has significant opportunities for offshore wind energy 
development (2). However, challenges remain, such as the 
potential for ice cover causing ice jamming of turbines and 
the limited width of current ports that restrict the maximum 
size of wind turbines on certain lakes (3). Yet, offshore wind 
energy development in the Great Lakes has also been 
deemed technically and economically feasible in some areas 
(3). Wind energy development in the Great Lakes would also 
assist states in meeting their clean energy goals and provide 
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data typically needed to train wind speed prediction models 
may not yet be available at potential wind turbine locations. 
However, synthetic wind data, which is developed through 
mathematical simulations and has a high spatial resolution, 
could be used to pre-train wind speed prediction models when 
observational wind data is not available (5). Synthetic data is 
available at a spatial resolution of two kilometers throughout 
the entire Great Lakes region, making it much more widely 
available than observational data, and has been confirmed 
to realistically represent observational wind speed data over 
larger timescales (5).
	 While previous studies have used synthetic wind data to 
improve sub-hourly wind speed predictions, it is unknown 
whether synthetic wind data is beneficial for day-ahead 
wind speed prediction (5). In our study, we aimed to create 
more accurate day-ahead wind speed prediction models 
using synthetic wind data. We hypothesized that LSTM 
neural networks trained on synthetic wind data would have 
a lower MAPE in predicting day-ahead wind speeds than 
LSTM neural networks trained on observational wind data. 
We leveraged synthetic data from the National Offshore Wind 
(NOW-23) Great Lakes dataset generated through version 
4.2.1 of the Weather Research & Forecasting (WRF) program 
and observational data captured during the Lake Michigan 
Wind Assessment off the coast of Muskegon, Michigan (11-
12). We used multiple experiments to determine parameters 
for a comparison between networks trained on observational 
and synthetic wind data. We determined that LSTM networks 
trained with 50 epochs and a batch size of 8 resulted in the 
lowest variance for networks trained on observational wind 
data. We found that networks trained on synthetic data had a 
lower mean MAPE score in day-ahead wind speed prediction 
than networks trained on observational data. When little or 
no observational data is available, LSTM networks trained 
on synthetic data could be more accurate in day-ahead wind 
speed prediction. The usage of synthetic data to pre-train 
day-ahead wind speed prediction models could assist utilities 
in integrating new sources of wind energy developed in the 
Great Lakes.

RESULTS
	 We aimed to evaluate the effectiveness of synthetic data 
for day-ahead wind speed prediction in the Great Lakes, 
hypothesizing that LSTM neural networks trained on synthetic 
wind data would have a lower MAPE than networks trained on 
observational wind data. To test our hypothesis, we developed 
and tuned an LSTM network for time series prediction using 
data from either the Lake Michigan Wind Assessment 
observational data (April 2013 to November 2013) or the 
synthetic wind data from the NOW-23 Great Lakes dataset 
(January 2000 to November 2013) (11-12). For each network, 
MAPE scores were found by testing on the final month of 
data from the Lake Michigan Wind Assessment (December 
2013). Data from the 2013 Lake Michigan Wind Assessment 
was taken from a buoy approximately ten kilometers from the 
eastern shoreline of Lake Michigan near Muskegon, Michigan, 
and data from the NOW-23 Great Lakes dataset was taken 
from the closest site to this buoy, approximately 520 meters 
away (Figure 1). The networks used the previous 24 hours of 
wind speed and direction data at a temporal resolution of 1 
hour to predict the wind speed 24 hours later at a given site. 

Parameter optimization
	 Through multiple experiments, we discovered that using 
two or fewer years of synthetic training data resulted in higher 
MAPE and thus were not comprehensive enough to train an 
LSTM network effectively, while using 10 or more years of 
training data yielded diminishing returns in accuracy (Figure 
2). Networks with ten or more years of training data plateaued 
around 29.3% MAPE, while networks with two or fewer years 
had over 30% MAPE (Figure 2). Furthermore, we observed 
that larger increases in the number of epochs used to train 
networks on synthetic data also had diminishing returns in 
accuracy, with the best accuracy being 28% MAPE with 100 
epochs, and that additional epochs worsened accuracy in 
models trained on observational wind data (Figures 3, 4). 
	 We also experimented with the batch size used to train 
networks, discovering that batch size had little effect on 
the accuracy of networks trained on synthetic data but was 
influential in determining the accuracy of networks trained on 
observational wind data (Figures 4, 5). For the observational 
network type, the MAPE scores for batch sizes of 8 and 128, 
respectively, were 30.5% and 33.6%, a 3.1% difference, while 

Figure 1: Map of Muskegon, Michigan with site locations. The 
physical locations of the sites selected from the NOW-23 Great 
Lakes dataset (synthetic data) and Lake Michigan Wind Assessment 
(observational data) are displayed over a map of Muskegon, 
Michigan. Map data is available from openstreetmap.org under the 
Open Database License. 

Figure 2: Effect of years of data on network mean absolute 
percentage error (MAPE) scores. The mean MAPE scores 
compared to years of synthetic data from the NOW-23 dataset used 
to train long short-term memory (LSTM) networks (n = 10). LSTM 
networks were trained for 50 epochs with a batch size of 128. Error 
bars represent the standard deviation of the MAPE scores.
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there was a difference of only 0.5% for the synthetic network 
type (Figure 4). Thus, networks trained on observational 
wind data often overfit to training data at higher numbers of 
epochs because of the limited amount of data and require 
smaller batch sizes to better learn their datasets. Due to this, 
we used 50 epochs and a batch size of 8 to train networks on 
observational and synthetic wind data for comparison since 
these parameters resulted in the lowest standard deviation in 
MAPE of 1.09% for the observational network type (Figure 
4).

Network comparison
	 We evaluated the MAPE scores for each network on the 
final month of data from the Lake Michigan Wind Assessment 
(December 2013), which was withheld from training. While 
the mean MAPE of LSTM networks trained on synthetic 
wind data was lower than that of networks trained using 

observational data, it was not by a large margin (Figure 
6). To determine statistical significance, we recreated our 
experiment by retraining each network type 30 times to 
compile a distribution of MAPE scores for both (Figure 6). The 
sample mean MAPE of networks trained on observational and 
synthetic wind data were 30.66% and 29.06%, respectively. 
The standard deviation of MAPE scores for networks trained 
on observational and synthetic wind data were 1.09% and 
0.79%, respectively. A z-test for skewness showed the MAPE 
score distribution of networks trained on observational data 
was significantly different from a normal distribution (z = 
4.133, p < 0.001). We observed that LSTM networks trained 
on synthetic data had a lower mean MAPE score in day-ahead 
wind speed prediction than networks trained on observational 
data (Welch’s t-test, t = 6.395, p < 0.001).
	 As a benchmark, we also compared the LSTM networks 
trained on synthetic data to a persistence model, which uses 
the last known wind speed measurement to predict the next. 
The LSTM networks trained on synthetic data were more 
effective, with their MAPE score of 29.06% being 35% lower 
than the mean score of 44.95% achieved by a persistence 
model.

DISCUSSION
	 Our study aimed to utilize synthetic data from the NOW-23 
Great Lakes dataset and LSTM networks to create a practical 
wind speed prediction model. We hypothesized that LSTM 
neural networks trained on synthetic wind data would have 
a lower MAPE in predicting day-ahead wind speeds than 
LSTM neural networks trained on observational wind data. 
We tested LSTM networks using data from the Lake Michigan 
Wind Assessment and found convincing evidence for our 
hypothesis that LSTM networks trained using synthetic data 
had a lower MAPE in day-ahead wind speed prediction than 
those trained using observational data (p < 0.001). We found 
three to ten years of synthetic training data to be optimal and 
a fewer number of epochs helpful in reducing overfitting.
Although the use of dropout layers and regularization help 
to reduce overfitting, we still saw network overfitting based 
on some training parameters (13). For networks trained on 

Figure 3: Effect of the number of epochs trained on network 
mean absolute percentage error (MAPE) scores. Mean MAPE 
scores for the number of trained epochs using synthetic data from 
the NOW-23 dataset. Long short-term memory networks (n = 10) 
were trained on synthetic data with a batch size of 128. Error bars 
represent the standard deviation of the MAPE scores.

Figure 4: Comparison of mean absolute percentage error (MAPE) scores for models with varying parameters. Mean MAPE scores for 
networks trained with synthetic data from the NOW-23 dataset or observational data from the Lake Michigan Wind Assessment over different 
epochs and batch sizes. Long short-term memory networks (n = 30) were trained for each training data type and parameter combination. Error 
bars represent the standard deviation of the MAPE scores.
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synthetic data, we found that using two or fewer years of 
training data lowered accuracy, indicating that using this 
little synthetic training data may lead to network overfitting 
and might not be a representative enough sample of wind 
patterns. For both network types, we also found that using 
greatly beyond 50 epochs, or iterations of training on an entire 
dataset, led to increased error, particularly when networks 
were trained on observational data. This indicates that the 
networks became overfit to the training data at a higher 
number of epochs.
	 The difference in performance between the synthetic 
and observational network types might be explained by 
the larger number of samples in the synthetic dataset than 
the observational dataset and the inclusion of the relevant 
predictive month in the synthetic dataset. The synthetic data 
contained a total of about 184,000 observations, while the 
observational data contained only about 5,700. Furthermore, 
the relevant predictive month of December was contained 
in only the synthetic wind data, as the observational data 

spanned only April 2013 to November 2013. Since wind 
patterns are typically subject to seasonal variations, the 
representation of patterns during the relevant predictive 
month may have contributed to the increased performance 
seen with synthetic data. 
	 Previous studies have approached wind speed prediction 
using machine learning, deep learning, and artificial 
intelligence (7). Yet, these approaches have typically been 
confined to areas where wind speed data is historically 
available, limiting the extent to which they can be applied. A 
previous study focused on day-ahead wind speed prediction 
with LSTM networks reported a maximum improvement in 
mean absolute error over a persistence model of approximately 
17% across all models tested (10). Persistence models use 
the last known wind speed measurement to predict the next 
and are a typical benchmark for the performance of wind 
speed prediction models. When evaluated on observational 
data withheld from training, our LSTM networks trained on 
synthetic data had a mean MAPE score approximately 35% 
lower than that obtained using a persistence model. However, 
a direct comparison of our results to this study’s is not 
possible since it was set at an unrealistic elevation for wind 
turbines of 20 meters (10). As of 2018, the average hub height 
for turbines in the United States was about 88 meters (14). 
	 Considering the data available, our study is limited in 
scale and generalizability. While we considered day-ahead 
predictions with an hourly sampling rate in this study, future 
studies could train additional models at different prediction 
timescales, compare models trained on data sampled 
at different rates, and train similar networks on different 
prediction timeframes to suit various applications. We also 
considered only one region from the NOW-23 dataset, so 
further studies on this topic may also seek to extrapolate 
results to the additional regions of the NOW-23 dataset. 
Additionally, future research could utilize the optimizations 
to network parameters made in this study to improve the 
accuracy of the LSTM model presented. Nevertheless, by its 
nature, synthetic data is limited in its realism to observational 
data. While it realistically represents observational data at the 
timescale used in this study, it is not a perfect indicator of 
actual wind features (5). Synthetic data may not always be 

Figure 6: Box plots of distributions of mean absolute percentage error (MAPE) scores. The distribution of mean MAPE scores for 
long short-term memory (LSTM) networks (n = 30) trained with synthetic data from the NOW-23 dataset or observational data from the Lake 
Michigan Wind Assessment. The center line denotes the median. The black circles denote means and white circles denote outliers in each 
distribution. Network types were trained using 50 epochs and a batch size of 8. Welch’s t-test shows a significant difference in MAPE scores 
between network types (t = 6.395, p < 0.001).

Figure 5: Effect of batch size on network mean absolute 
percentage error (MAPE) scores. Mean MAPE scores for networks 
trained with data from the NOW-23 Great Lakes dataset. Long short-
term memory networks (n = 10) were trained for 50 epochs. Error 
bars represent the standard deviation of the MAPE scores.
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available over a recent time period for a given site, so it may 
need to be regenerated using new data that reflect recent 
wind patterns.
	 Creating more accurate wind speed prediction models 
can help mitigate the inefficiencies due to predictable 
variances in wind energy production. Our work contributes to 
the trend of utilizing deep learning for wind speed prediction, 
demonstrating that LSTM networks can achieve higher 
accuracy in day-ahead prediction when using synthetic 
data. Furthermore, sites viable for wind energy production 
that lack historical observational data can utilize wind speed 
prediction models trained on synthetic data, which can be 
further finetuned as observational data becomes available. 
Future wind energy infrastructure in the Great Lakes region 
will benefit from the greater availability of accurate wind 
prediction models, encouraging further development.

MATERIALS AND METHODS
Data
	 We used synthetic data from the National Renewable 
Energy Laboratory’s NOW-23 Great Lakes dataset simulated 
at an elevation of 80 meters, which was generated using 
the Weather Research & Forecasting (WRF) program and 
validated with light detection and ranging (LiDAR) data from 
Lake Michigan (15). We used observational data from a buoy 
approximately 10 kilometers from the eastern shoreline of 
Lake Michigan in the 2013 Lake Michigan Wind Assessment 
near Muskegon, Michigan, at an elevation of 75 meters (12). 
We utilized both datasets at a temporal resolution of one 
hour. We used a set of about 750 observational samples 
from December 2013 as the testing dataset (12). The date 
column of the observational data was normalized to match 
that of the synthetic data, and the wind speed and direction 
columns were cleaned by replacing missing data values with 
the last known value from the column (16). Missing data made 
up approximately 5% of the data in the testing set and outliers 
made up about 1%.
	 The use of weather variables other than wind features 
in wind speed forecasting is generally not associated with 
improvements in prediction accuracy (7). Hence, to train our 
LSTM networks, we selected only wind speed in meters per 

second and wind direction in degrees as features. These 
observations were taken at either 75 or 80 meters, reflecting 
the height of most turbines in the United States, which was 
about 88 meters in 2018 (14). 
	 We retrieved synthetic wind data from 2000 to 2013 for the 
NOW-23 Great Lakes dataset from the National Renewable 
Energy Laboratory developer network API and concatenated 
for the Muskegon site using a script available on GitHub (16). 
To create the NOW-23 Great Lakes dataset, researchers 
ran 16 WRF setups over a one-year period and selected the 
best-performing setup combination in predicting wind speeds 
when validated using LiDAR data (15). The WRF setup 
provides the boundary conditions and mathematical models 
used in generating the dataset (15). The dataset was created 
by concatenating multiple one-month segments of WRF 
simulations, which ran with a startup period beginning two 
days before the start of each month (15). 
	 We retrieved observational wind data from April 2013 to 
December 2013 for the Lake Michigan Wind Assessment 
from the Atmosphere to Electrons website (12). Synthetic 
and observational wind data were then split into training and 
testing groups and normalized using min-max normalization. 
We trained LSTM neural networks on either synthetic or 
observational data to predict day-ahead wind speeds at the 
same location near the coast of Muskegon, Michigan (Figure 
1). 

Figure 7: Wind speed distributions from 2004 to 2013 for synthetic data. Distributions of wind speeds in meters per second (m/s) in the 
NOW-23 synthetic dataset from 2004 to 2013 were plotted by year with outliers not shown (n = 8760). Mean wind speeds by year are shown 
by the dotted blue line. 

Table 1: Keras long-short term memory (LSTM) network 
architecture. The architecture of the LSTM network used in this 
study as given by Keras. The parameters are the totals of the weights 
and biases associated with each layer. An output shape of (None, 
16) indicates that one or more lists of length 16 are passed as output 
from a layer.
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Python setup
	 We used TensorFlow, a machine learning library, and 
Keras, a deep learning library, run on Jupyter Notebook 
in Python 3.11 to train the networks used in this study (17-
18). Each network used for comparison was trained for 50 
epochs, cycling through the entire training dataset 50 times, 
with a batch size of 8, which is how many samples from the 
dataset were taken before updating the network’s weights in 
each cycle. Each network was also composed of the same 
architecture, which utilized an LSTM layer, two densely 
connected layers, and a dropout layer to reduce overfitting 
to training data by randomly dropping model weights (Table 
1). Multi-layer neural networks with dropout layers show 
better convergence when using the Adam optimizer, so it was 
chosen as the optimizer for training (19). Each network layer 
containing weights was regularized using L2 regularization to 
reduce overfitting further by penalizing any excessively large 
weights in the neural networks. In all, each network contained 
about 1,400 total parameters (Table 1). Each network’s MAPE 
accuracy was calculated using functions from the Scikit-learn 
library (20).

Parameter optimization
	 To minimize the MAPE of networks trained on synthetic 
data, we experimented with the number of epochs, years 
of data, and batch size used in training the networks on the 
Muskegon site. In three separate experiments, we tested 
years of data spanning from 1 year to 14 years in 1-year 
intervals, epochs spanning from 50 to 500 in 50 epoch 
intervals, and batch sizes spanning from 8 to 128 in intervals 
of 8. We altered one parameter while holding the other two 
constant. For the parameters held constant, 14 years of data 
were used, 50 epochs, and a batch size of 128. To evaluate the 
effect of altering these variables, we considered a network’s 
MAPE score when tested on the month of observational data 
(December 2013) that had been withheld from training. 
	 We used the results of these experiments to inform the 
parameters of the networks trained on synthetic data we 
tested, which utilized ten years of data spanning from 2004 
to 2013. The distributions of wind speeds and mean wind 
speeds in the synthetic dataset were consistent throughout 
this timeframe (Figure 7). We also compared networks 
trained on synthetic and observational data with various 
training parameters, which led us to train the synthetic and 
observational networks we compared with 50 epochs and a 
batch size of 8. We trained these LSTM networks on synthetic 
wind data 30 times and observational wind data 30 times to 
compile distributions of the MAPE of each type of network.

Statistical tests
	 We used Welch’s t-test to compare the distributions 
of MAPE scores for networks trained on synthetic and 
observational data. A z-test for skewness showed the score 
distribution of observational networks was significantly 
different from a normal distribution. Because of this, we used 
a bootstrap t-distribution to interpret the result of the t-test.
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