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SUMMARY

Parkinson’s disease (PD) is a neurodegenerative
disease that is important to diagnose early for
appropriate treatment. Decline in voice quality is an
early symptom of PD, and prior studies have used
machine learning models to analyze audio clips and
monitor for progression of PD. We hypothesized that
the voice features Harmonics to Noise Ratio (HNR),
Detrended Fluctuation Analysis (DFA), and Jitter
Absolute (JA) would be most useful in detecting PD
progression represented by a Unified Parkinson's
Disease Rating Scale (UPDRS) and thatthe relationship
between these features and UPDRS scores would be
nonlinear given the complexity of PD. We used the
publicly available PD telemonitoring dataset from
the UCI (University of California Irvine) Machine
Learning Repository to validate our hypothesis.
After controlling for age, we identified DFA, HNR
and JA as the best factors to predict motor and total
UPDRS scores, with accuracy measured by MAE and
MSE. DFA was the most effective to use in advanced
machine learning to accurately predict high motor and
total UPDRS scores. We also identified random forest
as the best possible model to predict PD progression.
We concluded that random forest performed the
best as it was a non-linear model, emphasizing the
importance of non-linear relationships found in
voice features of PD patients, given that PD is a
complex disease impacting multiple neural systems
with varying degrees of progression. Our study has
potential to help clinicians identify progression of
PD and manage diagnosis in a non-invasive manner
while also providing insights into diagnosis.

INTRODUCTION

Parkinson’'s  disease (PD) is a  progressive
neurodegenerative disease affecting millions of patients
worldwide, where neurons that produce dopamine die
or become impaired due to unknown causes (1). PD is
characterized by motor symptoms such as tremor, rigidity, and
slowed movement as well as non-motor symptoms including
cognitive and speech difficulties (1). As PD progresses,
symptoms worsen and impact quality of life (2). As PD is a
progressive disease, it is important to diagnose it in a timely
manner. However, it requires consultations with medical
specialists, understanding of the patient’s medical history,
clinical exams, and invasive tests (3). After the assessment
and tests are done by a medical specialist, the procedure
for PD is to assign scores using the Unified Parkinson’s
Disease Rating Scale (UPDRS) to represent the severity
and progression of PD (4). Total UPDRS values range from
0 to 199, where 0 represents no disability or symptoms of
PD and 199 indicates the most advanced stage of PD with
significant impairment (4). The UPDRS consists of four main
parts: I) thinking, behavior, and mood; Il) activities of daily
living; Ill) motor examination; and IV) complications of therapy
(4). Speech is assessed in both Part Il as part of daily living
activities and Part Ill as part of the motor examination (4).
The motor UPDRS score (Part Ill), which measures motor
symptoms including speech, facial expression, tremor, rigidity,
slowness of movement, gait, and balance problems, ranges
from 0 (no motor symptoms) to 108 (severe motor symptoms)
4).

Given that an accurate diagnosis of PD requires the
patient to have physical and financial access to medical
specialists and clinical tests, there has been growing interest
in alternative methods of predicting PD progression, with voice
analysis showing one possible approach (5). PD is diagnosed
by doctors based on medical history, a consideration of
symptoms and a physical and neurological exam, which
may not be accessible to all (1). Speech impairment such
as changes in voice quality, articulation, and the stress and
intonation in language have been observed in PD patients
as some of the first symptoms to develop (6). For patients
with PD, a complex dysfunctional interaction of respiratory,
laryngeal, and articulatory functions results in these changes
(7). Thus, research has begun to focus on tracking the voice
attributes objectively, remotely, and in a non-invasive manner
to monitor PD progression (8).

Different voice features have been evaluated for their
relationship with PD progression. One such voice feature
is Detrended Fluctuation Analysis (DFA), a measure of self-
similarity of voice over time, which can uncover changes in
speech timing and reveal patterns in speech rhythm. A study
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used DFA to classify PD in patients and found that the DFA
values were generally higher for PD patients than for controls
due to impaired muscle control (9). Another voice feature is
Harmonics to Noise Ratio (HNR) is a ratio which represents
the voice quality in audio data, with higher values indicating
clearer voices and lower values indicating breathiness or
hoarseness. A study characterizing voice quality in early
PD using HNR reveals that higher noise from breathiness is
due to incomplete vocal fold closure (10). This can be used
to track PD through telemonitoring and for classification of
PD (11,12). Jitter Absolute (JA) measures frequency instability
in voice data and can be used to differentiate healthy voices
from dysphonic voices due to vocal tremor and reduced
muscle control, classifying PD and remote monitoring (10-12).
Additionally, Recurrence Period Density Entropy (RPDE) is
used to detect the presence of aperiodic, irregular patterns in
the voice (11).

These three voice features have been evaluated and
shown potential for predicting PD progression individually.
We sought to determine if these three voice features
could be used in combination to predict PD progression.
Further, the relationship between these voice features and
clinical measures for PD progression like UPDRS is poorly
understood. Models used in prior research studies have been
mostly linear in nature; however, the nature of PD raises the
question if the relationship may be non-linear (13).

In this study, we evaluated the potential of HNA, DFA and
JA, to predict PD progression. We hypothesized that the voice
features HNR, DFA, and JA are the most significant voice-
related features to detect PD progression represented by a
UPDRS, and the relationship between these features and
UPDRS scores will be nonlinear given the complexity of PD.
To evaluate this hypothesis, we utilized the publicly available
PD Telemonitoring dataset from the University of California
Irvine (UCI) Machine Learning Repository (5). We employed
a mix of linear and non-linear modelling approaches and
to evaluate the performance of our models, we used the
coefficient of determination (R?), Mean Absolute Error (MAE),
and Mean Squared Error (MSE). We also conducted time
series analysis to evaluate how the predictive power of these
features changes over the course of PD progression.

We found that voice features DFA, HNR, and JA can all
help track PD progression, with DFA being a feature that has
the strongest correlation with total and motor UPDRS scores
with the exception of age. This research may limit the number
of invasive and expensive tests like dopamine transporter
scan and magnetic resonance imaging patients with PD face
when monitoring progression. This research contributes to
the growing collection of research on using voice features for
PD progression which could result in better patient outcomes.

RESULTS

We used advanced machine learning to predict progression
in PD from speech data. We started with a dataset from UCI
and data was split into training (80%) and testing (20%) sets
using a random seed of 42 for reproducibility. After that, we
performed feature engineering. Feature engineering was
performed to create interaction terms between age and
voice features, as well as polynomial features (up to degree
2) for DFA, HNR, and JA. These engineered features were
added to the original feature set to capture potential non-
linear relationships between features and UPDRS scores.

https://doi.org/10.59720/24-284

Subsequently, feature selection was conducted using RFE,
RFECV, and random forest importance to identify the most
predictive features. We then performed feature selection
for features using recursive feature elimination with cross-
validation (RFECV) to select the most important features in
the UCI dataset. We then trained the model to predict motor
UPDRS values. Finally, using the trained model, we assessed
which features were most important for predicting motor
UPDRS scores and the overall accuracy of the model and
calculated the accuracy in measuring motor UPDRS scores.

Correlation analysis

DFA had a weak negative correlation with motor UPDRS
(r=-0.116, p < 0.001) and total UPDRS (r =-0.113, p < 0.001).
HNR also had a weak negative correlation with motor UPDRS
(r=-0.157, p < 0.001) and total UPDRS (r =-0.162, p < 0.001).
JA had a weak positive correlation with both motor UPDRS
(r=0.051, p < 0.001) and total UPDRS (r = 0.067, p < 0.001).
Contrary to our hypothesis, PPE (Pitch Period Entropy), which
measures variability or unpredictability in the pitch period
of speech, had a positive correlation (r = 0.162, p < 0.001
with motor UPDRS) that was stronger than anticipated. Its
correlation strength was similar to that of HNR (r =-0.157) butin
the opposite direction. Based on our background knowledge,
we had expected PPE to show a weaker correlation than the
three primary voice features (DFA, HNR, and JA) we had
identified in our hypothesis. Previous studies had emphasized
the diagnostic and monitoring potential of DFA, HNR, and JA,
with less attention given to PPE as a primary biomarker for
PD progression (9-12). This could indicate that larger PPE
could be correlated to greater UPDRS scores. RPDE also
had a positive correlation motor UPDRS (r = 0.129, p < 0.001)
and total UPDRS (r = 0.157, p < 0.001). This shows RPDE’s
association with the progression of PD regarding correlation
analysis.

Importance of features in predicting motor UPDRS

By analyzing feature importance using random forest, age
was found as the best predictor for motor UPDRS importance
(0.674). DFA was the next most important (0.101) feature
followed by JA (0.054) and HNR (0.023), which were less
important than expected. Recurrence Period Density Entropy
(RPDE) had the same as HNR (0.023) (Figure 1).

Linear regression models

We created multiple linear regression models using all the
voice features with age as predictors. The R? value for motor
UPDRS was 0.112 and 0.138 for total UPDRS in this model.
We compared the performance of models using all features
versus models using only selected features from our RFE
and RFECV analyses. The model with all features achieved
slightly higher R? values than models with reduced feature
sets, despite potential multicollinearity concerns. These low
R? values indicate linear regression models don’t accurately
represent the variance in UPDRS scores. All predictors
were standardized during preprocessing using sklearn’s
StandardScaler, which transformed each feature to have
zero mean and unit variance before fitting the regression
models. Age had the greatest positive coefficient at 1.768 for
motor UPDRS, making it the most important predictor. PPE
and RPDE also had positive coefficients, which relates to
their prior positive correlations. DFA, HNR, and JA all had
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Figure 1: Voice features importance in predicting motor and total UPDRS scores. Importance of various voice features in a Random
Forest model in predicting UPDRS scores, a key indicator of PD progression. Features included in the model include age, Detrended
Fluctuation Analysis (DFA), Jitter Absolute (JA), Harmonics to Noise Ratio (HNR), Recurrence Period Density Entropy (RPDE), and PPE
(Pitch Period Entropy). Actual values are reported above each bar. Importance is evaluated using random forest regressor with 100 trees.

negative coefficients. However, PPE had unexpectedly large
coefficients (motor UPDRS: 1.666; total UPDRS: 1.632),
showing its potential importance (Table 1).

Non-linear models/random forest

Random forest models significantly outperformed linear
regression models, achieving an R? of 0.892 for motor
UPDRS and R? of 0.902 for total UPDRS compared to 0.112
and 0.138 respectively for linear regression. Random forest
had an R? of 0.892 for motor UPDRS and R? of 0.902 for total
UPDRS (Table 1). Using random forest, an MAE of 1.879 for
motor UPDRS and 2.343 for total UPDRS was reported. The
better performance of random forest models suggests that
the relationship between voice features and PD progression
is non-linear and more complex than can be captured by
simple linear models.

MAE and MSE

Random forest had an R? of 0.892 for motor UPDRS and
R2? of 0.902 for total UPDRS (Table 1). Using random forest,
we achieved an MAE of 1.879 for motor UPDRS and 2.343 for
total UPDRS. These error metrics further support the superior
performance of random forest compared to linear regression,
which had significantly higher error values (MAE of 6.493 and
8.275 for motor and total UPDRS, respectively). Lower MAE
values indicate that the random forest predictions were closer
to the actual UPDRS scores.

Time series analysis

The UCI dataset collected voice data for the patients over
a period of 5.3 to 5.8 months. The frequency of collection
was approximately weekly, with additional measurements
in between for many patients. Analyzing the predictive
powers in various voice features over time displayed differing

patterns (Figure 2). The dataset was divided into ten equally
spaced time intervals spanning the 5.3-5.8 month study
period. At each time interval, we built separate single-feature
linear regression models for each voice feature (age, DFA,
HNR, JA, RPDE, and PPE), with each model using only one
feature to predict either motor or total UPDRS scores. For
each model at each time point, we calculated the R? value
to see how well that single feature predicted UPDRS scores
at that particular stage of the disease progression. We then
plotted these R? values across the 10 time points to visualize
how each feature’s predictive power changed throughout the
observation period (Figure 2).

Our analysis showed that age had the greatest predictive
power, and its R? increased slightly 1.34 times from 0.064 to
0.086. DFA shows the most substantial increase with its R?
increasing 32.5 times from 0.0004 to 0.0130. HNR initially had
a large predictive power when starting with R2 being 0.071 at
time 0 and decreased immediately after the initial assessment
2.84 times from 0.071 to 0.025. JA had low predictive power
that further decreased 2.75 times from 0.011 to 0.0040. PPE
also had a predictive power that decreased 2.92 times from
0.070 to 0.025. RPDE had a predictive power that decreased
1.75 times from 0.035 to 0.02. Changes in predictive power
over time can show the importance of different features during
different stages of PD or signify useful features for short- term
or longitudinal studies. Further, no specific timepoints stood
out which showed an inflexion on disease progression. This
also highlights the need to do more longitudinal and adaptive
modelling research.

Variance

To demonstrate the effectiveness of three voice features in
the random forest model, we compared model performance
across different sets of voice features: all features, a subset
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Motor UPDRS
linear regression

6.493
58.332
0.086

Motor UPDRS Total UPDRS
random forest | linear regression

2.043 8.275
9.132 97.5886
0.857 0.119

Total UPDRS
random forest

2594
13.662
0.877

MAE
MSE
R?

Table 1: Linear regression and random forest models
predictions for motor and total UPDRS scores. Mean Absolute
Error (MAE), Mean Squared Error (MSE), and R-squared (R?).

comprising of age and three selected voice features (which
we termed “original features”), and age alone. We compare
the predictive power for different features between motor and
total UPDRS scores R? values (Table 2). Using all features
explained the highest variance (R? = 0.892 for motor, 0.902
for total). Age alone had a lower predictive power (R? = 0.631
for motor, 0.703 for total). The features DFA, HNR, JA helped
improve predictions greater than age alone but are slightly
less powerful than using all features (R? = 0.857 for motor,
0.877 for total).

In summary, our analysis of the voice features as
predictors of PD progressions resulted in key observations:
DFA, HNR, JA, RPDE and PPE showed promise as important
voice features in predicting PD progression. The features
had weak but statistically significant correlation with UPDRS
scores. Specifically, DFA demonstrated weak negative
correlations with both motor UPDRS and total UPDRS. HNR
similarly showed weak negative correlations with motor
UPDRS and total UPDRS. In contrast, JA exhibited weak
positive correlations with both measures. RPDE and PPE
also showed weak positive correlations with both motor
and total UPDRS. Importantly the combination of the three
voice features, provided significant additional predictive
power to PD progression beyond age. Finally, the superior
performance of non-linear models particularly random forest
suggests complex, non-linear relationships, between voice
features and PD progression.

0.09
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Motor UDPRS Total UDPRS
R? all features 0.892 0.902
R? age only 0.621 0.703
R? original features 0.857 0877
Variance all vs age 0.261 0.199
Variance age only vs original features 0.226 0.174

Table 2: Comparison of R? values and variance explained by
different feature sets for motor and total UPDRS predictions. R?
values for models Linear Regression and Random Forest using all
features including age, age only, and original features DFA, JA, and
HNR. It also presents the difference in R? values between models
(labeled as 'variance'): 'All vs age' shows the additional variance
explained when using all features compared to using age alone,
while 'age only vs original features' shows the improvement gained
by adding the three original voice features (DFA, HNR, JA) to the
age-only model. Results are shown separately for motor UPDRS and
total UPDRS to allow for comparison between these two.

DISCUSSION

Overall, our results partially support the hypothesis that
voice features can help predict PD progression, measured
by UPDRS scores. We found that voice characteristics are
complex and non- linear in disease progression, with certain
features, such as age, being identified as more important
during feature selection.

Amongthe voice features, DFA shows the second strongest
correlation with both motor and total UPDRS scores, following
age. This finding is in line with our hypothesis. The negative
correlation between DFA and UPDRS scores indicates that
as the disease progresses, the self-similarity of the voice
decreases, reflecting increased voice instability. Contrary
to our hypothesis, HNR and JA showed weaker correlation
than we expected due to the weakness of the correlation
and small direction. This suggests that their predictive
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Figure 2: Predictive power of age, DFA, JA, HNR, RPDE, PPE over time. R? values from Random Forest for age (dark blue line), DFA
(orange line), JA (dark green line), HNR (light blue line), RPDE (purple line), and PPE (light green line) measured at time increments of 0.1111.
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capabilities might be more limited than the currently available
research indicates. However, other voice features not initially
included in our hypothesis, such as PPE and RPDE, show
unexpected importance in our models. This suggests there
are a bigger set of voice features are relevant for predicting
PD progression. Thus, expanding the voice feature set from
the three to five, including PPE and RPDE may be important
in further research.

The stark contrast in performance between linear and
nonlinear models shows the dynamics between voice features
and UPDRS scores. Linear regression models only explained
about 9 — 12% of variance in UPDRS scores, but non-linear
random forest models explained about 86 — 88% of variance.
This supports that the relationships between voice features
and PD predictions are non-linear. The superior performance
of random forest models suggests that the relationship
between voice features and PD progression is likely non-
linear. While random forest's better performance could
potentially be attributed to other factors such as its ensemble
nature, robustness to outliers, or handling of multicollinearity,
the substantial performance gap supports our hypothesis that
voice biomarkers relate to UPDRS scores in complex, non-
linear ways. This aligns with the known complexity of PD as
a progressive neurodegenerative disorder affecting multiple
neural systems. This reflects prior research which shows the
PD is a complex disease, impacting multiple neural systems
with varying degrees of progression (14). This also reiterates
the importance of using advanced non-linear modelling
techniques to analyze voice data for PD progression.

Additionally, the time series analysis showed how the
predictive power of varying voice features differed over
the course of PD progression. PD progresses differently in
everyone so the time period of 5.3-5.8 months would have
been sufficient to see how in some PD worsens but in others
it does not greatly progress (3). HNR’s predictive power
decreased over time while DFA’s power slightly increased,
suggesting that different voice features may be less or more
informative in different stages of the disease. This finding
could help longitudinal clinical studies, allowing them to better
optimize when to use specific features in different stages.

However, our study also has its limitations. Random
forest may still overfit on smaller datasets and it may place
more importance on features that have many unique values.
Our study uses a relatively small data set of data being
5875 observations across 42 people who have early-stage
PD. This limited scope might regulate the applicability of
our recommended approach. Future studies using a large
data set and using longitudinal data over a longer duration
would provide more robust insights into how voice features
change time with individuals. Increased availability of public
voice data sets for patients with PD would allow the training
and validation of more robust models. Enriching the input
data set with other noninvasive data like a patient’s gait
could also improve the model. There is also opportunity
to use clinical data along with voice and gait to improve
progression prediction accuracy. From a feature standpoint,
we could incorporate more robust features, implement more
cross validation, and apply ensemble methods that combine
predictions from multiple models. There are opportunities to
perform advanced signal processing like cepstral analysis,
fundamental frequency, and format analysis to further improve
predictions in disease progression.

https://doi.org/10.59720/24-284

In conclusion, we found that our methods of analyzing
voice features (DFA, HNR and JA) were able to predict PD
progression with significantly higher accuracy (R? = 0.877)
compared to previous approaches or single feature models.
Our results demonstrates that voice features such as DFA
and HNR help to predict UPDRS scores, validating our
hypothesis. DFA, HNR, and UPDRS scores have weak but
significant correlations observed between them. We had
previously indicated that DFA is higher in patients with PD
when compared to patients without PD. This seemingly
contradictory finding can be explained in two ways: 1) while
DFA might be higher in PD patients compared to healthy
controls, it may decrease as the disease progresses (higher
UPDRS scores); and Il) the relationship between DFA and
PD might not be linear throughout the disease course. Our
research also reveals a non-linear relationship between voice
features and UPDRS scores evidenced by the random forest
model outperforming linear regression approach. As a follow
up to this research, we used voice features and random
forest model identified in this paper, applied Expectation
Maximalization clustering, Principal Component Analysis
and Support Vector Regression to predict motor UDPRS with
an achieve a MAE of 0.47. This surpasses the performance of
recent studies, further validating our findings (10). Overall, this
work contributes to the growing body of evidence supporting
the use of voice analysis in PD assessment.

MATERIALS AND METHODS

The PD dataset was downloaded from UCI (5). The data
set contains a total of 5,875 observations from 42 patients
with PD. Data was preprocessed by first checking for and
handling missing values. Features were then standardized
using sklearn’s StandardScaler to ensure all variables had
zero mean and unit variance, preventing features with larger
scales from dominating the analysis. Subject-level data was
also separated for time series analysis. Data was loaded
preprocessed using Python (v3.8) with pandas (v1.2.4).
Feature columns included age and 16 voice measures, with
a focus on five features: JA, HNR, RPDE, DFA, and PPE.
Additional voice measures were included in the model but
showed less significance: Jitter(%), Jitter:RAP, Jitter:PPQ5,
Jitter:DDP,  Shimmer, Shimmer(dB), = Shimmer:APQ3,
Shimmer:APQ5, Shimmer:APQ11, Shimmer:DDA, and NHR.
Features were standardized using sklearn’s StandardScaler
(v0.24.2).

Feature engineering was performed to create interaction
terms between age and voice features, as well as polynomial
features (up to degree 2) for DFA, HNR, and JA since PD
progression often exhibits nonlinear patterns (13). It was
integrated in our linear regression and random forest models
which would make linear regression a linear model with
non-linear features and random forest non-linear as it is a
non-linear model by design. These engineered features
were added to the original feature set. Feature selection was
conducted using three methods: recursive feature elimination
with cross-validation (RFECV), recursive feature elimination
(RFE), and feature importance from random forest. The
RFECV method determined that seven features (age, DFA,
HNR, JA), RPDE, PPE, and Shimmer) provided the best
predictive power. While we retained all features in our models
for comparison purposes, our analysis and discussion
focused primarily on these top predictors. This feature
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selection process assisted in our comparison between the
‘all features’” model and the ‘original features’ model (age,
DFA, HNR, JA), helping quantify the additional predictive
value of the expanded feature set (Table 2). RFE and RFECV
used linear regression as the estimator, while random forest
regressor used 100 trees. The top features selected by
each method were recorded and compared. RFE method
ranked features by recursively removing the least important
features based on their coefficients in the linear regression
model. We configured it to select the top three features, which
consistently identified age, DFA, and HNR as most important.
Recursive feature elimination with cross-validation (RFECV)
identified the optimal number of features by maximizing cross-
validated performance. We used 5-fold cross-validation with
negative mean squared error (neg_MSE) as the scoring
metric. This method determined that seven features (age,
DFA, HNR, JA, RPDE, PPE, and Shimmer) provided optimal
predictive power, with performance plateauing or declining
when additional features were included. Random Forest
Feature Importance quantified each feature’s contribution to
reducing prediction error, calculated as the mean decrease
in impurity (Gini importance) across all trees in the forest.
Features were ranked based on their normalized importance
scores from 0 to 1. We performed correlation analysis using
pandas and seaborn (v0.11.1). A correlation matrix was
generated to visualize relationships between three types of
relationships: features and motor UPDRS, among different
voice features, and between motor and total UPDRS. Random
Forest Regressor from sklearn was used to analyze feature
importance, with 100 decision trees in the forest.

Two regression models were built and compared: linear
regression and Random Forest Regressor, both from sklearn.
Data was split into training (80%) and testing (20%) sets.
The analysis was performed twice, once with all features
and once with only the original features (age, DFA, JA, and
HNR). Model performance was evaluated using R2, MAE, and
MSE. These metrics were calculated using sklearn’s metrics
module.

Totestthe hypothesis that DFA, HNR, and JA are significant
predictors beyond age, models were built using only these
features plus age, and their performance was compared to
models using all features. Specific tests were conducted to
assess the relationships between these features and UPDRS
scores. Variance explanation analysis was conducted by
comparing R? scores of models with age only and models
with all features.

A time series analysis was also done where for each
subject a linear trend was calculated (slope, intercept, R?) for
all features and UPDRS scores over time. These time series
were further divided into ten equally spaced normalized time
points (ranging from 0 to 1, where 0 represents the beginning
of data collection and 1 represents the end) for a predictive
power change analysis. At each time point, single-feature
linear regression models were built separately for each voice
feature to predict UPDRS scores, and the resulting R? values
were calculated. This showed how the R? of each feature
changes over time.

Multiple regression analysis was conducted to test
the combined effect of features on the target variables. All
statistical analyses were performed using scipy (v1.6.2) and
statsmodels (v0.12.2). A p-value < 0.05 was considered
statistically significant for all tests. Data visualizations,

https://doi.org/10.59720/24-284

including correlation heatmaps, feature importance plots, and
time series trends, were created using matplotlib (v3.3.4) and
seaborn (v0.11.1).
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