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Article

INTRODUCTION
	 Parkinson’s disease (PD) is a progressive 
neurodegenerative disease affecting millions of patients 
worldwide, where neurons that produce dopamine die 
or become impaired due to unknown causes (1). PD is 
characterized by motor symptoms such as tremor, rigidity, and 
slowed movement as well as non-motor symptoms including 
cognitive and speech difficulties (1). As PD progresses, 
symptoms worsen and impact quality of life (2). As PD is a 
progressive disease, it is important to diagnose it in a timely 
manner. However, it requires consultations with medical 
specialists, understanding of the patient’s medical history, 
clinical exams, and invasive tests (3). After the assessment 
and tests are done by a medical specialist, the procedure 
for PD is to assign scores using the Unified Parkinson’s 
Disease Rating Scale (UPDRS) to represent the severity 
and progression of PD (4). Total UPDRS values range from 
0 to 199, where 0 represents no disability or symptoms of 
PD and 199 indicates the most advanced stage of PD with 
significant impairment (4). The UPDRS consists of four main 
parts: I) thinking, behavior, and mood; II) activities of daily 
living; III) motor examination; and IV) complications of therapy 
(4). Speech is assessed in both Part II as part of daily living 
activities and Part III as part of the motor examination (4). 
The motor UPDRS score (Part III), which measures motor 
symptoms including speech, facial expression, tremor, rigidity, 
slowness of movement, gait, and balance problems, ranges 
from 0 (no motor symptoms) to 108 (severe motor symptoms) 
(4).
	 Given that an accurate diagnosis of PD requires the 
patient to have physical and financial access to medical 
specialists and clinical tests, there has been growing interest 
in alternative methods of predicting PD progression, with voice 
analysis showing one possible approach (5). PD is diagnosed 
by doctors based on medical history, a consideration of 
symptoms and a physical and neurological exam, which 
may not be accessible to all (1). Speech impairment such 
as changes in voice quality, articulation, and the stress and 
intonation in language have been observed in PD patients 
as some of the first symptoms to develop (6). For patients 
with PD, a complex dysfunctional interaction of respiratory, 
laryngeal, and articulatory functions results in these changes 
(7). Thus, research has begun to focus on tracking the voice 
attributes objectively, remotely, and in a non-invasive manner 
to monitor PD progression (8).  
	 Different voice features have been evaluated for their 
relationship with PD progression. One such voice feature 
is Detrended Fluctuation Analysis (DFA), a measure of self-
similarity of voice over time, which can uncover changes in 
speech timing and reveal patterns in speech rhythm. A study 
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used DFA to classify PD in patients and found that the DFA 
values were generally higher for PD patients than for controls 
due to impaired muscle control (9). Another voice feature is 
Harmonics to Noise Ratio (HNR) is a ratio which represents 
the voice quality in audio data, with higher values indicating 
clearer voices and lower values indicating breathiness or 
hoarseness. A study characterizing voice quality in early 
PD using HNR reveals that higher noise from breathiness is 
due to incomplete vocal fold closure (10). This can be used 
to track PD through telemonitoring and for classification of 
PD (11,12). Jitter Absolute (JA) measures frequency instability 
in voice data and can be used to differentiate healthy voices 
from dysphonic voices due to vocal tremor and reduced 
muscle control, classifying PD and remote monitoring (10-12). 
Additionally, Recurrence Period Density Entropy (RPDE) is 
used to detect the presence of aperiodic, irregular patterns in 
the voice (11). 
	 These three voice features have been evaluated and 
shown potential for predicting PD progression individually. 
We sought to determine if these three voice features 
could be used in combination to predict PD progression. 
Further, the relationship between these voice features and 
clinical measures for PD progression like UPDRS is poorly 
understood. Models used in prior research studies have been 
mostly linear in nature; however, the nature of PD raises the 
question if the relationship may be non-linear (13). 
	 In this study, we evaluated the potential of HNA, DFA and 
JA, to predict PD progression. We hypothesized that the voice 
features HNR, DFA, and JA are the most significant voice-
related features to detect PD progression represented by a 
UPDRS, and the relationship between these features and 
UPDRS scores will be nonlinear given the complexity of PD. 
To evaluate this hypothesis, we utilized the publicly available 
PD Telemonitoring dataset from the University of California 
Irvine (UCI) Machine Learning Repository (5). We employed 
a mix of linear and non-linear modelling approaches and 
to evaluate the performance of our models, we used the 
coefficient of determination (R²), Mean Absolute Error (MAE), 
and Mean Squared Error (MSE). We also conducted time 
series analysis to evaluate how the predictive power of these 
features changes over the course of PD progression. 
	 We found that voice features DFA, HNR, and JA can all 
help track PD progression, with DFA being a feature that has 
the strongest correlation with total and motor UPDRS scores 
with the exception of age. This research may limit the number 
of invasive and expensive tests like dopamine transporter 
scan and magnetic resonance imaging patients with PD face 
when monitoring progression. This research contributes to 
the growing collection of research on using voice features for 
PD progression which could result in better patient outcomes. 

RESULTS 
	 We used advanced machine learning to predict progression 
in PD from speech data. We started with a dataset from UCI 
and data was split into training (80%) and testing (20%) sets 
using a random seed of 42 for reproducibility. After that, we 
performed feature engineering. Feature engineering was 
performed to create interaction terms between age and 
voice features, as well as polynomial features (up to degree 
2) for DFA, HNR, and JA. These engineered features were 
added to the original feature set to capture potential non-
linear relationships between features and UPDRS scores. 

Subsequently, feature selection was conducted using RFE, 
RFECV, and random forest importance to identify the most 
predictive features. We then performed feature selection 
for features using recursive feature elimination with cross-
validation (RFECV) to select the most important features in 
the UCI dataset. We then trained the model to predict motor 
UPDRS values. Finally, using the trained model, we assessed 
which features were most important for predicting motor 
UPDRS scores and the overall accuracy of the model and 
calculated the accuracy in measuring motor UPDRS scores.

Correlation analysis
	 DFA had a weak negative correlation with motor UPDRS 
(r = -0.116, p < 0.001) and total UPDRS (r = -0.113, p < 0.001). 
HNR also had a weak negative correlation with motor UPDRS 
(r = -0.157, p < 0.001) and total UPDRS (r = -0.162, p < 0.001). 
JA had a weak positive correlation with both motor UPDRS 
(r = 0.051, p < 0.001) and total UPDRS (r = 0.067, p < 0.001). 
Contrary to our hypothesis, PPE (Pitch Period Entropy), which 
measures variability or unpredictability in the pitch period 
of speech, had a positive correlation (r = 0.162, p < 0.001 
with motor UPDRS) that was stronger than anticipated. Its 
correlation strength was similar to that of HNR (r = -0.157) but in 
the opposite direction. Based on our background knowledge, 
we had expected PPE to show a weaker correlation than the 
three primary voice features (DFA, HNR, and JA) we had 
identified in our hypothesis. Previous studies had emphasized 
the diagnostic and monitoring potential of DFA, HNR, and JA, 
with less attention given to PPE as a primary biomarker for 
PD progression (9-12). This could indicate that larger PPE 
could be correlated to greater UPDRS scores. RPDE also 
had a positive correlation motor UPDRS (r = 0.129, p < 0.001) 
and total UPDRS (r = 0.157, p < 0.001). This shows RPDE’s 
association with the progression of PD regarding correlation 
analysis. 
     
Importance of features in predicting motor UPDRS
	 By analyzing feature importance using random forest, age 
was found as the best predictor for motor UPDRS importance 
(0.674). DFA was the next most important (0.101) feature 
followed by JA (0.054) and HNR (0.023), which were less 
important than expected. Recurrence Period Density Entropy 
(RPDE) had the same as HNR (0.023) (Figure 1). 

Linear regression models
	 We created multiple linear regression models using all the 
voice features with age as predictors. The R2 value for motor 
UPDRS was 0.112 and 0.138 for total UPDRS in this model. 
We compared the performance of models using all features 
versus models using only selected features from our RFE 
and RFECV analyses. The model with all features achieved 
slightly higher R2 values than models with reduced feature 
sets, despite potential multicollinearity concerns. These low 
R² values indicate linear regression models don’t accurately 
represent the variance in UPDRS scores. All predictors 
were standardized during preprocessing using sklearn’s 
StandardScaler, which transformed each feature to have 
zero mean and unit variance before fitting the regression 
models. Age had the greatest positive coefficient at 1.768 for 
motor UPDRS, making it the most important predictor. PPE 
and RPDE also had positive coefficients, which relates to 
their prior positive correlations. DFA, HNR, and JA all had 
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negative coefficients. However, PPE had unexpectedly large 
coefficients (motor UPDRS: 1.666; total UPDRS: 1.632), 
showing its potential importance (Table 1). 

Non-linear models/random forest 
	 Random forest models significantly outperformed linear 
regression models, achieving an R2 of 0.892 for motor 
UPDRS and R2 of 0.902 for total UPDRS compared to 0.112 
and 0.138 respectively for linear regression. Random forest 
had an R2 of 0.892 for motor UPDRS and R2 of 0.902 for total 
UPDRS (Table 1). Using random forest, an MAE of 1.879 for 
motor UPDRS and 2.343 for total UPDRS was reported. The 
better performance of random forest models suggests that 
the relationship between voice features and PD progression 
is non-linear and more complex than can be captured by 
simple linear models. 

MAE and MSE
	 Random forest had an R2 of 0.892 for motor UPDRS and 
R2 of 0.902 for total UPDRS (Table 1). Using random forest, 
we achieved an MAE of 1.879 for motor UPDRS and 2.343 for 
total UPDRS. These error metrics further support the superior 
performance of random forest compared to linear regression, 
which had significantly higher error values (MAE of 6.493 and 
8.275 for motor and total UPDRS, respectively). Lower MAE 
values indicate that the random forest predictions were closer 
to the actual UPDRS scores.

Time series analysis
	 The UCI dataset collected voice data for the patients over 
a period of 5.3 to 5.8 months. The frequency of collection 
was approximately weekly, with additional measurements 
in between for many patients. Analyzing the predictive 
powers in various voice features over time displayed differing 

patterns (Figure 2). The dataset was divided into ten equally 
spaced time intervals spanning the 5.3-5.8 month study 
period. At each time interval, we built separate single-feature 
linear regression models for each voice feature (age, DFA, 
HNR, JA, RPDE, and PPE), with each model using only one 
feature to predict either motor or total UPDRS scores. For 
each model at each time point, we calculated the R² value 
to see how well that single feature predicted UPDRS scores 
at that particular stage of the disease progression. We then 
plotted these R² values across the 10 time points to visualize 
how each feature’s predictive power changed throughout the 
observation period (Figure 2).
	 Our analysis showed that age had the greatest predictive 
power, and its R2 increased slightly 1.34 times from 0.064 to 
0.086. DFA shows the most substantial increase with its R2 
increasing 32.5 times from 0.0004 to 0.0130. HNR initially had 
a large predictive power when starting with R2 being 0.071 at 
time 0 and decreased immediately after the initial assessment 
2.84 times from 0.071 to 0.025. JA had low predictive power 
that further decreased 2.75 times from 0.011 to 0.0040. PPE 
also had a predictive power that decreased 2.92 times from 
0.070 to 0.025. RPDE had a predictive power that decreased 
1.75 times from 0.035 to 0.02. Changes in predictive power 
over time can show the importance of different features during 
different stages of PD or signify useful features for short- term 
or longitudinal studies. Further, no specific timepoints stood 
out which showed an inflexion on disease progression. This 
also highlights the need to do more longitudinal and adaptive 
modelling research. 

Variance
	 To demonstrate the effectiveness of three voice features in 
the random forest model, we compared model performance 
across different sets of voice features: all features, a subset 

Figure 1: Voice features importance in predicting motor and total UPDRS scores. Importance of various voice features in a Random 
Forest model in predicting UPDRS scores, a key indicator of PD progression. Features included in the model include age, Detrended 
Fluctuation Analysis (DFA), Jitter Absolute (JA), Harmonics to Noise Ratio (HNR), Recurrence Period Density Entropy (RPDE), and PPE 
(Pitch Period Entropy). Actual values are reported above each bar. Importance is evaluated using random forest regressor with 100 trees.  
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comprising of age and three selected voice features (which 
we termed “original features”), and age alone. We compare 
the predictive power for different features between motor and 
total UPDRS scores R2 values (Table 2). Using all features 
explained the highest variance (R2 = 0.892 for motor, 0.902 
for total). Age alone had a lower predictive power (R² = 0.631 
for motor, 0.703 for total). The features DFA, HNR, JA helped 
improve predictions greater than age alone but are slightly 
less powerful than using all features (R2 = 0.857 for motor, 
0.877 for total). 
	 In summary, our analysis of the voice features as 
predictors of PD progressions resulted in key observations: 
DFA, HNR, JA, RPDE and PPE showed promise as important 
voice features in predicting PD progression. The features 
had weak but statistically significant correlation with UPDRS 
scores. Specifically, DFA demonstrated weak negative 
correlations with both motor UPDRS and total UPDRS. HNR 
similarly showed weak negative correlations with motor 
UPDRS and total UPDRS. In contrast, JA exhibited weak 
positive correlations with both measures. RPDE and PPE 
also showed weak positive correlations with both motor 
and total UPDRS. Importantly the combination of the three 
voice features, provided significant additional predictive 
power to PD progression beyond age. Finally, the superior 
performance of non-linear models particularly random forest 
suggests complex, non-linear relationships, between voice 
features and PD progression. 

DISCUSSION
	 Overall, our results partially support the hypothesis that 
voice features can help predict PD  progression, measured 
by UPDRS scores. We found that voice characteristics are 
complex and non- linear in disease progression, with certain 
features, such as age, being identified as more important 
during feature selection. 
	 Among the voice features, DFA shows the second strongest 
correlation with both motor and total UPDRS scores, following 
age. This finding is in line with our hypothesis. The negative 
correlation between DFA and UPDRS scores indicates that 
as the disease progresses, the self-similarity of the voice 
decreases, reflecting increased voice instability. Contrary 
to our hypothesis, HNR and JA showed weaker correlation 
than we expected due to the weakness of the correlation 
and small direction. This suggests that their predictive 

Figure 2: Predictive power of age, DFA, JA, HNR, RPDE, PPE over time. R² values from Random Forest for age (dark blue line), DFA 
(orange line), JA (dark green line), HNR (light blue line), RPDE (purple line), and PPE (light green line) measured at time increments of 0.1111.

Table 1: Linear regression and random forest models 
predictions for motor and total UPDRS scores. Mean Absolute 
Error (MAE), Mean Squared Error (MSE), and R-squared (R²).

Table 2: Comparison of R² values and variance explained by 
different feature sets for motor and total UPDRS predictions. R² 
values for models Linear Regression and Random Forest using all 
features including age, age only, and original features DFA, JA, and 
HNR. It also presents the difference in R² values between models 
(labeled as 'variance'): 'All vs age' shows the additional variance 
explained when using all features compared to using age alone, 
while 'age only vs original features' shows the improvement gained 
by adding the three original voice features (DFA, HNR, JA) to the 
age-only model. Results are shown separately for motor UPDRS and 
total UPDRS to allow for comparison between these two. 
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capabilities might be more limited than the currently available 
research indicates. However, other voice features not initially 
included in our hypothesis, such as PPE and RPDE, show 
unexpected importance in our models. This suggests there 
are a bigger set of voice features are relevant for predicting 
PD progression. Thus, expanding the voice feature set from 
the three to five, including PPE and RPDE may be important 
in further research. 
	 The stark contrast in performance between linear and 
nonlinear models shows the dynamics between voice features 
and UPDRS scores. Linear regression models only explained 
about 9 – 12% of variance in UPDRS scores, but non-linear 
random forest models explained about 86 – 88% of variance. 
This supports that the relationships between voice features 
and PD predictions are non-linear. The superior performance 
of random forest models suggests that the relationship 
between voice features and PD progression is likely non-
linear. While random forest’s better performance could 
potentially be attributed to other factors such as its ensemble 
nature, robustness to outliers, or handling of multicollinearity, 
the substantial performance gap supports our hypothesis that 
voice biomarkers relate to UPDRS scores in complex, non-
linear ways. This aligns with the known complexity of PD as 
a progressive neurodegenerative disorder affecting multiple 
neural systems. This reflects prior research which shows the 
PD is a complex disease, impacting multiple neural systems 
with varying degrees of progression (14). This also reiterates 
the importance of using advanced non-linear modelling 
techniques to analyze voice data for PD progression. 
	 Additionally, the time series analysis showed how the 
predictive power of varying voice features differed over 
the course of PD progression. PD progresses differently in 
everyone so the time period of 5.3-5.8 months would have 
been sufficient to see how in some PD worsens but in others 
it does not greatly progress (3). HNR’s predictive power 
decreased over time while DFA’s power slightly increased, 
suggesting that different voice features may be less or more 
informative in different stages of the disease. This finding 
could help longitudinal clinical studies, allowing them to better 
optimize when to use specific features in different stages. 
	 However, our study also has its limitations. Random 
forest may still overfit on smaller datasets and it may place 
more importance on features that have many unique values. 
Our study uses a relatively small data set of data being 
5875 observations across 42 people who have early-stage 
PD. This limited scope might regulate the applicability of 
our recommended approach. Future studies using a large 
data set and using longitudinal data over a longer duration 
would provide more robust insights into how voice features 
change time with individuals. Increased availability of public 
voice data sets for patients with PD would allow the training 
and validation of more robust models. Enriching the input 
data set with other noninvasive data like a patient’s gait 
could also improve the model. There is also opportunity 
to use clinical data along with voice and gait to improve 
progression prediction accuracy. From a feature standpoint, 
we could incorporate more robust features, implement more 
cross validation, and apply ensemble methods that combine 
predictions from multiple models. There are opportunities to 
perform advanced signal processing like cepstral analysis, 
fundamental frequency, and format analysis to further improve 
predictions in disease progression. 

	 In conclusion, we found that our methods of analyzing 
voice features (DFA, HNR and JA) were able to predict PD 
progression with significantly higher accuracy (R2 = 0.877) 
compared to previous approaches or single feature models. 
Our results demonstrates that voice features such as DFA 
and HNR help to predict UPDRS scores, validating our 
hypothesis. DFA, HNR, and UPDRS scores have weak but 
significant correlations observed between them. We had 
previously indicated that DFA is higher in patients with PD 
when compared to patients without PD. This seemingly 
contradictory finding can be explained in two ways: I) while 
DFA might be higher in PD patients compared to healthy 
controls, it may decrease as the disease progresses (higher 
UPDRS scores); and II) the relationship between DFA and 
PD might not be linear throughout the disease course. Our 
research also reveals a non-linear relationship between voice 
features and UPDRS scores evidenced by the random forest 
model outperforming linear regression approach. As a follow 
up to this research, we used voice features and random 
forest model identified in this paper, applied Expectation 
Maximalization clustering, Principal Component Analysis 
and Support Vector Regression to predict motor UDPRS with 
an achieve a MAE of 0.47. This surpasses the performance of 
recent studies, further validating our findings (10). Overall, this 
work contributes to the growing body of evidence supporting 
the use of voice analysis in PD assessment. 

MATERIALS AND METHODS
	 The PD dataset was downloaded from UCI (5). The data 
set contains a total of 5,875 observations from 42 patients 
with PD. Data was preprocessed by first checking for and 
handling missing values. Features were then standardized 
using sklearn’s StandardScaler to ensure all variables had 
zero mean and unit variance, preventing features with larger 
scales from dominating the analysis. Subject-level data was 
also separated for time series analysis. Data was loaded 
preprocessed using Python (v3.8) with pandas (v1.2.4). 
Feature columns included age and 16 voice measures, with 
a focus on five features: JA, HNR, RPDE, DFA, and PPE. 
Additional voice measures were included in the model but 
showed less significance: Jitter(%), Jitter:RAP, Jitter:PPQ5, 
Jitter:DDP, Shimmer, Shimmer(dB), Shimmer:APQ3, 
Shimmer:APQ5, Shimmer:APQ11, Shimmer:DDA, and NHR. 
Features were standardized using sklearn’s StandardScaler 
(v0.24.2).
	 Feature engineering was performed to create interaction 
terms between age and voice features, as well as polynomial 
features (up to degree 2) for DFA, HNR, and JA since PD 
progression often exhibits nonlinear patterns (13). It was 
integrated in our linear regression and random forest models 
which would make linear regression a linear model with 
non-linear features and random forest non-linear as it is a 
non-linear model by design.  These engineered features 
were added to the original feature set. Feature selection was 
conducted using three methods: recursive feature elimination 
with cross-validation (RFECV), recursive feature elimination 
(RFE), and feature importance from random forest. The 
RFECV method determined that seven features (age, DFA, 
HNR, JA), RPDE, PPE, and Shimmer) provided the best 
predictive power. While we retained all features in our models 
for comparison purposes, our analysis and discussion 
focused primarily on these top predictors. This feature 
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selection process assisted in our comparison between the 
‘all features’ model and the ‘original features’ model (age, 
DFA, HNR, JA), helping quantify the additional predictive 
value of the expanded feature set (Table 2). RFE and RFECV 
used linear regression as the estimator, while random forest 
regressor used 100 trees. The top features selected by 
each method were recorded and compared. RFE method 
ranked features by recursively removing the least important 
features based on their coefficients in the linear regression 
model. We configured it to select the top three features, which 
consistently identified age, DFA, and HNR as most important. 
Recursive feature elimination with cross-validation (RFECV) 
identified the optimal number of features by maximizing cross-
validated performance. We used 5-fold cross-validation with 
negative mean squared error (neg_MSE) as the scoring 
metric. This method determined that seven features (age, 
DFA, HNR, JA, RPDE, PPE, and Shimmer) provided optimal 
predictive power, with performance plateauing or declining 
when additional features were included. Random Forest 
Feature Importance quantified each feature’s contribution to 
reducing prediction error, calculated as the mean decrease 
in impurity (Gini importance) across all trees in the forest. 
Features were ranked based on their normalized importance 
scores from 0 to 1. We performed correlation analysis using 
pandas and seaborn (v0.11.1). A correlation matrix was 
generated to visualize relationships between three types of 
relationships: features and motor UPDRS, among different 
voice features, and between motor and total UPDRS. Random 
Forest Regressor from sklearn was used to analyze feature 
importance, with 100 decision trees in the forest.
	 Two regression models were built and compared: linear 
regression and Random Forest Regressor, both from sklearn. 
Data was split into training (80%) and testing (20%) sets. 
The analysis was performed twice, once with all features 
and once with only the original features (age, DFA, JA, and 
HNR). Model performance was evaluated using R2, MAE, and 
MSE. These metrics were calculated using sklearn’s metrics 
module. 
	 To test the hypothesis that DFA, HNR, and JA are significant 
predictors beyond age, models were built using only these 
features plus age, and their performance was compared to 
models using all features. Specific tests were conducted to 
assess the relationships between these features and UPDRS 
scores. Variance explanation analysis was conducted by 
comparing R2 scores of models with age only and models 
with all features.
	 A time series analysis was also done where for each 
subject a linear trend was calculated (slope, intercept, R2) for 
all features and UPDRS scores over time. These time series 
were further divided into ten equally spaced normalized time 
points (ranging from 0 to 1, where 0 represents the beginning 
of data collection and 1 represents the end) for a predictive 
power change analysis. At each time point, single-feature 
linear regression models were built separately for each voice 
feature to predict UPDRS scores, and the resulting R2 values 
were calculated. This showed how the R2 of each feature 
changes over time. 
	 Multiple regression analysis was conducted to test 
the combined effect of features on the target variables. All 
statistical analyses were performed using scipy (v1.6.2) and 
statsmodels (v0.12.2). A p-value < 0.05 was considered 
statistically significant for all tests. Data visualizations, 

including correlation heatmaps, feature importance plots, and 
time series trends, were created using matplotlib (v3.3.4) and 
seaborn (v0.11.1).
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