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pediatric asthma symptoms, interactions between specific 
pollutants, microclimatic and meteorological conditions, and 
greenness in outdoor school environments remain poorly 
understood (2, 3).
 While the factors contributing to pediatric asthma incidence, 
severity, and prevalence are numerous, studies relating to 
the correlation between pediatric asthma and environmental 
exposures in urban environments have primarily focused on 
aggregated factors contributing to asthma burden, notably 
traffic-related air pollution (TRAP), indoor allergens and 
microbes, and social determinants of health (SDOH) (4). 
Although a substantial body of research has statistically 
linked atmospheric pollutant parameters, such as particulate 
matter (PM) and nitrogen oxides (NOx), to a higher asthma 
incidence, few studies have examined the effects of individual 
atmospheric pollutants, such as specific sizes of PM, in the 
context of their interactions with meteorological parameters—
such as temperature, humidity, and wind speed—on pediatric 
asthma vulnerability (PAV) in the context of urban school 
environments at the census tract level (5). PAV refers to 
the increased risk of asthma-related health issues, such as 
ED visits and chronic respiratory conditions, in children due 
to environmental factors like air pollution (5). This makes 
it difficult to disentangle which specific microclimatic and 
meteorological parameters contribute to a rise in pediatric 
asthma morbidity and in what ways. Only a small number of 
studies have specifically investigated the correlation between 
pediatric asthma attacks and microclimatic conditions but 
have not conclusively determined whether these factors 
directly contribute to asthma exacerbations or if their impact 
is mediated through interactions with other environmental 
exposures, such as vegetation (6, 7).
 PM is a complex mixture of microscopic airborne pollutants 
suspended in the atmosphere, typically classified by their 
aerodynamic diameter, with fine PM (>PM0.3) referring to PM 
between 0.3 and 2.5 micrometers in diameter and coarse PM 
(>PM2.5) referring to PM between 2.5 and 10.0 micrometers 
in diameter (8). Carbon dioxide (CO2) is a colorless, odorless 
gas that contributes to the greenhouse effect and is produced 
through respiration, volcanic activity, or the burning of 
organic matter (9). Carbon monoxide (CO) is a gas formed 
when fossil fuels or biomass are combusted incompletely 
(10). A meteorological parameter is a measurement used to 
characterize the state of the weather at a specific location and 
time, including temperature (air warmth), humidity (moisture 
content), and wind speed (airflow velocity) (11).
 Normalized Difference Vegetation Index (NDVI) is a 
remote sensing measure that quantifies vegetation density 
by comparing the difference between near-infrared and 
visible light reflected from the Earth’s surface, with higher 
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SUMMARY
Pediatric asthma remains a significant health 
vulnerability for Dallas students due to atmospheric 
pollutants. While vegetation is known to lower 
pollution levels, the relationship between specific 
microclimatic (local atmospheric) and meteorological 
parameters and pediatric asthma rates in urban 
schools—and how vegetation modulates this 
relationship—is poorly understood. This study 
addressed this gap by examining the extent to 
which these parameters increase pediatric asthma 
vulnerability (PAV) in Dallas schools at the census tract 
level. We hypothesized that schools in census tracts 
with a lower normalized difference vegetation index 
(NDVI) would have a higher PAV compared to schools 
in more vegetated tracts due to increased exposure 
to microclimatic parameters, including particulate 
matter (PM), carbon monoxide (CO), and carbon 
dioxide (CO2). Using a novel, cost-effective mobile 
rover with Arduino-based sensors, we measured 
these parameters at 3 sublocations in 10 Dallas 
schools on July 13th and 20th, 2024. In experimental 
schools with low NDVI, fine PM concentrations were 
27% higher, coarse concentrations were 55% higher, 
CO was 2% higher, and CO2 was 19% higher. By 
analyzing emergency department (ED) visits, chronic 
obstructive pulmonary disease (COPD) prevalence, 
and average inhaler prescription data to assess PAV, 
we found experimental schools had 78% more ED 
visits, 48% higher COPD prevalence, and 124% fewer 
inhaler prescriptions compared to control schools, 
suggesting that elevated PM and CO2 concentrations 
are associated with increased PAV in census tracts 
of experimental schools, particularly in downtown 
and southeast Dallas. These findings are important 
for informing Dallas school policies governing 
atmospheric safety and healthcare equity.

INTRODUCTION
 Despite remaining amongst the most prevalent and 
serious long-term diseases affecting children across the 
United States (US), pediatric asthma and its relationship 
with environmental exposures remains poorly understood. 
In 2020, asthma exacerbations affected approximately 25.2 
million Americans, 4.2 million of whom were children, and 
accounted for over 986,000 emergency department (ED) 
visits across the US (1). Although environmental factors, 
particularly atmospheric pollution, are known to exacerbate 

Joon Lee1, Tae Lee1

1 Frisco High School, Frisco, Texas



31 MARCH 2025  |  VOL 8  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/24-269

NDVI values indicating greater vegetation cover. NDVI values 
sensitively reflect different forms of vegetation in proportion 
to their effects on meteorological parameters, such as canopy 
and shrub coverage, which more significantly influence 
local temperature regulation, air quality, and humidity 
than grass coverage (12). This sensitivity enables NDVI to 
capture meaningful variations in green space percentage, 
where specific increments indicate substantial increases in 
vegetation coverage, making it particularly relevant in urban 
environments with sparse vegetation (12). The NDVI value 
of 0.2 was used as a cutoff for inclusion in the experimental 
group in this study because it distinguishes areas with low 
vegetation, which are more susceptible to environmental 
stressors, from regions with moderate to high vegetation 
density to provide a clear threshold for assessing vegetation’s 
impact on microclimatic parameters (12, 13). Unlike alternative 
indices, such as Enhanced Vegetation Index—which can be 
influenced by soil background and atmospheric conditions—
NDVI’s normalization process minimizes environmental noise 
from variable lighting, soil background, and topography, 
allowing for a more accurate, standardized method for 
assessing vegetation cover in a way that aids replication 
across regions and time periods (13). 
 The goal of this study is to clarify in what ways atmospheric 
parameters correlate with pediatric asthma prevalence in 
select Dallas Independent School District (DISD) schools at 
the census tract level. We hypothesized that DISD schools 
located in census tracts with lower NDVI values would have 
a significantly higher pediatric PAV as defined by a high 
rate of ED visits and chronic obstructive pulmonary disease 
(COPD) coupled with low inhaler prescription rates. This is 
because vegetation filters PM by absorbing it through leaves 
or trapping it in stomata, which can help reduce asthma risk. 
Without sufficient vegetation, pollutants like fine PM and 
coarse PM are more likely to remain suspended in the air, 
especially under unfavorable conditions such as higher wind 
speeds (14). Secondly, we hypothesized that this effect would 
be modulated by unfavorable meteorological parameters. Our 
study specifically explores this relationship by using a cost-
effective, mobile rover engineered with Arduino-based aerial 
sensors to measure seven microclimatic parameters across 
three categories: PM (fine and coarse), carbon oxide (CO2 
and CO), and meteorological (temperature, humidity, and wind 
speed). We chose to measure these parameters because 
they are atmospheric indicators that could reveal how varying 
levels of urban greenness might influence the relationship 
between specific pollutants and meteorological conditions 
on PAV or were parameters that demonstrate measurable 
fluctuations within short time frames (e.g. hourly or daily) that 
could affect pediatric asthma symptoms (15, 16). We found 
that elevated levels of PM and CO2 were strongly associated 
with increased PAV in census tracts of experimental schools 
with low NDVI values relative to those of control schools, 
particularly in downtown and south Dallas. These findings are 
important for informing DISD policies governing atmospheric 
safety and healthcare equity in schools located in areas with 
low vegetation cover to reduce PAV.
 This study is the only effort to assess the impact of 
microclimatic parameters on PAV in Dallas and to mobilize 
cost-effective, aerial, and real-time sensors in school 
environments to our knowledge. The rover’s portability and 
affordability make it a viable air quality monitoring (AQM) 

tool for DISD schools by informing policy decisions tailored 
to each school’s unique microclimatic conditions rather 
than a traditional reliance on climatic data averaged across 
a ZIP code. This rover overcomes the primary limitation of 
stationary sensors by actively mobilizing them to assess 
pollutant variability in a given location, rather than relying 
on fixed positions that must wait for pollutants to reach the 
sensor, thus increasing data accuracy and coverage. This 
study supports DISD schools’ efforts to adopt an integrated 
AQM approach since it finds that schools with low NDVI and 
high PAV had poorer air quality based on PM and CO2.

RESULTS
 The goal of this study is to assess how microclimatic 
parameters, including PM and carbon oxide, and 
meteorological factors, correlate with PAV in DISD schools. 
We hypothesized that schools in census tracts with lower NDVI 
values would have significantly higher PAV. We gathered data 
on the selected microclimatic (fine PM, coarse PM, CO2, and 
CO) and meteorological (air temperature, humidity, and wind 
speed) parameters at 10 selected DISD schools, divided into 
5 experimental and 5 control locations to test our hypothesis 
(Table 1). Schools in census tracts with NDVI values less than 
0.2 were classified as experimental locations, while schools 
in census tracts with NDVI values between 0.2 and 0.6 were 
classified as control locations. To control for environmental 
confounders such as time of day, seasonal variations, and local 
weather conditions, we collected 180 measurements from 3 
designated sublocations—selected based on the largest 
parking lot (≥1,000 m²), the publicly accessible green area 
(≥5,000 m²), and the widest adjacent road by length—each 
with 3 replicates on July 13th and 20th, 2024. We measured 
our microclimatic and meteorological parameters with mobile 
Arduino-based sensors that transmitted atmospheric data 
to a laptop (Figure 1). For each location, we averaged the 
microclimatic parameters by aggregating data collected 
during the 3-minute trial period, with sensors recording every 
10 seconds, yielding 18 data points per parameter per trial. 
We then used these data points for statistical analyses by 
performing an unpaired two-sample t-test for each parameter 
to ascertain statistical significance.

Table 1: We took measurements at 10 locations. DISD schools 
in census tracts with NDVI values less than 0.2 were categorized 
into the experimental group (E1, E2, E3, E4, E5), while DISD 
schools in census tracts with NDVI values between 0.2 and 0.6 were 
categorized into the experimental group (C1, C2, C3, C4, C5).
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 Experimental schools had significantly higher average 
PM concentrations than control schools for both fine PM 
(p < 0.0001) and coarse PM (p = 0.0001), with a more 
pronounced increase for coarse particles compared to fine 
particles. On average, fine PM concentrations on July 13th 
and 20th, 2024, for the experimental group were 1447.80 ± 
15.700 particles/m³, while control group measurements were 
significantly lower at 1143.10 ± 22.100 particles/m³ (Figure 
2). These results indicate that fine PM concentrations in 
experimental locations were approximately 27% higher than 
fine PM concentrations in control locations on July 13th and 
20th, 2024 (p < 0.0001). To a greater degree, the average 
coarse PM concentration on July 13th and 20th, 2024, for the 
experimental group was 10.48 ± 0.600 particles/m3, while 

control group measurements were significantly lower at 6.74 ± 
0.160 particles/m3. This suggests that experimental locations 
had coarse PM concentrations approximately 55% higher 
than coarse PM concentrations in control locations.
 Experimental schools recorded higher CO concentrations 
than control schools, though this difference was not statistically 
significant (p = 0.44). On average, CO concentrations on 
July 13th and 20th, 2024, were 1.94 ± 0.070 parts per million 
(ppm), while control group measurements were 1.91 ± 0.040 
ppm (Figure 3). These results indicate that carbon monoxide 
levels in experimental locations were approximately 2% 
higher than carbon monoxide levels in control locations (p 
= 0.44). CO2 concentrations were significantly higher in 
experimental locations than in control locations (p < 0.0001). 
On average, CO2 concentrations on July 13th and 20th, 2024, 
for the experimental group were 384.67 ± 3.630 ppm, while 
control group measurements were lower at 322.07 ± 2.140 
ppm, indicating that experimental locations showed 19% 
higher CO2 concentrations compared to control locations (p < 
0.0001) (Figure 3).
 Temperatures were significantly elevated in experimental 
locations compared to control locations (p < 0.0001). On 
average, microclimatic temperature on July 13th and 20th, 
2024, for the experimental group was 39.05 ± 0.250°C, 
while control group measurements were moderately lower 
at 34.50 ± 0.160°C (Figure 4). These results indicate that 
temperatures in experimental locations were approximately 
13% higher than in control locations. Similarly, humidity levels 
were significantly higher in experimental locations compared 
to control locations (p < 0.0001). On average, humidity on July 
13th and 20th, 2024, for the experimental group was 48.03 
± 0.260%, while control group measurements were lower 

Figure 1: Rover construction with atmospheric sensors. We constructed a remote-controlled rover equipped with sensors for each 
selected atmospheric parameter using C++ in the Arduino IDE. (A) A PMS7003 sensor used to collect PM data, measured in particles per 
cubic meter (particles/m³). (B) An MQ-7 sensor used to collect CO data, measured in parts per million (ppm). (C) An MQ-811 sensor used to 
collect CO2 data in ppm. (D) A BME280 temperature, humidity, and barometer sensor used to record temperature in Celsius (°C) and humidity 
as a percentage. (E) A modified VCNL4010 sensor connected to a handheld pinwheel used to collect wind speed data in kilometers per hour 
(kph) based on the number of spins counted while testing. (F) CAD 3D-printed wheels used for the rover. (G) The rover is equipped with 
atmospheric sensors and modified parts outdoors. (H) The deployment of the rover in a grassy schoolyard.

Figure 2: Experimental schools record significantly higher fine 
and coarse PM concentrations than control schools. Average 
(A) fine and (B) coarse measurements recorded from experimental 
school and control school (n=540/group). Error bars represent 
standard deviation. ***p < 0.001, derived from unpaired two-sample 
t-test for the average number of particles classified as fine PM and 
coarse PM in the experimental group compared to the control group.
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at 38.58 ± 0.310% (Figure 4). These results indicate that 
humidity levels in experimental locations were approximately 
20% higher than in control locations. Wind speeds were 
significantly higher in experimental locations compared to 
control locations (p < 0.0001). On average, wind speed on 
July 13th and 20th, 2024, for the experimental group was 
13.07 ± 0.160 kilometers per hour (kph), while control group 
measurements were significantly lower at 11.42 ± 0.130 
kph (Figure 4). These results indicate that wind speeds in 
experimental locations were approximately 14% higher than 
in control locations (p < 0.0001).
 To acquire data on PAV, we used a publicly available 
asthma dataset by the Parkland Center for Clinical Innovation, 
compiled from its open data portal. This dataset provided 
information on the average number of ED visits caused by 
pediatric asthma per 90 days, the proportion of the population 
with COPD, and the average number of patients who were 
prescribed a pediatric asthma inhaler per year in each census 
tract in Dallas County (Figure 5) (17). Experimental schools 
had a significantly higher average number of ED visits (p < 
0.0001), a significantly higher percentage of population with 
COPD (p < 0.0001), and a significantly lower number of 
inhaler prescriptions (p < 0.0001). The average number of ED 
visits was 53.16 for the experimental group and 29.89 for the 
control group; the percentage of the population with COPD 
was 11.06 for the experimental group and 7.47 for the control 
group; and the number of inhaler prescriptions was 73.58 
for the experimental group and 164.60 for the control group. 
These results indicate that the highest PAV was in census 
tracts of experimental schools, where those with the highest 
average ED visits corresponded to a high COPD prevalence. 
In contrast, control tracts, with low PAV, indicated better 
asthma management, likely reducing severe cases. Spatially, 
experimental schools in downtown Dallas showed high PAV. 

DISCUSSION
 This study addresses the knowledge gap regarding the 
relationship between microclimatic parameters and PAV 
in DISD schools, focusing on how vegetation modulates 
exposure to atmospheric pollutants. We hypothesized that 
schools in census tracts with lower NDVI would experience 
higher PAV—as indicated by increased ED visits, higher 
COPD rates, and lower inhaler prescriptions—due to greater 
exposure to microclimatic parameters (fine PM, coarse 

PM, CO, and CO2), and potentially the interactions of those 
microclimatic parameters with meteorological parameters. 
Using a mobile rover with real-time sensors, we measured 
these pollutants and meteorological parameters across 10 
schools and found that experimental schools with lower NDVI 
had significantly higher levels of PM and CO2, which were 
strongly linked to increased PAV, especially in downtown and 
south Dallas.
 Our results indicate that fine PM, coarse PM, CO2, 
temperatures, humidity, and wind speeds are higher in 
experimental than control locations. This provides evidence 
that DISD schools in census tracts with lower NDVI values 
face greater exposure to these parameters and show a 
higher PAV compared to control tracts. Meteorologically, 
increased temperatures and humidity measured in 
experimental locations may also contribute to the higher 
PAV observed by exacerbating asthma symptoms due to 
increased allergen and air pollutant concentrations (18). This 
could explain the higher PAV, which is compounded by low 
inhaler prescriptions and barriers to healthcare access in 
experimental locations, compared to the cases observed in 
downtown areas. Higher wind speeds in experimental areas 
may increase the dispersion of airborne pollutants but could 
also result in less effective local pollutant trapping compared 
to areas with moderate vegetation cover, which typically has 
more vegetation to act as a natural barrier and reduce wind 
speed (19). This dynamic may contribute to the higher levels 
of pollutants and associated asthma risks in experimental 
locations.
 Our results indicate that both fine—and, to a greater extent, 
coarse—PM concentrations were significantly elevated in 

Figure 3: Experimental schools record similar CO 
concentrations and significantly higher CO2 concentrations 
than control schools. Average (A) CO and (B) CO2 measurements 
recorded from each experimental school and control school (n=540/
group). Error bars represent standard deviation. ***p < 0.001, 
derived from unpaired two-sample t-test for the average CO2 and CO 
concentrations in the experimental group compared to the control 
group.

Figure 4: Experimental schools record significantly higher air 
temperature, humidity, and wind speed values than control 
schools. Average microclimatic (A) air temperature, (B) humidity, 
and (C) wind speed of the experimental group and control group 
on July 13th, 2024, and July 20th, 2024, averaged across dates, 
locations and sublocations from each experimental school and 
control school (n=540/group). Error bars represent standard 
deviation. ***p < 0.001, derived from unpaired two-sample t-test for 
the average microclimatic air temperature, humidity, and wind speed 
in the experimental group compared to the control group.
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schools located in census tracts with low NDVI compared 
to those in control tracts with moderate NDVI. This provides 
evidence that schools in areas with lower vegetation cover 
could experience higher levels of fine and coarse PM in the 
DISD schools tested. Higher concentrations of fine, and, to a 
greater extent, coarse PM in experimental locations suggest 
that areas with lower vegetation cover experience elevated air 
pollutant levels. Vegetation filters and traps PM through their 
stomata or absorbs PM through leaves, after which it can 
be released through a process called resuspension, which 
is often dictated by wind speed (20). In areas with dense 
vegetation, PM is more likely to be captured before it can 
contribute to harmful exposure levels, while in low-vegetation 
areas, reduced filtration can result in higher coarse PM levels 
(20). The data indicates that coarse particles were elevated to 
a greater extent than fine particles, potentially because they 
are more easily trapped by vegetation due to their larger size. 
The lack of vegetation in experimental schools could allow 
larger particles to be suspended longer, increasing exposure.
Higher CO2 levels in experimental locations with low NDVI 
suggest a reduced capacity for natural CO2 absorption 
and sequestration capabilities found in more vegetated 
environments. Vegetation naturally absorbs CO2 from the 
atmosphere through photosynthesis by converting it into 
oxygen, which suggests that the lack of greenery in these 
areas potentially limits this absorption, leading to increased 
CO2 accumulation and poorer air quality (21). The fact that CO 
values were not significantly higher in experimental locations 
than in control locations may have been a consequence 

of a larger standard deviation brought on by a significant 
degree of data variability. Factors affecting CO variability may 
have been the presence or absence of CO-absorbing plant 
species, specifically Sansevieria aureus and Scindapsus 
aureus, which may have been more prevalent in control 
locations or have been less effective in experimental locations 
due to inadequate plant health or insufficient density (19). 
Additionally, significantly higher wind speeds in experimental 
areas could have increased dispersion of CO emissions from 
local sources, effectively diluting CO concentrations more at 
experimental sites than at control sites; consequently, this 
dispersion effect could mask the potential differences between 
sites if the experimental locations had higher, but more 
dispersed, CO sources (22). Furthermore, wind can cause 
turbulence and mixing of air layers, leading to the introduction 
of noise into the data and making CO concentration readings 
more variable (23). To determine the correlation between CO 
and PAV in areas with different NDVI values, further study is 
necessary.
 Experimental schools recorded considerably higher 
microclimatic temperatures relative to that of control schools, 
suggesting that areas with low NDVI experience higher land 
surface temperature (LST) due to the urban heat island 
effect—the phenomenon where urban areas, due to dense 
infrastructure and reduced vegetation, experience higher 
LST compared to surrounding rural areas (24). Because 
urbanized areas show higher LST as urbanization replaces 
natural vegetation with impervious surfaces that absorb 
and retain heat, this inverse relationship between NDVI and 
LST suggests that areas with lower NDVI could experience 
less evapotranspiration and higher air temperatures, while 
areas with moderate NDVI benefit from greater vegetation, 
which provides shade and cooler microclimates, thereby 
mitigating temperature increases (25). Humidity levels were 
significantly higher in experimental locations, potentially due 
to reduced transpiration rates in areas with low NDVI, which 
can result in higher relative humidity and greater moisture 
retention as less moisture is released into the atmosphere 
(26). This results in higher surface temperatures, which 
increase evaporation rates from soil and water bodies, raising 
humidity levels (26). Wind speeds were significantly higher 
in experimental locations, potentially due to reduced surface 
roughness and less obstruction to wind flow by vegetation 
(27). In contrast, regions with moderate NDVI have denser 
vegetation that slows wind speeds (28). Given experimental 
locations experienced significantly higher temperatures, wind 
speed may have been affected, as air moves from high- to 
low-pressure areas driven by temperature changes (29). 
We chose to quantify urban greenness using NDVI because 
it allowed us to effectively isolate the impact of sparse 
vegetation on microclimatic conditions and PAV by modeling 
factors influencing vegetation health. This was particularly 
relevant in our study area, where localized variations in 
vegetation density significantly impact air quality and, in turn, 
PAV.
 The findings of this study point to substantial policy 
implications for DISD schools, particularly those located in 
census tracts with elevated PM and CO2 levels. Schools in 
census tracts in or peripheral to downtown Dallas should 
adopt more rigorous outdoor air quality (OAQ) interventions, 
which could include creating buffer zones of urban greenery 
in areas with high PAV to reduce local CO2 concentrations and 

Figure 5: Census tracts of experimental schools record 
significantly higher PAV than census tracts of control schools. 
Average (A) number of ED visits caused by pediatric asthma per 
90 days in experimental and control schools, (B) percentage of 
the population with COPD in experimental and control schools, 
and (C) number of patients prescribed a pediatric asthma inhaler 
per year in experimental and control schools. ***p < 0.001,derived 
from unpaired two-sample t-test for the average number of ED visits 
caused by pediatric asthma per 90 days in each school’s census 
tract, the percentage of the population with COPD in each school’s 
census tract, and the average number of patients prescribed a 
pediatric asthma inhaler per year in each school’s census tract in the 
experimental group compared to the control group.
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create healthier microclimates to reduce PAV. On a municipal 
level, Dallas should partner with local healthcare providers 
to establish school-based asthma management programs in 
areas with high PAV to ensure students receive regular care 
and access to inhalers to reduce ED visits and democratize 
pediatric healthcare because fewer inhaler prescriptions 
in these tracts implied that many children may not receive 
adequate asthma management despite high PAV, potentially 
due to barriers in healthcare access or underdiagnosis. For 
example, tracts in the urban periphery—such as Experimental 
school 2 (E2), despite its proximity to downtown—showed 
a lower PAV, suggesting better access to management of 
chronic respiratory conditions, whereas experimental school 
3 (E3) saw higher ED visits and higher COPD prevalence, 
indicating that areas can experience high PAV despite being 
geographically close to more stable regions. This suggests that 
while asthma management is more accessible than downtown, 
residents may be over-reliant on preventive medication due to 
localized environmental triggers rather than immediate health 
emergencies. Interestingly, control census tracts in Seagoville 
showed moderate ED visits and a low COPD prevalence but 
high inhaler prescriptions, while census tracts in North Dallas 
represented a lower-risk area for pediatric asthma, possibly 
due to more consistent access to healthcare services that 
prevents the kind of acute pediatric asthma incidents seen in 
higher-risk areas like South Dallas or the downtown core. The 
spatial inequity between these healthier northern tracts and 
more vulnerable southern regions indicates uneven exposure 
to environmental stressors and healthcare resources across 
Dallas. To improve the financial feasibility of these changes, 
DISD could jointly increase political investment for indoor air 
quality (IAQ) technology upgrades in older school facilities 
and OAQ interventions to improve student respiratory health 
outcomes (SRHOs) in environments where students spend 
much of their day and in those where they are exposed to the 
greatest volume of pollutants.  
 Several confounding factors should be considered in 
interpreting the findings of this study. For instance, the 
influence of SDOH, specifically higher poverty rates in 
experimental locations, is a confounding variable that could 
have affected results. High poverty levels correlate with 
increased rates of asthma due to limited healthcare access 
and poor living conditions, increasing PAV, independent 
of environmental exposures (30, 31). Furthermore, greater 
spatial accessibility to primary care pediatric services is 
associated with more scheduled primary care visits for 
asthma and fewer unscheduled ED visits, while limited 
access to care—correlated with poverty—often results in 
overreliance on emergency services, which can worsen 
SRHOs for disadvantaged urban children (32).  Furthermore, 
variability in pollutant concentrations, particularly CO, may 
have been influenced by unmeasured local sources and wind 
effects. This indicates that while we observe higher parameter 
levels in experimental locations, a direct correlation between 
these parameters and PAV cannot be definitively concluded. 
Nonetheless, this study corroborates the significant correlation 
between low vegetation (low NDVI); elevated PM and CO2 
levels; and adverse meteorological conditions—higher air 
temperature, higher humidity, and higher wind speed—which 
collectively contribute to increased PAV in DISD schools.

MATERIALS AND METHODS
Site selection
 Schools were selected for the experimental group based 
on five inclusion criteria (IC) and five exclusion criteria 
(EC) (Table 2). We chose these IC and EC to minimize 
confounding factors that could skew the relationship between 
urban greenness, air quality, and PAV. By selecting public 
schools in DISD with enrollment of over 500 students, we 
ensured a sufficiently large population to detect meaningful 
SRHOs. By limiting the study to schools located in census 
tracts with NDVI values between 0.2 and 0.6, we focused on 
areas with sparse but measurable vegetation. By excluding 
schools near ongoing construction and industrial projects, 
we aimed to mitigate the confounding effect of temporary 
spikes in PM and other pollutants. Proximity criteria ensured 
that schools were spatially distributed enough to avoid 
overlapping environmental exposures, while limiting our 
analysis to census tracts with five years of PAV data allowed 
for longitudinal reliability. Urban greenness was included as a 
criterion because it has been shown to influence air quality, 
temperature, and humidity, which affect asthma prevalence 
(33). NDVI, which measures vegetation density by comparing 
near-infrared and red light, was used to select schools 
in census tracts with low NDVI values (below 0.2) for the 
experimental group to isolate the impact of sparse vegetation 
on microclimatic conditions and PAV (34). 
 Out of 240 DISD public schools, 119 were excluded due 
to moderate NDVI values (0.2-0.6), as determined by the 
Google Earth Engine, which was configured to classify census 
tracts as having low (<0.2) or moderate (0.2-0.6) vegetation 
density. Landsat 8 Collection 1 Tier 1 surface reflectance 
imagery was processed to calculate NDVI for DISD school 
census tracts by selecting cloud-free images from the peak 
growing season (May 1 to September 30, 2023) and filtered 
to include only those within the geographic bounds of DISD. 
A cloud mask using the Quality Assessment (QA) pixel band 
was then applied to filter out clouds and shadows to exclude 
pixels classified as clouds, shadows, or cloud-adjacent using 
bitwise operators on the QA band. Only images with <5% 
cloud cover were included in the final dataset.

Table 2: Inclusion and exclusion criteria for the selection of 
DISD schools as part of the experimental group. 
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 Census tract boundaries were overlaid onto the NDVI map 
to calculate average NDVI values per tract. For census tracts 
extending beyond the DISD boundary, NDVI was calculated 
proportionally to their area in DISD. Further exclusions were 
made based on EC 1 (6), EC 3 (49), EC 4 (21), and EC 5 
(35). Schools within a three-mile radius of each other were 
prioritized by larger enrollment, with the smallest enrollment 
excluded, resulting in eight schools for the experimental 
group. Control schools were selected through stratified 
random sampling from five NDVI ranges (0.2 to 0.3, 0.3 to 0.4, 
0.4 to 0.5, and 0.5 to 0.6), resulting in five final control schools 
(Figure 6). Each school in the experimental and control 
groups was evaluated for 3 standardized sublocations: the 
largest parking lot (≥1,000 m²), publicly accessible green area 
(≥5,000 m²), and the widest adjacent road by length. Areas 
of potential sublocations were measured and compared 
using the polygon area measurement tool on Google Earth. 
Schools lacking any sublocation were excluded from the 
experimental group, resulting in the removal of three schools, 
while the control group remained unaffected. Data collection 
focused on the center of each sublocation, with the largest by 
area selected if multiple were present.

Calibration and data collection
 To maximize data coverage and overcome the spatial 
limitations associated with traditional sensors, a novel, cost-
effective, mobile rover engineered with sensors for each 
microclimatic parameter was used. A sturdy acrylic chassis 
was drilled to accommodate 4 high-torque DC motors, each 
secured with industrial screws and a 3D-printed, and a CAD 
modeled wheel (3.8 cm diameter) for optimal traction on 
various terrains. These motors were wired to an L298N motor 
driver (Bojack, BJ-L298N) controlled by an Arduino Uno REV3 
microcontroller (Arduino, A000066), which was mounted 
on the chassis using plastic standoffs to reduce vibrations. 
Power for the rover was supplied by a rechargeable lithium-
ion battery pack positioned beneath the chassis to maintain a 
low center of gravity for improved stability. Each sensor was 

programmed using the Arduino programming language and 
IDE (version 2.3.2) and connected to the Arduino Uno REV3 
(Arduino, A000066) mounted on a platform 0.25 meters 
above the ground, simulating a child’s breathing zone (Figure 
1). The PMS7003 sensor ( LiebeWH, 671), MQ-7 sensor 
(Arduino, 12683), MQ-811 sensor (Ximimark, 430578031), 
BME280 sensor (HiLetgo,  3011231), modified VCNL4010 
sensor (Adafruit, 466), and Arduino were wired onto a 
breadboard and secured with industrial tape and zip-ties to 
protect against dust and moisture. Wireless data logging was 
managed using SD card adapters linked to the Arduino Uno 
boards, with data transmitted via an HC-05 Bluetooth module 
to a paired laptop. Each sensor’s library was imported into the 
Arduino IDE to enable communication and data was logged in 
real-time into a spreadsheet using Python scripts interfacing 
with the Bluetooth data stream. 
 At each of the 10 schools, the rover measured the 
microclimatic parameters at the 3 designated sublocations, 
with 3 replicates per sublocation, on July 13th and 20th, 
2024, totaling 180 trials. These dates were selected to 
capture microclimatic variations under consistent summer 
meteorological conditions while avoiding confounding 
factors from active school operations. Sensors recorded 
data every 10 seconds for 3 minutes per trial in publicly 
accessible areas during open hours and non-operational 
days, per DISD policies. Each sensor held an SD card and 
an Arduino Uno for direct data storage during collection, 
which were transferred to a Microsoft Excel spreadsheet and 
organized by school, sublocation, date, and time. For each 
location, the microclimatic parameters were averaged based 
on the aforementioned 18 data points per trial, which were 
statistically analyzed by performing an unpaired two-sample 
t-test for each parameter to ascertain statistical significance 
from a Python-based statistical calculator (version 3.12.4) 
with the SciPy library (version 1.14.0) using the scipy.stats.
ttest_ind function.
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