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rophages, or classically activated macrophages, contribute to 
immune responses by inhibiting cell proliferation and causing 
tissue damage, while anti-inflammatory macrophages, or al-
ternatively activated macrophages, promote tissue repair and 
cell proliferation (4). In the TME, TAMs are typically polarized 
toward the anti-inflammatory-like phenotype, fostering an im-
munosuppressive environment that supports tumor progres-
sion by secreting anti-inflammatory cytokines and inhibiting 
effector cell function (5).
	 Metabolic alterations within the TME are significantly as-
sociated with changes in cancer behavior, particularly through 
metabolites like lactate and citrate (6, 7). Metabolic interac-
tions between TAMs and cancer cells have been shown to 
be associated with the establishment of immunosuppressive 
conditions that facilitate tumor progression (8). The Warburg 
effect, a well-documented metabolic feature of cancer cells, 
plays a central role in this metabolic reprogramming. Through 
the Warburg effect, cancer cells convert glucose to lactate 
even in the presence of oxygen, enabling rapid energy pro-
duction and contributing to hypoxic and acidic conditions 
in the TME (9). By predominantly relying on glycolysis over 
oxidative phosphorylation, tumor cells consume substantial 
amounts of glucose, which leads to resource depletion in the 
TME and potentially contributes to hypoxia (10, 11).
	 Under hypoxic conditions, hypoxia-inducible factor 1-al-
pha (HIF1A) stabilizes and activates glycolytic genes, in-
creasing glycolysis rates and leading to lactate production 
(12). HIF1A also diverts pyruvate from the tricarboxylic acid 
(TCA) cycle toward lactate production via lactate dehydroge-
nase A (LDHA), sustaining glycolysis by regenerating cellu-
lar nicotinamide adenine dinucleotide (NAD+) and maintain-
ing pH balance through lactate export via monocarboxylate 
transporters (MCTs) (13). As lactate accumulates in the TME, 
it creates a cycle of lactic acidosis and nutrient depletion, 
which may suppress immune cell function and potentially fa-
cilitate anti-inflammatory-like TAM polarization (14).
	 The presence of lactate within the TME exerts multiple 
effects on TAMs that are associated with the polarization of 
TAMs toward the anti-inflammatory-like state. Lactate not 
only serves as an energy source but also acts as a signaling 
molecule by interacting with specific macrophage receptors 
that promote anti-inflammatory polarization. By inhibiting pro-
inflammatory pathways, lactate reinforces the anti-inflam-
matory phenotype, thereby supporting tissue repair and im-
munosuppression within the TME, both of which favor tumor 
growth (15).
	 As glycolysis intensifies in tumor cells due to HIF1A activa-
tion, their demand for glucose creates competition for resourc-
es in the TME (16). High glucose levels are associated with 
pro-inflammatory macrophage polarization, which requires 
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SUMMARY
Glioblastoma multiforme (GBM), the most aggressive 
primary brain tumor, presents a poor prognosis with a 
high resistance to current therapies. GBMs are highly 
associated with the tumor microenvironment (TME), 
which has become central to cancer research. Within 
the TME, tumor-associated macrophages (TAMs) can 
adopt pro-inflammatory or anti-inflammatory states, 
playing a significant role in tumor progression. 
We investigated the metabolic interaction between 
GBM cells and TAMs, specifically focusing on how 
citrate and lactate contribute to GBM advancement. 
We hypothesized that citrate and lactate drive 
GBM progression by modulating TAM polarization, 
promoting an anti-inflammatory state that supports 
tumor growth. Through gene expression analysis of 
GBM tumors and TAMs, alongside survival analysis 
of specific markers, we found a strong correlation 
between poor prognosis and high levels of anti-
inflammatory-like TAM markers, such as cluster 
of differentiation 163 (CD163) and histone lysine 
demethylases (KDMs). Citrate and lactate were further 
identified as critical metabolites that were correlated 
with changes in α-ketoglutarate (α-KG) production 
and promoted anti-inflammatory macrophage 
polarization. Our findings underscore the potential of 
targeting citrate and lactate metabolism to enhance 
immunotherapeutic strategies in GBM. Future studies 
should prioritize biomarkers of citrate and lactate 
metabolism and explore the mechanisms by which 
these metabolites drive TAM polarization and GBM 
progression.

INTRODUCTION
	 Glioblastoma multiforme (GBM) represents approximately 
15% of all brain tumors, marking it as one of the most deadly 
and aggressive cancers affecting the brain and spinal cord 
(1). Each year, around 12,000 new cases are diagnosed in 
the United States, and despite advancements in cancer treat-
ments, the median survival time remains around 15 months 
(2). One critical factor contributing to GBM’s aggressive 
behavior is its interaction with the tumor microenvironment 
(TME), a dynamic and complex niche that facilitates tumor 
growth and progression.
	 A significant component of the TME in GBM is tumor-as-
sociated macrophages (TAMs), which play a pivotal role in 
promoting tumor growth, angiogenesis, and metastasis (3). 
TAMs exist primarily in two phenotypes: pro-inflammatory 
and anti-inflammatory macrophages. Pro-inflammatory mac-
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glycolysis to meet energy demands (17). However, glucose 
depletion in the TME hinders pro-inflammatory macrophage 
functions and shifts macrophages toward the anti-inflamma-
tory phenotype, further reinforcing an anti-inflammatory en-
vironment that favors tumor growth (18). Tumor cells actively 
deplete glucose in the TME as the disease progresses, while 
simultaneously producing increased lactate levels, which may 
be associated with the recruitment and polarization of mono-
cytes into an immunosuppressive anti-inflammatory-like state 
(13).
	 Moreover, as a result of this metabolic shift, key intermedi-
ates from the TCA cycle, such as α-KG and citrate, accumu-
late in the hypoxic TME due to reduced pyruvate availability 
for the cycle (19, 20). These metabolites are exported from 
tumor cells into the TME, where they are taken up by TAMs 
and utilized as carbon sources for biosynthetic processes 
that support anti-inflammatory polarization. Excess citrate is 
imported into TAMs via specific transporters and metabolized 
to produce acetyl-CoA, which fuels anti-inflammatory func-
tions (21, 22). Similarly, extracellular α-KG can be taken up 
by tumor associated macrophages (TAMs) via Solute Carrier 
Family 13 (SLC13) transporters, promoting immune modula-
tion and contributing to the anti-inflammatory macrophage 
polarization (23, 24). Through these mechanisms, α-KG helps 
regulate the balance between pro-inflammatory and anti-
inflammatory macrophage polarization, potentially reducing 
inflammation and favoring tumor progression (25).
	 Recent in vitro studies in GBM cell lines reveal that el-
evated lactate levels are associated with increased GBM 
cell migration and invasion, which may contribute to tumor 
progression and metastasis (26). Patient-derived GBM cells 
exposed to varying citrate concentrations have shown altera-
tions in signaling pathways, such as the phosphatidylinositol 
3-kinase (PI3K) / protein kinase B (Akt) pathway, providing 
evidence that metabolic modulation may be a promising ther-
apeutic target (27). These findings highlight the impact of lac-
tate and citrate on GBM at the cellular level and underscore 
the potential of targeting these metabolites for GBM therapy.
In this study, we hypothesized that lactate and citrate metabo-
lism within the TME of GBM played a critical role in tumor 
progression by polarizing TAMs to the anti-inflammatory-like 
phenotype, thereby promoting tumor growth. Specifically, we 
propose that elevated lactate and citrate levels may drive an 
anti-inflammatory-like macrophage phenotype, contributing 
to GBM cell survival, invasion, and immune evasion. Our 
results indicated a significant association between anti-in-
flammatory TAM markers and poor survival in GBM patients. 
Moreover, our findings suggest that the upregulation of spe-
cific KDM genes and the presence of lactate in the TME are 
linked to the immunosuppressive microenvironment in GBM. 
Additionally, we observed that lactate uptake via MCT1 and 
MCT2 may influence TAM polarization, while α-KG played a 
crucial role in regulating macrophage polarization. By focus-
ing on these metabolic interactions within the TME, we aim to 
uncover novel therapeutic targets for GBM treatment, with the 
potential to disrupt the metabolic pathways supporting tumor 
growth and immune evasion. This study lays the groundwork 
for future investigations into targeting metabolic alterations as 
a strategy to treat GBM and improve patient survival.

RESULTS
Gene expression analysis in GBM tumor dataset
	 We analyzed the GBM tumor dataset from the Cancer 
Genome Atlas (TCGA), which included five healthy controls 
and 156 primary GBM cancer samples. Our analysis focused 
on glycolysis and TCA cycle genes, along with HIF1A due to 
its role in regulating these processes. Compared to healthy 
controls, we saw an upregulation of LDHA, HIF1A, and IDH1, 
and downregulation of phosphofructokinase platelet (PFKP) 
and citrate synthase (CIT) (Figure 1). LDHA expression in-
creased by 7.94% (p-value = 5.56e-3), PFKP was downreg-
ulated by 15.63% (p-value = 1.86e-4), and CIT1 showed a 
22.41% decrease (p-value = 1.36e-3). IDH1 was upregulated 
by 25.56% (p-value = 1.47e-4), and HIF1A showed a 15.50% 
increase (p-value = 2.34e-4), suggesting significant meta-
bolic reprogramming in GBM. These findings indicated that 
enhanced glycolysis and TCA cycle dysregulation, driven in 
part by HIF1A, supported tumor survival and growth. Target-
ing these pathways may provide potential therapeutic strate-
gies for GBM treatment.
	 Further analysis, incorporating datasets from the Gen-
otype-Tissue Expression (GTEx) portal, revealed positive 
correlations between the anti-inflammatory-like TAM mark-
ers CD163 and MSR1 with key metabolic genes involved in 
the TCA cycle (IDH1) and lactate metabolism (HIF1A, MCT4) 
(Figure 2). Statistical analysis was performed using Pearson 
correlation. Moreover, analysis of IDH1 mutation status in 156 
samples revealed that 15% of GBM samples harbored IDH1 
mutations, exhibiting a distinct metabolic phenotype charac-
terized by reduced glycolysis and altered TCA cycle activity. 
This highlighted the metabolic heterogeneity of GBM and the 
importance of considering IDH1 mutations in understanding 
tumor metabolism (28).

TAM marker analysis on GBM patient prognosis
	 Building on the gene expression analysis, we explored the 
impact of TAM markers on patient prognosis in GBM. Spe-
cifically, we focused on CD163, CD204 or macrophage scav-
enger receptor 1 (MSR1), and CD206 or MRC1 (mannose 
receptor C type 1), markers associated with anti-inflamma-
tory-polarized macrophages (29). Survival analysis revealed 
that elevated expression of CD163, MSR1, and CD206 was 
correlated with significantly poorer prognosis in GBM pa-
tients, highlighting the potential role of TAMs, particularly the 
anti-inflammatory-polarized subset, in GBM development 
and patient outcomes (Figure 3).

Gene set enrichment analysis in GBM-TAM
	 We performed gene set enrichment analysis (GSEA) us-
ing the TCGA expression data to investigate gene expression 
patterns within GBM-associated TAMs. We saw upregulation 
of several KDM and MCT genes within GBM TAMs (Table 1). 
Specifically, KDM4B, KDM5B, KDM5C, KDM6B, and KDM7A 
were upregulated, along with MCT1 and MCT2, which are 
transporters of lactate. These findings suggested that these 
genes played roles in the uptake of lactate into TAMs and may 
have been involved in metabolic reprogramming.

Patient survival analysis
	 Our analysis extended to exploring the associations be-
tween gene expression, TAM markers, and patient survival. 
Several combinations of KDM and CD163 exhibited signifi-
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cant effects on survival (Figure 4A - D). For example, the 
combination of KDM5B and CD163 was found to correlate 
with poorer survival outcomes (p-value = 1.956e-6, Figure 
4B). This suggests that the interaction between this specific 
KDM and CD163 may have contributed to an immunosup-
pressive tumor microenvironment, promoting tumor progres-
sion. Additionally, combined high expression levels of CD206, 
ARG1, and CD163 were significantly associated with poorer 
survival outcomes (p-value = 0.03, Figure 5), further support-
ing the potential prognostic value of these markers.

Hypothetical model of GBM TAM interaction
	 Based on the findings of this study, we constructed a hy-
pothetical model of the interaction between TAMs and tumor 
cells in GBM using BioRender (Figure 6). This model sug-
gests that tumors secrete lactate through HIF1A and α-KG 
through the Krebs cycle, which are then absorbed by TAMs. 
Additionally, citrate is metabolized directly in TAMs, inducing 
higher α-KG. The activation of KDMs is controlled by α-KG, 
leading to anti-inflammatory polarization. This model high-
lights the key metabolic interactions within the TME that influ-
ence TAM polarization and contribute to GBM progression, 
providing insights into potential therapeutic targets for GBM 
treatment.

DISCUSSION
	 GBM tumors exhibit an immunosuppressive TME, which 
often results in poor responses to immunotherapies. Cross-
talk between the various components of the TME can alter 
tumor cell metabolism, including extracellular metabolites 
(8). IDH1, an enzyme in the TCA cycle, converts isocitrate 
to α-KG, and overexpression of IDH1 has been observed in 
GBM, supporting tumor growth and resistance (30). We ob-
served upregulation of LDHA and IDH1 in GBM tumor cells, 
leading to an excess production of lactate and α-KG, respec-
tively (Figure 1). These metabolites are then released into the 
TME, reinforcing the dysregulated metabolic environment. 
Additionally, HIF1A plays a critical role in promoting lactate 
secretion under hypoxic conditions. Our findings showed sig-
nificantly high expression of HIF1A in GBM patients (p-value 
= 2.34e-4), suggesting that HIF1A contributes to metabolic 
reprogramming in the TME (31). Notably, CIT1 was down-
regulated in tumor cells, which suggests suppression of the 
TCA cycle and a shift toward anaerobic respiration, resulting 
in increased lactate production.
	 Anti-inflammatory-like TAMs, characterized by markers 
such as CD163, MSR1, and MRC1, are typically associated 
with tissue repair and wound healing. However, in GBM, 

Figure 1: Gene expression profiles of glycolysis and TCA genes in the GBM cancer dataset. Gene expression profiles of A) IDH1, B) 
LDHA, C) PFKP, D) CIT1, and E) HIF1A showing log2(x+1) transformed RSEM normalized counts of genes in the GBM cancer dataset. p = 
A) 1.47 e-4, B) 5.56 e-3, C) 1.86 e-4, D) 1.36 e-3, and E) 2.34 e-4. Tumor samples (n=150) and normal samples (n=5) were included in the 
analysis.
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these markers are upregulated, correlating with poor prog-
nosis (Figure 3). This dual role of anti-inflammatory macro-
phages—promoting tumor progression while suppressing 
immune responses—makes them integral to the tumor’s met-
abolic reprogramming (32). Lactate uptake by TAMs has been 
shown to enhance their immunosuppressive phenotype, in-
hibiting immune surveillance and facilitating tumor progres-
sion (26). The uptake of lactate by TAMs via MCT1 and MCT2 
transporters correlates with increased anti-inflammatory 
polarization (Figure 2), exacerbating the immunosuppres-
sive environment and contributing to poor clinical outcomes 
in GBM patients. Elevated levels of lactate in the TME are 
known to activate anti-inflammatory polarization in TAMs, 
which is reflected in the observed increased expression of 
lactate transporters, such as MCT1 and MCT2, in GBM TAMs 
(33). These findings underscore the prognostic value of these 
TAM markers and pave the way for further investigations into 
the intricate interplay between TAMs and GBM.
	 Our study highlighted a significant association between 
anti-inflammatory-like TAM markers and poor survival in 
GBM patients. However, it is important to note that these re-
lationships are observational, and causality cannot be estab-
lished without functional studies and in vivo models. Further 
research is necessary to investigate the exact role of TAMs 
in GBM development and their influence on tumor progres-
sion. KDMs (lysine demethylases), such as KDM5C, KDM5B, 
KDM7A, and KDM6B, are highly expressed in GBM TAMs, 
correlating with poor survival outcomes (Figure 5). These 

results suggest that KDMs may regulate the immune micro-
environment and contribute to immune evasion in GBM, po-
tentially reinforcing the immunosuppressive TME. α-KG, a 
byproduct of the TCA cycle, serves as a cofactor for KDMs, 
which are essential for demethylating histones and activating 
anti-inflammatory-related genes (34). α-KG may promote an-
ti-inflammatory polarization by enhancing prolyl hydroxylase 
domain (PHD) activity, which inhibits pro-inflammatory po-
larization and enhances anti-inflammatory activation via the 
Jumonji domain-containing protein D3 (α-KG-Jmjd3) pathway 
(35).
	 Our findings align with previous research showing that 
high expression of LDHA, IDH1, and other key metabolic 
regulators contribute to the altered metabolic phenotype of 
GBM, which may be linked to pro-inflammatory activation of 
TAMs and tumor progression (36). The polarization of TAMs 
to an anti-inflammatory phenotype, influenced by markers like 
CD206 (MRC1) and ARG1, plays a critical role in tumor pro-
gression (37, 38).
	 Additionally, lactate has been shown to activate anti-in-
flammatory polarization in TAMs, with transporters like MCT1 
facilitating lactate uptake and supporting immunosuppressive 
environments in GBM (13, 39, 40). MCT1 and MCT2, which 
are involved in lactate transport, were found to be upregu-
lated in GBM TAMs, further supporting the hypothesis that 
lactate contributes to anti-inflammatory polarization in these 
macrophages.
	 Building on these findings, we propose a model of the 

Figure 3: Survival analysis of GBM TAM markers. Kaplan-Meier 
survival curves for GBM patients stratified by expression levels 
of A) CD163, B) MSR1, and C) MRC1 in GBM TAMs. Statistical 
significance was assessed using the log-rank test (p < 0.001)

Figure 2: Correlation heatmap of correlations between TAM 
markers and metabolic genes in the tumor microenvironment. 
The heatmap was generated from gene expression data of tumor-
associated macrophage (TAM) markers (CD163, NOS2, MSR1) 
and metabolic genes (HIF1A, IDH1, MCT4, CIT) in the GBM tumor 
microenvironment. It shows significant correlations between these 
TAM markers and key metabolic genes involved in the tricarboxylic 
acid (TCA) cycle and lactate metabolism. Notably, anti-inflammatory-
like TAM markers, such as CD163 and MSR1, exhibit strong positive 
correlations with metabolic genes like HIF1A, IDH1, and MCT4. 
Conversely, pro-inflammatory-like TAM marker NOS2 shows positive 
correlations with CIT, a key TCA cycle gene. Statistical analyses were 
performed using Pearson correlation to compute the relationships 
between metabolic and TAM genes. Significant correlations had a 
value greater than 0.7.
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interaction between TAMs and tumor cells in GBM (Figure 
6). The model suggests that tumor cells secrete lactate via 
HIF1A and α-KG through the Krebs cycle, which are subse-
quently absorbed by TAMs. Additionally, citrate is metabo-
lized in TAMs, inducing higher levels of α-KG. This metabolic 
shift activates KDMs, leading to anti-inflammatory polariza-
tion. The model illustrates the crucial metabolic interactions 
within the TME that shape TAM polarization, contributing to 
GBM progression and highlighting potential therapeutic tar-
gets.

	 Therapeutically, targeting metabolic pathways involved in 
glycolysis and the TCA cycle could offer promising strategies 
for GBM treatment. Inhibiting LDHA, IDH1, and HIF1A could 
potentially reduce lactate and α-KG levels, impairing tumor 
metabolism and disrupting the immunosuppressive environ-
ment (32). Additionally, targeting MCT1 and MCT2 to block 
lactate uptake by TAMs may reduce their immunosuppres-
sive phenotype and improve the efficacy of immunotherapies. 
Further studies are required to explore these therapeutic av-
enues and validate their clinical potential in GBM.
	 Dietary interventions that influence citrate, lactate, or 
α-KG levels in the TME could provide complementary thera-
peutic strategies. These interventions might help reprogram 
TAMs and enhance the overall response to treatment. TAMs 
play a critical role in GBM development, and their metabolic 
activities are significantly influenced by lactate. Therapeutic 
strategies aimed at reprogramming TAM metabolism—such 
as inhibiting lactate uptake via MCT1 and MCT2 inhibitors or 
targeting glycolytic enzymes—could potentially reduce the 
immunosuppressive phenotype of TAMs, improving the effi-
cacy of immunotherapies. Furthermore, therapies that modu-
late α-KG production or its interactions with KDMs may influ-
ence TAM polarization, enhancing the therapeutic response 
in GBM.
	 Despite the promising insights from this study based on 
publicly available data from the TCGA and Genomic Data 
Commons (GDC), there are limitations. The absence of in 
vitro and in vivo experiments means our conclusions are pri-
marily based on gene expression data, which may not fully 
capture direct functional interactions. Therefore, further ex-
perimental studies are needed to validate these findings and 
clarify the mechanisms underlying TAM polarization and met-
abolic reprogramming in GBM. Additionally, while our study 

Table 1: Average enrichment scores of KDM and MCT genes. 
Results of GSEA for key KDM and MCT genes in GBM TAMs using 
the C7 immunological signature gene set. The table includes the 
average enrichment scores (ES) and the number of occurrences 
for selected genes involved in immune modulation and metabolic 
reprogramming. Occurrences represent how many times a given 
gene appears in the top-ranking gene sets across different samples. 
Enrichment Score (ES) indicates how strongly a gene is associated 
with a particular biological process or pathway. A high ES suggests 
the gene plays a key role in that process. The p-value for the analysis 
is 0.009, indicating that the results are statistically significant.

Figure 4: Survival analysis of individual and combined GBM tumor markers. Kaplan-Meier survival curves for GBM patients stratified by 
the expression levels of individual and combined markers: A) CD163 & KDM5C, B) CD163 & KDM5B, C) CD163 & KDM7A, and D) CD163 & 
KDM6B. Statistical significance was assessed using the log-rank test, with p = A) 0.031, B) 1.956e-6, C) 0.0174, D) 0.085.
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highlights the potential of targeting specific metabolic path-
ways and markers, further research is needed to identify the 
best strategies for therapeutic interventions and to determine 
their safety and efficacy in clinical settings.
	 In conclusion, our research underscores the critical roles 
of citrate, lactate, and α-KG in driving anti-inflammatory po-
larization in TAMs within the GBM TME. Targeting metabolic 
pathways, such as LDHA, IDH1, HIF1A, and MCTs, offers nov-
el therapeutic strategies for GBM treatment. Future research 
should focus on identifying biomarkers related to citrate and 
lactate metabolism, validating these findings through preclini-
cal and clinical studies, and exploring multimodal treatment 
strategies to improve patient survival.

MATERIALS AND METHODS
	 Our experimentation process involved a series of steps: 
Gene expression analysis, survival analysis, gene set enrich-
ment analysis, and prognostic evaluation (Figure 7).

Gene expression analysis of the GBM tumor
	 We analyzed the expression dispersion of glycolysis and 
citric acid cycle genes in GBM tumor cells using the online 
software tool, Wanderer (41). The analysis included a da-
taset of 161 RNA-Seq samples (5 healthy controls and 156 
GBM patient samples, 80% of which were from patients un-
dergoing treatment) sourced from the TCGA database (42). 
The data were obtained from Illumina HiSeq RNA sequenc-
ing. Additionally, we used the R-script (CorrelateGenes_
SurvivalAnalysis.R) in R Studio to identify correlations be-
tween TAM and metabolic genes in the GBM tumor dataset. 
Gene expression values for glycolysis, the TCA cycle, and 
HIF1A were visualized using RNA-Seq by Expectation-Max-
imization (RSEM) formatted data. Furthermore, we calculated 
the changes in log2(x+1) transformed (normalized by apply-
ing the base-2 logarithm after adding 1 to each value) RSEM 
normalized counts of cancer-related glycolysis and citric acid 
cycle genes between average healthy controls and GBM can-
cer samples.

Survival analysis of GBM TAM markers
	 In the GDC portal, we filtered data using “TCGA-GBM”, 
resulting in 523 cases, followed by the selection of “Gene 
Expression Quantification” as the data type, narrowing the 
cases to 169 (Project Id IS TCGA-GBM AND Data Type IS 
Gene Expression Quantification). We extracted the patient 
data (transcriptome profiling) with detailed follow-up and sur-
vival information from the downloaded clinical data from these 
169 cases. We additionally utilized RNA-Seq read count data 
from 773 GTEx normal brain samples, including data from the 
cortex, frontal cortex, and anterior cingulate cortex (43). All 
the downloaded transcriptome profiling files were combined 
into a single csv file with only tpm-unstranded data by run-
ning the R-script (mergeGETables.R) in R Studio. Then we 
mapped the filename and submitter ID to correlate the clinical 
data and gene expression table. (e.g., a4e0b059 and TCGA-
02-0047). We used GraphPad Prism to plot a Kaplan-Meier 
survival curve of the selected GBM TAM marker or gene with 
a p-value < 0.001.

Figure 5: Survival analysis of combined anti-inflammatory 
TAM markers. Kaplan-Meier survival curves for GBM patients were 
stratified by expression levels of combined markers CD206, ARG1, 
and CD163. Statistical significance was assessed using the log-rank 
test, with a p-value of 0.03.

Figure 6: Hypothetical model of GBM TAM regulation. Model 
illustrating the metabolic crosstalk between GBM tumor cells and 
TAMs within the TME, emphasizing the roles of lysine demethylases 
(KDMs) and monocarboxylate transporters (MCTs) in metabolic 
reprogramming and immune evasion. Under hypoxic conditions 
driven by HIF1A, GBM tumor cells secrete lactate and α-KG. Lactate, 
exported via MCTs, contributes to an acidic TME, promoting immune 
evasion. α-KG, a byproduct of TCA cycle activity, serves as a key 
regulator of epigenetic and metabolic processes. TAMs absorb lactate 
via MCTs, driving metabolic shifts that polarize them toward the anti-
inflammatory phenotype, supporting an immunosuppressive TME 
and tumor progression. Tumor-derived citrate is also metabolized 
within TAMs, producing additional α-KG that activates KDMs, further 
reinforcing anti-inflammatory polarization and immune suppression. 
Additionally, GBM tumor cells overexpress IDH1, an enzyme in the 
TCA cycle that converts isocitrate to α-KG. This overexpression 
represents a critical metabolic adaptation, enabling tumor growth 
and resistance to stress. The high levels of lactate and α-KG within 
the TME contribute to immunosuppression, reducing the efficacy 
of immunotherapies and promoting tumor survival. The model 
highlights potential therapeutic targets, such as inhibitors of KDMs, 
MCTs, and IDH1, to disrupt the metabolic interactions between tumor 
cells and TAMs. The figure was created using BioRender.com.
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28 JUNE 2025  |  VOL 8  |  7Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/24-258

Gene set enrichment analysis
	 An R script was used to prepare the necessary data for 
analysis. GSEA was performed to identify whether certain gene 
sets are overrepresented at the top or bottom of a ranked list 
of genes within the GBM-TAM context. Gene expression data 
for all genes in all samples, formatted as TPM-unstranded, 
were combined into a CSV file. A subset of relevant genes was 
extracted from this dataset and formatted into a gene cluster 
text (GCT) file (44). The GCT file, along with a phenotype file, 
was then input into the GSEA software for analysis.
	 For the analysis, TAMs in GBM were defined based on the 
expression of established TAM marker genes, such as CD163 
and MRC1. To ensure the analysis focused on macrophage-
specific gene expression, TAM-specific profiles were extract-
ed by filtering the dataset to include only samples express-
ing these marker genes. This approach mitigated the issue of 
analyzing bulk tumor data, which includes gene expression 
from all cells in the tumor microenvironment (TME). Using 
this TAM-specific subset, we conducted gene set enrichment 
analysis to identify overrepresented genes from the KDM and 
MCT classes associated with TAMs in GBM.

Survival analysis of combined GBM TAM markers
	 We investigated the prognostic value of tumor-associated 
genes and markers of GBM TAMs, as well as their combined 
occurrence, by plotting survival curves for the selected mar-
kers or genes with a p-value < 0.001 using GraphPad Prism. 
Additionally, we used the R-script (CorrelateGenes_Surviva-
lAnalysis.R) in R Studio to generate a survival graph for the 
combined CD206, CD163, and ARG1 in the GBM tumor data-
set.
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APPENDIX

mergeGETables.R
# This R program takes individual gene expression sample files downloaded from TCGA as 
# input and creates a consolidated file with each sample as one column and different genes as
# rows.

#### first few list of the .tsv file downloaded for each sample from TCGA database will be like below ####
#gene_id    gene_name   gene_type   unstranded  stranded_first  stranded_second tpm_unstranded  fpkm_unstranded fpkm_uq_
unstranded
#N_unmapped         5456436 5456436 5456436 
#N_multimapping         3426782 3426782 3426782     
#N_noFeature            3860513 31085642    30811764
#N_ambiguous            5775384 1332069 1355930
#ENSG00000000003.15 TSPAN6  protein_coding  4167    2114    2053    67.1411 18.1950 18.5714
#ENSG00000000005.6  TNMD    protein_coding  1   0   1   0.0495  0.0134  0.0137

# Loading necessary library
library(dplyr)
# Set the working directory to the location where all the TCGA files are stored
setwd(“/Users/xyz/GBM/Data/TCGA”)
# Iterate through the list of sample files in the directory
for (filename in list.files()) {
  # If no dataset exists yet, create the dataset
  if (!exists(“dataset”)) {
    # Read the file and create a dataset
    dataset <- read.delim(filename, stringsAsFactors = FALSE)
    # Remove the first 4 irrelevant rows
    dataset <- dataset %>% filter(!row_number() %in% c(1, 2, 3, 4))
    # Select only relevant columns (gene_id, gene_name, tpm_unstranded)
    dataset <- dataset[c(1, 2, 7)]
    # Create a new column name based on the first part of the filename
    col_name <- sapply(strsplit(filename, split=’-’, fixed=TRUE), function(x) (x[1]))
    colnames(dataset)[3] <- col_name
  } else {
    # If the dataset exists, process the new file and append to the dataset
    temporary <- read.delim(filename, stringsAsFactors = FALSE)
    temporary <- temporary %>% filter(!row_number() %in% c(1, 2, 3, 4))
    # Select only relevant columns (gene_id, tpm_unstranded)
    temporary <- temporary[c(1, 7)]
    # Create a new column name based on the first part of the filename
    col_name <- sapply(strsplit(filename, split=’-’, fixed=TRUE), function(x) (x[1]))
    colnames(temporary)[2] <- col_name
    # Join the new data with the existing dataset by gene_id
    dataset <- full_ join(dataset, temporary, by = “gene_id”)
    # Delete the temporary dataset to free up memory
    rm(temporary)
  }
}
# Write the consolidated dataset into an output CSV file
write.csv(dataset, file=”/Users/xyz/GBM/Data/combine.csv”, row.names = FALSE)
#Sample output file’s first 2 lines
#gene_id    gene_name   03ddea6f    051dc36f    075029c6    08dce278    0a80d60d    0ad4aa09    0c6b79d0    0ce1eb02    0d3fac43    
0db34205    0f89ce0f    1069403e    1076483a    113df549    139fe07b    13da7123    1435785d    1483c347    1871e575    19f6db33    
1a61593f    1f027bee    209797f2    210daf0d    23f3b0c8    24397ba5    251de1f4    2856d609    2acc7210    2c25aa49    2e33127c    
32291119    325f91c9    328b149f    ...
#ENSG00000000003.15 TSPAN6  5.8836  111.9005    54.7729 34.3045 67.1411 114.9393    52.4703 60.4303 44.6427 55.9218 93.3216 
66.0662 70.8772 21.6593 71.9519 76.9722 65.7113 81.7969 82.0863 56.7117 105.1259    106.8657    61.4441 81.9417 66.2069 44.7954 
146.2413    NA  70.3354 40.8241 46.4405 129.5973    128.4459    49.6363 58.244  79.3682 65.4239 85.0811 92.3314 … 



28 JUNE 2025  |  VOL 8  |  11Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/24-258

CorrelateGenes_SurvivalAnalysis.R
The code is a comprehensive analysis pipeline that performs the following steps:

•	 Package Installation: The necessary R packages (dplyr, tibble, tidyverse, googledrive, DESeq2, pheatmap, ggplot2, survival, 
survminer) are installed if not already present. These packages support data manipulation, visualization, and survival analysis.

•	 Google Drive Authentication: The script authenticates access to Google Drive to download raw count data files for normal and 
tumor samples (normal_raw_counts.csv and tumor_raw_counts.csv).

•	 Data Cleaning and Merging: The raw count data for normal and tumor samples is loaded, unnecessary columns are removed, 
and column names are standardized. The datasets are then merged by gene_id, with missing values replaced by zeros. The 
merged dataset is saved with gene IDs as row names.

•	 Gene Selection: A list of genes related to tumor-associated macrophages (TAM) and metabolic pathways is defined. These 
genes are extracted from the merged dataset for further analysis.

•	 Correlation Analysis: A Spearman correlation matrix is computed for the selected genes, and the results are visualized in a 
heatmap using the pheatmap package.

•	 Survival Analysis: Metadata for tumor samples is read and filtered to include only “Alive” or “Dead” statuses. Survival time and 
status columns are created, and data is aligned with the expression data. Expression levels of immune-related markers (CD206, 
ARG1, CD163) are extracted, and a combined expression value is calculated.

•	 Kaplan-Meier Survival Curve: The combined expression of the selected markers is categorized into “High” and “Low” groups 
based on the median value. A Kaplan-Meier survival curve is generated to evaluate the relationship between the expression of 
these markers and patient survival. The plot is saved as a PNG file.

# Install necessary packages if not already installed
# This section ensures that all required libraries are installed and loaded
install.packages(“dplyr”)
install.packages(“tibble”)
install.packages(“tidyverse”)
install.packages(“googledrive”)

# Install Bioconductor packages for DESeq2 and visualization tools
if (!requireNamespace(“BiocManager”, quietly = TRUE)) install.packages(“BiocManager”)
BiocManager::install(“DESeq2”)
BiocManager::install(“pheatmap”)
BiocManager::install(“ggplot2”)

# Install required libraries (if not already installed)
if (!requireNamespace(“survival”, quietly = TRUE)) install.packages(“survival”)
if (!requireNamespace(“survminer”, quietly = TRUE)) install.packages(“survminer”)

# Load required libraries
library(dplyr)
library(tibble)
library(tidyverse)
library(googledrive)
library(DESeq2)
library(ggplot2)
library(pheatmap)
library(survival)
library(survminer)

drive_auth()  # Authenticate Google Drive access

# --- Download Raw Count Data ---
# Download the cleaned and aligned normal (GTEX) and tumor raw counts (TCGA) 
file <- drive_get(“normal_raw_counts.csv”)
drive_download(file, path = “normal_raw_counts.csv”, overwrite = TRUE)

file <- drive_get(“tumor_raw_counts.csv”)
drive_download(file, path = “tumor_raw_counts.csv”, overwrite = TRUE)

# Load and clean raw counts data
normal_counts <- read.csv(“normal_raw_counts.csv”)
tumor_counts <- read.csv(“tumor_raw_counts.csv”)

# Standardize column names and remove unnecessary columns
normal_counts <- normal_counts[, !(colnames(normal_counts) %in% “Description”)]
tumor_counts <- tumor_counts[, !(colnames(tumor_counts) %in% “Description”)]
colnames(normal_counts)[colnames(normal_counts) == “Name”] <- “gene_id”

# Preview cleaned datasets
cat(“Normal counts columns after cleaning:\n”)
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print(colnames(normal_counts))
cat(“Tumor counts columns after cleaning:\n”)
print(colnames(tumor_counts))

# --- Merge Datasets ---
# Identify and summarize common and unique genes
common_genes <- intersect(tumor_counts$gene_id, normal_counts$gene_id)
tumor_only_genes <- setdiff(tumor_counts$gene_id, normal_counts$gene_id)
normal_only_genes <- setdiff(normal_counts$gene_id, tumor_counts$gene_id)

cat(“Number of common genes:”, length(common_genes), “\n”)
cat(“Number of genes only in tumor_counts:”, length(tumor_only_genes), “\n”)
cat(“Number of genes only in normal_counts:”, length(normal_only_genes), “\n”)

# Merge data based on ‘gene_id’
combined_counts <- merge(tumor_counts, normal_counts, by = “gene_id”, all = FALSE)
combined_counts[is.na(combined_counts)] <- 0
rownames(combined_counts) <- combined_counts$gene_id
combined_counts <- combined_counts[,-1]

# Verify dimensions
cat(“Number of rows and columns in the combined dataset:\n”)
cat(nrow(combined_counts), “rows\n”)
cat(ncol(combined_counts), “columns\n”)

# Save row information for reference
row_info <- data.frame(row_number = 1:nrow(combined_counts), gene_id = rownames(combined_counts))
write.table(row_info, file = “Gene_id-sequence.csv”, sep = “,”, quote = FALSE, row.names = FALSE, col.names = TRUE)
cat(“Row numbers and gene IDs written to Gene_id-sequence.csv\n”)

# --- Gene Selection and Analysis ---
# Define TAM-related and metabolic genes of interest
tam_genes <- c(“ENSG00000177575.13”,”ENSG00000118520.15”,”ENSG00000007171.18”,
               “ENSG00000232810.4”,”ENSG00000260314.3”,”ENSG00000180425.11”,
               “ENSG00000134595.9”,”ENSG00000038945.15”)

metabolic_genes <- c(“ENSG00000100644.17”, “ENSG00000122966.17”,
                     “ENSG00000134333.14”, “ENSG00000138413.14”,
                     “ENSG00000168679.18”)

selected_genes <- c(tam_genes, metabolic_genes)
selected_counts <- combined_counts[rownames(combined_counts) %in% selected_genes, ]

# Calculate Spearman correlation and visualize as a heatmap
correlation_matrix <- cor(t(selected_counts), method = “spearman”)
pheatmap(correlation_matrix,
         cluster_rows = TRUE,

         cluster_cols = TRUE,

         main = “Correlation between TAM-related and Metabolic Genes”)

cat(“Correlation analysis and heatmap generation completed.\n”)
#############Survival Analysis##########################
# The following code includes survival analysis based on the combined expression of immune-related markers 
# (CD206, ARG1, CD163) in TNBC tumor samples. The Kaplan-Meier survival curve and statistical analysis will 
# help evaluate the correlation between the expression levels of these markers and patient survival.

# Read the normalized counts CSV of the tumor and set the first column as row names (this is the output of the previous R script)
tumor_normalized_counts <- read.csv(“combine.csv”, row.names = 1)

# Load metadata
metadata_surv <- read.csv(“metadata_tumorsamples.csv”)  # Replace with your file name

# Filter rows to include only “Alive” or “Dead”; remove “not reported” status
metadata_surv <- metadata_surv[metadata_surv$vital_status %in% c(“Alive”, “Dead”), ]

# Create a survival time column
metadata_surv$time <- ifelse(metadata_surv$vital_status == “Alive”,
                             metadata_surv$days_to_last_follow_up,
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                             metadata_surv$days_to_death)

metadata_surv$time <- as.numeric(as.character(metadata_surv$time))

# Create a survival status column (1 = deceased, 0 = alive)
metadata_surv$status <- ifelse(metadata_surv$vital_status == “Alive”, 0, 1)

# Check the metadata
head(metadata_surv[, c(“Case.ID”, “SampleID”, “time”, “status”, “age_at_diagnosis”)])

# Remove the ‘X’ prefix from column names if they start with ‘X’ followed by digits
colnames(tumor_normalized_counts) <- gsub(“^X(\\d+)”, “\\1”, colnames(tumor_normalized_counts))

# Confirm that the column names are updated correctly
print(head(colnames(tumor_normalized_counts)))

cat(“Columns Names of the Tumor normalized counts:”, colnames(tumor_normalized_counts), “\n”)

# Align metadata_surv with tumor_normalized_counts
metadata_surv <- metadata_surv[metadata_surv$SampleID %in% colnames(tumor_normalized_counts), ]
tumor_normalized_counts <- tumor_normalized_counts[, colnames(tumor_normalized_counts) %in% metadata_surv$SampleID]

# Reorder metadata_surv to match tumor_normalized_counts
metadata_surv <- metadata_surv[match(colnames(tumor_normalized_counts), metadata_surv$SampleID), ]

# Confirm the filtered dataset
cat(“Number of columns after alignment:”, ncol(tumor_normalized_counts), “\n”)
cat(“Number of samples in metadata after alignment:”, nrow(metadata_surv), “\n”)

# Check the first few entries of each
head(metadata_surv$SampleID)
head(colnames(tumor_normalized_counts))

# Check lengths
length(metadata_surv$SampleID)
length(colnames(tumor_normalized_counts))

anyNA(metadata_surv$SampleID)  # Should return FALSE
anyNA(colnames(tumor_normalized_counts))  # Should return FALSE

setdiff(metadata_surv$SampleID, colnames(tumor_normalized_counts))  # IDs in metadata but not in counts
setdiff(colnames(tumor_normalized_counts), metadata_surv$SampleID)  # IDs in counts but not in metadata

all(metadata_surv$SampleID == colnames(tumor_normalized_counts))  # Should return TRUE
print(metadata_surv$SampleID)

# Check alignment after filtering
cat(“Metadata rows: “, nrow(metadata_surv), “\n”)
cat(“Expression columns: “, ncol(tumor_normalized_counts), “\n”)

if (!all(metadata_surv$SampleID == colnames(tumor_normalized_counts))) {
  stop(“Mismatch between metadata and tumor_normalized_counts!”)
}

# Now, create the expression columns in ‘metadata_surv’
metadata_surv$CD206_expression <- as.numeric(tumor_normalized_counts[“ENSG00000260314.3”, ]) # CD206
metadata_surv$ARG1_expression <- as.numeric(tumor_normalized_counts[“ENSG00000118520.15”, ]) # ARG1
metadata_surv$CD163_expression <- as.numeric(tumor_normalized_counts[“ENSG00000177575.13”, ]) # CD163

# Combine the expression values for the markers (ensure to exclude NAs)
metadata_surv$combined_expression <- rowMeans(metadata_surv[, c(“CD206_expression”, “ARG1_expression”, “CD163_expression”)], 
na.rm = TRUE)

# Stratify combined expression into High/Low groups based on the median value
metadata_surv$combined_group <- ifelse(metadata_surv$combined_expression > median(metadata_surv$combined_expression, na.rm = 
TRUE), “High”, “Low”)

# Create survival object
surv_obj <- Surv(time = metadata_surv$time, event = metadata_surv$status)
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# Fit Kaplan-Meier model using the combined expression groups 
(High vs Low)
surv_fit_combined <- survfit(surv_obj ~ combined_group, data = 

metadata_surv)

# Plot Kaplan-Meier curve for combined expression values
km_plot <- ggsurvplot(
  surv_fit_combined,
  data = metadata_surv,
  pval = TRUE,
  conf.int = TRUE,
  risk.table = TRUE,
  title = “Survival Analysis for Combined Expression of CD206, 
ARG1, and CD163”,
  legend.title = “Combined Expression”,
  xlab = “Time (days)”,
  ylab = “Survival Probability (%)”,
  ggtheme = theme_minimal()
)

# Adjust y-axis to display percentages
km_plot$plot <- km_plot$plot +
  scale_y_continuous(
    labels = scales::percent_format(accuracy = 1)  # Convert to 
percentages with 1 decimal place
  )

# Print the Kaplan-Meier plot
print(km_plot)
# Save the plot
ggsave(“combined_expression_survival_curve.png”,
       plot = km_plot$plot,
       dpi = 600,
       width = 10,
       height = 8,
       units = “in”,
       bg = “white”)


