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to suppress wildfires, which is the most common technique 
but comes with a high hourly operating cost (5). Leveraging 
rainwater harvesting represents an exceptional opportunity 
for minimizing firefighting costs (5). Integrating a smart water 
pump (SWP) with a rainwater harvesting system can help 
lower these costs.  However, to utilize this improved mitigation 
method effectively, there is a great need for a decentralized, 
low-cost, autonomous system that can detect, alert, and 
activate early mitigative actions. Such a system would provide 
time for self-evacuation and save lives.
	 Existing fire detection methods, namely human-based 
observation, satellite detection, optical cameras, and 
wireless sensor networks (WSNs), offer low-to-medium 
reliability (Table 1). Human-based observation methods 
cause detection delays (6). Satellite detection is costly and 
detects fires only after they have become large (6). Clouds 
and other environmental conditions impact optical camera-
based solutions (6). WSNs are highly reliable but have issues 
that stem from the type of sensors used or the technology 
used for data or image capture (6). Smoke, gas, thermal, 
and flame detectors raise false alarms due to fog, clouds, 
sunlight, and non-smoke objects (6). Alternative solutions 
based on monitoring ambient surroundings must deal with 
air pollution issues and other environmental conditions, 
and these remotely installed systems also get destroyed or 
damaged in forest fires (7). 
	 In this study, we aimed to use soil-based sensors for fire 
detection to overcome these limitations and develop a low-
cost, highly reliable system that can survive surface fires. 
Given that the volumetric heat capacity of soil is very high, 
its temperature should remain stable under normal conditions 
and show an observable elevation under fire conditions. 
Researchers have previously found that a thermal gradient 
causes soil moisture to move from warmer to cooler soil (8). 
We hypothesized that the soil temperature and moisture 
should remain stable under normal conditions and rapidly rise 
under surface fire (Figure 1). Furthermore, we hypothesized 
that soil temperature at shallow depths should increase faster 
than at deeper depths (Figure 1). In all the tests that we 
conducted, we found that a dramatic rise in soil temperature 
occurred after a fire, and the soil temperature at one-inch 
depth rose faster than the soil temperature at three-inch 
depth. Our results consistently showed the moisture sensor at 
a one-inch depth rising rapidly before gradually decreasing. 
The moisture sensor at a three-inch depth also showed a 
slower rise before eventually decreasing. Therefore, we have 
developed a low-cost autonomous system that can detect, 
alert, and take mitigative actions for communities during fire 
using soil-based temperature and moisture sensors. 

Fire detection using subterranean soil sensors

SUMMARY
Climate change and the resulting forest fires have 
devastated communities and caused ecological 
damage. Damaging fires are often detected very late, 
or firefighting resources are found lacking, leading to 
extensive damage. Existing fire detection methods, 
namely human-based observation, satellite systems, 
and optical cameras, have low-to-medium reliability. 
Wireless sensor networks (WSNs) are highly reliable 
but are plagued by false alarm repetitions. We aimed 
to engineer a fire detection system using soil-based 
sensors and mitigate the fire autonomously using 
harvested rainwater. We hypothesized that under a 
surface fire, soil temperature and moisture together 
should increase at a faster rate compared to when 
there is no surface fire, since under normal conditions, 
soil temperature should remain stable due to soil’s 
high volumetric heat capacity. We also hypothesized 
that soil temperature at a shallow depth should 
increase faster than at deeper soil depths, since the 
heat gradient will decrease with depth. We built a 
WSN consisting of sensor nodes using temperature 
and moisture sensors deployed at multiple depths. 
The sensor nodes transmit data to the base station 
node (BSN) over radio waves. Field testing supported 
our hypotheses: Soil temperatures remained stable 
for long periods under normal conditions, but when a 
surface fire started, the soil temperatures and moisture 
rose rapidly. Also, the sensor deployed at one-inch 
depth saw a faster and higher rise in temperatures 
compared to the sensor deployed at three-inch depth. 
Therefore, we have developed a low-cost autonomous 
system that can detect, alert, and activate mitigative 
actions for communities during fire.

INTRODUCTION
	 Forest fires contribute 20% of carbon dioxide in the 
atmosphere and cause irreparable ecological damage (1). 
Due to increased urbanization of once-forested regions, more 
homes are at risk of wildfire damage (2). Climate change 
has increased the frequency of forest fires, devastating 
nearby communities (3). In these cases, the fires were either 
detected very late and had grown dramatically, or a lack of 
water and availability of firefighters hindered an adequate 
response (4). As multiple fires start in an area, fire response 
systems struggle due to the limited resources (4). Additionally, 
access and availability of water during a fire influence the 
containment costs (5). Helicopters ferry buckets of water 
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RESULTS
	 To test our hypotheses, we designed a WSN to measure 
soil temperature and moisture. The WSN consisted of a 
sensor node, a base station node (BSN), and a SWP (Figure 
2A). The sensor node included two sets of soil temperature 
sensors, Sensor 1 and Sensor 2, installed under the soil at 
depths of one and three inches, respectively, and a single 
moisture sensor installed under the soil at a depth of one inch 
(Figure 2B). Sensor 2 provided insights into the time it took for 
heat to travel through soil and the temperature rise at different 
soil depths, helping us build an algorithm to detect the fire. 
We used only a single soil moisture sensor at one-inch depth 
to reduce the complexity of the fire detection algorithm.
	 We placed the BSN in a central location with access to Wi-
Fi and dedicated power. The BSN tracked soil temperature 
and moisture data along with the running averages of 
temperature and moisture data for all the sensors. Under 
normal conditions, these running averages stabilized, and 
the readings showed flat-line behavior. Normal conditions 
were defined as when there was no surface fire, and any 
soil temperature change was able to be attributed to sun or 
weather-related changes. The running average of the latest 
five temperatures for both Sensor 1 and Sensor 2 were very 
similar (Figure 3). 
	 Within four minutes of starting a controlled fire, Sensor 1’s 
running average of the latest five temperature readings was 
30% higher than its total running average. We defined this 
percentage, by which the average of the latest five readings is 
higher than the total running average, as the threshold. Within 
11 to 17 minutes of starting a fire, Sensor 2’s running average 
of the latest five temperature readings was 20% higher than 
its total running average (Figure 4). These findings supported 
the hypothesis that soil temperature will rise faster in a 
short period of time when there is a surface fire above the 
soil than when there is no fire. The hypothesis that the rate 
and magnitude of temperature rise will be higher at shallow 
soil depth than at deeper soil depth was also supported, as 
Sensor 1 saw a faster temperature rise rate than Sensor 2. 
Sensor 1 also reported a higher maximum temperature than 
Sensor 2 (Figure 4A). The moisture levels also rose during 
the surface fire (Figure 5).
	 We built this difference in the rate of rise in temperature and 
moisture for sensors at different depths into a fire detection 
algorithm hosted in the BSN (Figure 6). Our fire detection 

algorithm was designed to detect when a fire is occurring. 
The algorithm determines that a fire event is occurring when 
all the thresholds are surpassed: Sensor 1 is above 30%, 
Sensor 2 is above 20%, and the soil moisture sensor is above 
10%. When the BSN detected fire, the BSN triggered the SWP 
to mitigate the fire using harvested rainwater (Figure 2D). We 
found that the BSN was able to call out the fire with a range 
of 14 to 20 minutes after the fire was started. To reduce the 
amount of time for the BSN to call out the fire, we decreased 
the threshold for Sensor 2 from 20% to 10%. We kept the 
threshold for Sensor 1 at 30%. As a result, the BSN reported 
a fire earlier, with a range of 10 to 11 minutes after the fire was 
started in various tests (n = 7). 
	 We conducted an additional test with two moisture sensors 
to understand how moisture behaves at different depths when 
there is a temperature gradient. We added a second moisture 
sensor to the sensor node at three-inch depth. We conducted 
multiple tests (n = 5), allowing the fire to burn for a few hours. 
The SWP was not used for these tests since the primary 
objective of this set of tests was to understand the impact on 
soil moisture under fire conditions. These tests consistently 
showed the moisture sensor at a one-inch depth rising rapidly 
before gradually decreasing. The moisture sensor at a three-
inch depth showed a slower rise before eventually decreasing 
(Figure 7). We saw consistent results across tests conducted 
on different days with environmental temperatures ranging 
from 40°F to 84°F and environmental humidity ranging from 
47% to 79%.

DISCUSSION
	 From the test results, we observed that under normal 
conditions, soil temperature and moisture below the ground 
change gradually. The only condition under which both 
the soil temperature and soil moisture rose rapidly was 
during a surface fire. We therefore reasoned that using soil 
temperature and moisture sensors could improve our ability to 
detect surface fires.  Our methodology detects rapid changes 
in the last one minute and fifteen seconds compared to the 

Figure 1: Expected soil temperature and moisture behavior 
before and after fire. We hypothesized that the A) soil temperature 
and B) moisture would remain stable under normal conditions and 
rapidly rise under surface fire. Furthermore, we hypothesized that 
soil temperature at shallow depths would increase faster than at 
deeper depths (A).

Figure 2: Field testing setup. A) Sensor node, SWP and BSN 
components. B) The sensor node was installed under the soil with 
Sensor 1 and the moisture sensor placed at a one-inch depth and 
with Sensor 2 placed at a three-inch depth. C) A SWP was installed 
with D) a harvested rainwater barrel. E) On detecting rising soil 
temperature and moisture levels, the BSN triggered the SWP to 
extinguish the fire.
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running average of the last four hours. Therefore, seasonal 
changes should not impact our methodology since it relies on 
detecting rapid variation in a short period. Our methodology 
also removes the need for any historical soil temperature and 
moisture data. 
	 In all the tests that were conducted, we found a dramatic 
rise in soil temperature after a fire, and the soil temperature 
at Sensor 1 rose faster than the soil temperature at Sensor 
2. We explain these results by the volumetric heat capacity 
of the soil. Since Sensor 2 had more soil cover, the sensor 
absorbed less heat energy, causing Sensor 2 to experience a 
more gradual rise in temperature. If we were to use both soil 
temperature sensors in tandem to detect a fire automatically, 
our results suggest that the Sensor 2 temperature rise 
threshold value should be set lower than the Sensor 1 
temperature rise threshold value. The depth of installation of 
the sensors should determine the temperature rise threshold 
value to use, where a lower temperature rise threshold value 
is more appropriate if the sensor is installed deeper. 
	 Using a higher temperature rise threshold value to detect 
fire automatically increased the probability of calling out the 
fire correctly but added to the delay in detecting the fire. 
Instead, the approach we used was a combination of two 
sensors at different depths with each sensor configured with 
an individual temperature rise threshold value. The highest 
soil temperature that we recorded during a fire event was 113°F 
before we called fire event. This temperature was well below 
the operating temperature range of the soil sensors ensuring 
the sensor node survived the fire in every experiment. 

	 The behavior of the two-moisture sensor test was 
consistent with the established tendency of soil moisture to 
move from warmer to cooler soil under a temperature gradient 
(8). Based on these tests, we could enhance the fire detection 
algorithm in the future by adding a second moisture sensor at 
a three-inch depth. This will improve the reliability of the fire 
detection logic.
	 The sensor node successfully communicated using long 
range radio waves (LoRa) when buried under the soil with fire 
directly above it. However, we observed issues in processing 
radio wave transmissions. We sent messages using radio 
waves at a 915Mhz frequency, so the receiver could consume 
a message from any sender using radio waves at the same 
frequency. We saw this issue when the SWP tried to consume 
messages from the BSN but also consumed messages the 
sensor nodes sent to the BSN at the same frequency. This 
issue becomes more important when a WSN consists of 
a network of multiple sensor nodes and SWPs. We had to 
add logic so that the receiver would only consume messages 
from its expected sender and disregard messages from other 
senders.
	 We note that a soil sensor-based system only detects 
surface fires. Fire starting from a tree canopy will not be 
detected until the fire has reached the soil surface. The soil 
properties, such as thermal conductivity, thermal diffusivity, 
and volumetric heat capacity, inform the depth at which 
the sensor node should be deployed (9). The soil type and 
porosity must be accounted for to establish the installation 
depth (10). Hence, we would need to install sensors at a 

Figure 3: Representative soil temperature and moisture data during normal conditions. A) Soil temperature readings over time during 
normal conditions, when there was no fire, from Sensor 1 installed at a one-inch depth (blue) and Sensor 2 installed at a three-inch depth 
(orange). B) Moisture readings over time during normal conditions, when there was no fire, from the moisture sensor installed at one-
inch depth. All sensors show flat-line behavior with Sensor 2 showing a slightly higher temperature than Sensor 1. These data are from a 
representative run (n = 7).

Figure 4: Representative soil temperature data during fire conditions. A) Soil temperature readings over time when a surface fire was 
started, from Sensor 1 installed at one-inch depth (blue) and Sensor 2 installed at a three-inch depth (orange). B)  An expanded view of Sensor 
1 (blue) and Sensor 2 (orange) between 25 and 45 minutes elapsed time. A dramatic rise in soil temperature was seen after starting a fire. The 
rate and magnitude of temperature rise was higher for Sensor 1 when compared to Sensor 2. These data are from a representative run (n = 7).
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site-specific depth. We should conduct further experiments 
on different soil types with varying fire intensities, including 
testing the longevity of the sensors. Additional enhancements 
could include using wind speed and wind direction datasets to 
predict the fire’s spread direction.
	 The system we developed can be used as a low-
cost autonomous system that can detect, alert, and take 
mitigative actions for communities during fire without waiting 
on conventional firefighting resources. This system has the 
potential to be most useful around communities at high risk 
of forest fires and become their first response system. The 
system shows promise to be scaled up to provide relief when 
multiple fires in a jurisdiction overwhelm other available 
resources.

MATERIALS AND METHODS
Hardware configuration 
	 The sensor node was comprised of two digital temperature 
sensors with adapter modules (Adafruit, DS18B20), a 
capacitive soil moisture sensor (DFRobot, SEN0193), a 
Nano board (Arduino, ATmega328P/CH340), LoRa wireless 
receiver transmitter (HopeRF, RFM95W 915Mhz), a 
rechargeable battery, and a solar panel (EverExceed, YXN-
SP-L50). The capacitive soil moisture sensor measured the 
change in capacitance between two conductive plates in the 
soil as a function of soil moisture content. During each test, 
soil temperature was measured at a one-inch depth by Sensor 
1 and at a three-inch depth by Sensor 2; soil moisture was 
measured at a one-inch depth. The BSN was comprised of 
a microcontroller (Arduino, Nano ESP32 IoT) and a LoRa 

wireless receiver transmitter (HopeRF, RFM95W 915Mhz).
The SWP was built using a 12V DC freshwater pressure 
diaphragm pump (Bayite, BYT-7A102), a 5V one-channel relay 
module (AITRIP, 701715466746), a Nano board (Arduino, 
ATmega328P/CH340), LoRa wireless receiver transmitter 
(HopeRF, RFM95W 915Mhz), a 12V rechargeable battery, 
and a 12V 5W solar panel (EverExceed, YXN-SP-L50) to 
charge the 12V rechargeable battery.

Experimental procedure 
	 The experiments were conducted across several days (30-
Dec-2023 to 31-Aug-2024) at different field sites in Edison, 
New Jersey, between 12 pm to 6 pm ET. A controlled fire was 
started with charcoal briquettes in a separate chimney starter, 
and the charcoal briquettes were placed on the soil above the 
buried sensor node unit. All tests were done on grassy lawns 
with Boonton loam soil. The tests were repeated on days when 
the soil was dry and on days after rainfall.

Moisture sensor calibration 
	 Capacitive soil moisture sensors were calibrated before 
the start of the study. The sensor readings for exposure to 
air and to water were used to set moisture readings of 0% 
dry soil and 100% wet soil, respectively. Specifically, the 
analog values for air and water measurements were 606 and 
281, respectively. Analog values between 606 and 281 were 
mapped to soil moisture percentages using the map function 
from the Arduino math library, where 606 was treated as 0% 
and 281 as 100% moisture.

Data processing 
	 The sensor node used the Dallas temperature software 
library (Arduino Library) to interface with the DS18B20 
waterproof digital temperature sensor for retrieving soil 
temperature data. The sensor node took the soil temperature 
readings at one-inch (Sensor 1) and three-inch (Sensor 2) 
depths and moisture readings at one-inch depth. These three 
readings were transmitted in a single packet every 15 seconds 
over radio waves using the LoRa radio module. These 
transmission packets included a unique message identifier, 
the sensor node’s own unique identifier, the unique identifier 
of the BSN, and the soil temperature and moisture data. 
	 The BSN, on receiving these packets, checked the recipient 
identifier on the packet and only consumed the message if 
it was the BSN’s unique identifier. The BSN also ensured 
that it did not consume a transmission packet with the same 

Figure 6: Logical schematic of the test setup. The sensor node, the BSN, and the SWP interaction during fire. The fire algorithm assesses 
data from the sensors to determine whether there is a fire. If fire is confirmed, mitigation actions are triggered.

Figure 5: Representative soil moisture data during fire 
conditions. The soil moisture level at one-inch depth over time 
under surface fire conditions was seen to rise after a fire is started. 
These data are from a representative run (n = 7).



19 SEPTEMBER 2025  |  VOL 8  |  5Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/24-154

Message Identifier again. The BSN fire detection algorithm 
maintained a running average of the latest 1,000 readings 
(called TotalRunningAverage) and the running average of the 
latest 5 readings (called LatestRunningAverage) for the two soil 
temperature sensors and the single moisture sensor. Since the 
sensor node sent data every 15 seconds, the 1,000 readings 
provided TotalRunningAverage for 4 hours of data. The deviation 
of LatestRunningAverage from the TotalRunningAverage was 
defined as the threshold. Different thresholds were tested to 
determine the impact of the thresholds on the ability to reliably 
detect fire without adding delay in detection. When Sensor 1’s 
LatestRunningAverage was higher than a threshold of 30% 
than its TotalRunningAverage, the BSN called a fire event 
for Sensor 1’s reported data. The threshold for Sensor 2 was 
10%. For the soil moisture sensor, the LatestRunningAverage 
and TotalRunningAverage of moisture were also maintained, 
and a threshold of 10% was used for calling out a fire event. 
When all these three threshold conditions were exceeded, the 
BSN called out the fire event. BSN uploaded all the data and 
any fire event to the IoT Arduino cloud.
	 The BSN filtered out any temperature and moisture 
readings that were outside of a certain range. Values less 
than half of the LatestRunningAverage were excluded. Values 
greater than double of the LatestRunningAverage were also 
excluded.
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Figure 7: Representative soil temperature and moisture 
data under fire conditions and with no SWP mitigation. Soil 
temperature readings from Sensor 1 installed at a one-inch depth 
(orange) and Sensor 2 installed at a three-inch depth (yellow) and 
soil moisture readings from Moisture Sensor 1 installed at a one-
inch depth (green) and Moisture Sensor 2 installed at a three-inch 
depth (brown) over time under fire conditions with no mitigation of 
the fire. Sensor 1 detected a rapid rise in temperature while Moisture 
Sensor 1 showed an increase before decreasing. Sensor 2 detected 
a gradual rise in temperature while Moisture Sensor 2 showed an 
increase before decreasing. These data are from a representative 
run (n = 5).
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