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SUMMARY

Climate change and the resulting forest fires have
devastated communities and caused ecological
damage. Damaging fires are often detected very late,
or firefighting resources are found lacking, leading to
extensive damage. Existing fire detection methods,
namely human-based observation, satellite systems,
and optical cameras, have low-to-medium reliability.
Wireless sensor networks (WSNs) are highly reliable
but are plagued by false alarm repetitions. We aimed
to engineer a fire detection system using soil-based
sensors and mitigate the fire autonomously using
harvested rainwater. We hypothesized that under a
surface fire, soil temperature and moisture together
should increase at a faster rate compared to when
there is no surface fire, since under normal conditions,
soil temperature should remain stable due to soil’s
high volumetric heat capacity. We also hypothesized
that soil temperature at a shallow depth should
increase faster than at deeper soil depths, since the
heat gradient will decrease with depth. We built a
WSN consisting of sensor nodes using temperature
and moisture sensors deployed at multiple depths.
The sensor nodes transmit data to the base station
node (BSN) over radio waves. Field testing supported
our hypotheses: Soil temperatures remained stable
for long periods under normal conditions, but when a
surfacefire started, the soiltemperatures and moisture
rose rapidly. Also, the sensor deployed at one-inch
depth saw a faster and higher rise in temperatures
compared to the sensor deployed at three-inch depth.
Therefore, we have developed a low-cost autonomous
system that can detect, alert, and activate mitigative
actions for communities during fire.

INTRODUCTION

Forest fires contribute 20% of carbon dioxide in the
atmosphere and cause irreparable ecological damage (1).
Due to increased urbanization of once-forested regions, more
homes are at risk of wildfire damage (2). Climate change
has increased the frequency of forest fires, devastating
nearby communities (3). In these cases, the fires were either
detected very late and had grown dramatically, or a lack of
water and availability of firefighters hindered an adequate
response (4). As multiple fires start in an area, fire response
systems struggle due to the limited resources (4). Additionally,
access and availability of water during a fire influence the
containment costs (5). Helicopters ferry buckets of water

to suppress wildfires, which is the most common technique
but comes with a high hourly operating cost (5). Leveraging
rainwater harvesting represents an exceptional opportunity
for minimizing firefighting costs (5). Integrating a smart water
pump (SWP) with a rainwater harvesting system can help
lower these costs. However, to utilize this improved mitigation
method effectively, there is a great need for a decentralized,
low-cost, autonomous system that can detect, alert, and
activate early mitigative actions. Such a system would provide
time for self-evacuation and save lives.

Existing fire detection methods, namely human-based
observation, satellite detection, optical cameras, and
wireless sensor networks (WSNs), offer low-to-medium
reliability (Table 1). Human-based observation methods
cause detection delays (6). Satellite detection is costly and
detects fires only after they have become large (6). Clouds
and other environmental conditions impact optical camera-
based solutions (6). WSNs are highly reliable but have issues
that stem from the type of sensors used or the technology
used for data or image capture (6). Smoke, gas, thermal,
and flame detectors raise false alarms due to fog, clouds,
sunlight, and non-smoke objects (6). Alternative solutions
based on monitoring ambient surroundings must deal with
air pollution issues and other environmental conditions,
and these remotely installed systems also get destroyed or
damaged in forest fires (7).

In this study, we aimed to use soil-based sensors for fire
detection to overcome these limitations and develop a low-
cost, highly reliable system that can survive surface fires.
Given that the volumetric heat capacity of soil is very high,
its temperature should remain stable under normal conditions
and show an observable elevation under fire conditions.
Researchers have previously found that a thermal gradient
causes soil moisture to move from warmer to cooler soil (8).
We hypothesized that the soil temperature and moisture
should remain stable under normal conditions and rapidly rise
under surface fire (Figure 1). Furthermore, we hypothesized
that soil temperature at shallow depths should increase faster
than at deeper depths (Figure 1). In all the tests that we
conducted, we found that a dramatic rise in soil temperature
occurred after a fire, and the soil temperature at one-inch
depth rose faster than the soil temperature at three-inch
depth. Our results consistently showed the moisture sensor at
a one-inch depth rising rapidly before gradually decreasing.
The moisture sensor at a three-inch depth also showed a
slower rise before eventually decreasing. Therefore, we have
developed a low-cost autonomous system that can detect,
alert, and take mitigative actions for communities during fire
using soil-based temperature and moisture sensors.
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Figure 1: Expected soil temperature and moisture behavior
before and after fire. We hypothesized that the A) soil temperature
and B) moisture would remain stable under normal conditions and
rapidly rise under surface fire. Furthermore, we hypothesized that
soil temperature at shallow depths would increase faster than at
deeper depths (A).

RESULTS

To test our hypotheses, we designed a WSN to measure
soil temperature and moisture. The WSN consisted of a
sensor node, a base station node (BSN), and a SWP (Figure
2A). The sensor node included two sets of soil temperature
sensors, Sensor 1 and Sensor 2, installed under the soil at
depths of one and three inches, respectively, and a single
moisture sensor installed under the soil at a depth of one inch
(Figure 2B). Sensor 2 provided insights into the time it took for
heat to travel through soil and the temperature rise at different
soil depths, helping us build an algorithm to detect the fire.
We used only a single soil moisture sensor at one-inch depth
to reduce the complexity of the fire detection algorithm.

We placed the BSN in a central location with access to Wi-
Fi and dedicated power. The BSN tracked soil temperature
and moisture data along with the running averages of
temperature and moisture data for all the sensors. Under
normal conditions, these running averages stabilized, and
the readings showed flat-line behavior. Normal conditions
were defined as when there was no surface fire, and any
soil temperature change was able to be attributed to sun or
weather-related changes. The running average of the latest
five temperatures for both Sensor 1 and Sensor 2 were very
similar (Figure 3).

Within four minutes of starting a controlled fire, Sensor 1’s
running average of the latest five temperature readings was
30% higher than its total running average. We defined this
percentage, by which the average of the latest five readings is
higher than the total running average, as the threshold. Within
11 to 17 minutes of starting a fire, Sensor 2’s running average
of the latest five temperature readings was 20% higher than
its total running average (Figure 4). These findings supported
the hypothesis that soil temperature will rise faster in a
short period of time when there is a surface fire above the
soil than when there is no fire. The hypothesis that the rate
and magnitude of temperature rise will be higher at shallow
soil depth than at deeper soil depth was also supported, as
Sensor 1 saw a faster temperature rise rate than Sensor 2.
Sensor 1 also reported a higher maximum temperature than
Sensor 2 (Figure 4A). The moisture levels also rose during
the surface fire (Figure 5).

We built this difference in the rate of rise in temperature and
moisture for sensors at different depths into a fire detection
algorithm hosted in the BSN (Figure 6). Our fire detection
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Figure 2: Field testing setup. A) Sensor node, SWP and BSN
components. B) The sensor node was installed under the soil with
Sensor 1 and the moisture sensor placed at a one-inch depth and
with Sensor 2 placed at a three-inch depth. C) A SWP was installed
with D) a harvested rainwater barrel. E) On detecting rising soil
temperature and moisture levels, the BSN triggered the SWP to
extinguish the fire.

algorithm was designed to detect when a fire is occurring.
The algorithm determines that a fire event is occurring when
all the thresholds are surpassed: Sensor 1 is above 30%,
Sensor 2 is above 20%, and the soil moisture sensor is above
10%. When the BSN detected fire, the BSN triggered the SWP
to mitigate the fire using harvested rainwater (Figure 2D). We
found that the BSN was able to call out the fire with a range
of 14 to 20 minutes after the fire was started. To reduce the
amount of time for the BSN to call out the fire, we decreased
the threshold for Sensor 2 from 20% to 10%. We kept the
threshold for Sensor 1 at 30%. As a result, the BSN reported
a fire earlier, with a range of 10 to 11 minutes after the fire was
started in various tests (n = 7).

We conducted an additional test with two moisture sensors
to understand how moisture behaves at different depths when
there is a temperature gradient. We added a second moisture
sensor to the sensor node at three-inch depth. We conducted
multiple tests (n = 5), allowing the fire to burn for a few hours.
The SWP was not used for these tests since the primary
objective of this set of tests was to understand the impact on
soil moisture under fire conditions. These tests consistently
showed the moisture sensor at a one-inch depth rising rapidly
before gradually decreasing. The moisture sensor at a three-
inch depth showed a slower rise before eventually decreasing
(Figure 7). We saw consistent results across tests conducted
on different days with environmental temperatures ranging
from 40°F to 84°F and environmental humidity ranging from
47% to 79%.

DISCUSSION

From the test results, we observed that under normal
conditions, soil temperature and moisture below the ground
change gradually. The only condition under which both
the soil temperature and soil moisture rose rapidly was
during a surface fire. We therefore reasoned that using soil
temperature and moisture sensors could improve our ability to
detect surface fires. Our methodology detects rapid changes
in the last one minute and fifteen seconds compared to the
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Figure 3: Representative soil temperature and moisture data during normal conditions. A) Soil temperature readings over time during
normal conditions, when there was no fire, from Sensor 1 installed at a one-inch depth (blue) and Sensor 2 installed at a three-inch depth
(orange). B) Moisture readings over time during normal conditions, when there was no fire, from the moisture sensor installed at one-
inch depth. All sensors show flat-line behavior with Sensor 2 showing a slightly higher temperature than Sensor 1. These data are from a

representative run (n = 7).

running average of the last four hours. Therefore, seasonal
changes should not impact our methodology since it relies on
detecting rapid variation in a short period. Our methodology
also removes the need for any historical soil temperature and
moisture data.

In all the tests that were conducted, we found a dramatic
rise in soil temperature after a fire, and the soil temperature
at Sensor 1 rose faster than the soil temperature at Sensor
2. We explain these results by the volumetric heat capacity
of the soil. Since Sensor 2 had more soil cover, the sensor
absorbed less heat energy, causing Sensor 2 to experience a
more gradual rise in temperature. If we were to use both soil
temperature sensors in tandem to detect a fire automatically,
our results suggest that the Sensor 2 temperature rise
threshold value should be set lower than the Sensor 1
temperature rise threshold value. The depth of installation of
the sensors should determine the temperature rise threshold
value to use, where a lower temperature rise threshold value
is more appropriate if the sensor is installed deeper.

Using a higher temperature rise threshold value to detect
fire automatically increased the probability of calling out the
fire correctly but added to the delay in detecting the fire.
Instead, the approach we used was a combination of two
sensors at different depths with each sensor configured with
an individual temperature rise threshold value. The highest
soil temperature that we recorded during a fire event was 113°F
before we called fire event. This temperature was well below
the operating temperature range of the soil sensors ensuring
the sensor node survived the fire in every experiment.
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The behavior of the two-moisture sensor test was
consistent with the established tendency of soil moisture to
move from warmer to cooler soil under a temperature gradient
(8). Based on these tests, we could enhance the fire detection
algorithm in the future by adding a second moisture sensor at
a three-inch depth. This will improve the reliability of the fire
detection logic.

The sensor node successfully communicated using long
range radio waves (LoRa) when buried under the soil with fire
directly above it. However, we observed issues in processing
radio wave transmissions. We sent messages using radio
waves at a 915Mhz frequency, so the receiver could consume
a message from any sender using radio waves at the same
frequency. We saw this issue when the SWP tried to consume
messages from the BSN but also consumed messages the
sensor nodes sent to the BSN at the same frequency. This
issue becomes more important when a WSN consists of
a network of multiple sensor nodes and SWPs. We had to
add logic so that the receiver would only consume messages
from its expected sender and disregard messages from other
senders.

We note that a soil sensor-based system only detects
surface fires. Fire starting from a tree canopy will not be
detected until the fire has reached the soil surface. The soil
properties, such as thermal conductivity, thermal diffusivity,
and volumetric heat capacity, inform the depth at which
the sensor node should be deployed (9). The soil type and
porosity must be accounted for to establish the installation
depth (10). Hence, we would need to install sensors at a
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Figure 4: Representative soil temperature data during fire conditions. A) Soil temperature readings over time when a surface fire was
started, from Sensor 1 installed at one-inch depth (blue) and Sensor 2 installed at a three-inch depth (orange). B) An expanded view of Sensor
1 (blue) and Sensor 2 (orange) between 25 and 45 minutes elapsed time. A dramatic rise in soil temperature was seen after starting a fire. The
rate and magnitude of temperature rise was higher for Sensor 1 when compared to Sensor 2. These data are from a representative run (n = 7).
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Figure 5: Representative soil moisture data during fire
conditions. The soil moisture level at one-inch depth over time
under surface fire conditions was seen to rise after a fire is started.
These data are from a representative run (n = 7).

site-specific depth. We should conduct further experiments
on different soil types with varying fire intensities, including
testing the longevity of the sensors. Additional enhancements
could include using wind speed and wind direction datasets to
predict the fire’s spread direction.

The system we developed can be used as a low-
cost autonomous system that can detect, alert, and take
mitigative actions for communities during fire without waiting
on conventional firefighting resources. This system has the
potential to be most useful around communities at high risk
of forest fires and become their first response system. The
system shows promise to be scaled up to provide relief when
multiple fires in a jurisdiction overwhelm other available
resources.

MATERIALS AND METHODS
Hardware configuration

The sensor node was comprised of two digital temperature
sensors with adapter modules (Adafruit, DS18B20), a
capacitive soil moisture sensor (DFRobot, SEN0193), a
Nano board (Arduino, ATmega328P/CH340), LoRa wireless
receiver transmitter (HopeRF, RFM95W 915Mhz), a
rechargeable battery, and a solar panel (EverExceed, YXN-
SP-L50). The capacitive soil moisture sensor measured the
change in capacitance between two conductive plates in the
soil as a function of soil moisture content. During each test,
soil temperature was measured at a one-inch depth by Sensor
1 and at a three-inch depth by Sensor 2; soil moisture was
measured at a one-inch depth. The BSN was comprised of
a microcontroller (Arduino, Nano ESP32 IoT) and a LoRa

Sensors

Sensor
node

Base Station
Node
(BSN)

Do
Nothing

https://doi.org/10.59720/24-154

wireless receiver transmitter (HopeRF, RFM95W 915Mhz).
The SWP was built using a 12V DC freshwater pressure
diaphragm pump (Bayite, BYT-7A102), a 5V one-channel relay
module (AITRIP, 701715466746), a Nano board (Arduino,
ATmega328P/CH340), LoRa wireless receiver transmitter
(HopeRF, RFM95W 915Mhz), a 12V rechargeable battery,
and a 12V 5W solar panel (EverExceed, YXN-SP-L50) to
charge the 12V rechargeable battery.

Experimental procedure

The experiments were conducted across several days (30-
Dec-2023 to 31-Aug-2024) at different field sites in Edison,
New Jersey, between 12 pm to 6 pm ET. A controlled fire was
started with charcoal briquettes in a separate chimney starter,
and the charcoal briquettes were placed on the soil above the
buried sensor node unit. All tests were done on grassy lawns
with Boonton loam soil. The tests were repeated on days when
the soil was dry and on days after rainfall.

Moisture sensor calibration

Capacitive soil moisture sensors were calibrated before
the start of the study. The sensor readings for exposure to
air and to water were used to set moisture readings of 0%
dry soil and 100% wet soil, respectively. Specifically, the
analog values for air and water measurements were 606 and
281, respectively. Analog values between 606 and 281 were
mapped to soil moisture percentages using the map function
from the Arduino math library, where 606 was treated as 0%
and 281 as 100% moisture.

Data processing

The sensor node used the Dallas temperature software
library (Arduino Library) to interface with the DS18B20
waterproof digital temperature sensor for retrieving soil
temperature data. The sensor node took the soil temperature
readings at one-inch (Sensor 1) and three-inch (Sensor 2)
depths and moisture readings at one-inch depth. These three
readings were transmitted in a single packet every 15 seconds
over radio waves using the LoRa radio module. These
transmission packets included a unique message identifier,
the sensor node’s own unique identifier, the unique identifier
of the BSN, and the soil temperature and moisture data.

The BSN, on receiving these packets, checked the recipient
identifier on the packet and only consumed the message if
it was the BSN'’s unique identifier. The BSN also ensured
that it did not consume a transmission packet with the same

Smart Water
Pump
(SWP)

Mitigation 5

Figure 6: Logical schematic of the test setup. The sensor node, the BSN, and the SWP interaction during fire. The fire algorithm assesses
data from the sensors to determine whether there is a fire. If fire is confirmed, mitigation actions are triggered.
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Figure 7: Representative soil temperature and moisture
data under fire conditions and with no SWP mitigation. Soil
temperature readings from Sensor 1 installed at a one-inch depth
(orange) and Sensor 2 installed at a three-inch depth (yellow) and
soil moisture readings from Moisture Sensor 1 installed at a one-
inch depth (green) and Moisture Sensor 2 installed at a three-inch
depth (brown) over time under fire conditions with no mitigation of
the fire. Sensor 1 detected a rapid rise in temperature while Moisture
Sensor 1 showed an increase before decreasing. Sensor 2 detected
a gradual rise in temperature while Moisture Sensor 2 showed an
increase before decreasing. These data are from a representative
run (n =5).

Message ldentifier again. The BSN fire detection algorithm
maintained a running average of the latest 1,000 readings
(called TotalRunningAverage) and the running average of the
latest 5 readings (called LatestRunningAverage) for the two soil
temperature sensors and the single moisture sensor. Since the
sensor node sent data every 15 seconds, the 1,000 readings
provided TotalRunningAverage for4 hours of data. The deviation
of LatestRunningAverage from the TotalRunningAverage was
defined as the threshold. Different thresholds were tested to
determine the impact of the thresholds on the ability to reliably
detect fire without adding delay in detection. When Sensor 1’s
LatestRunningAverage was higher than a threshold of 30%
than its TotalRunningAverage, the BSN called a fire event
for Sensor 1’s reported data. The threshold for Sensor 2 was
10%. For the soil moisture sensor, the LatestRunningAverage
and TotalRunningAverage of moisture were also maintained,
and a threshold of 10% was used for calling out a fire event.
When all these three threshold conditions were exceeded, the
BSN called out the fire event. BSN uploaded all the data and
any fire event to the 10T Arduino cloud.

The BSN filtered out any temperature and moisture
readings that were outside of a certain range. Values less
than half of the LatestRunningAverage were excluded. Values
greater than double of the LatestRunningAverage were also
excluded.
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