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plied. However, one major drawback is that there are limited 
technologies to provide haptic (force and tactile) feedback to 
the surgeon (5). While force sensors can be used, they need 
to be biocompatible and sterilizable or be disposed of after a 
single use. This makes these sensors very expensive, costing 
up to $500 for certain procedures, and therefore, makes them 
an unviable solution (6-9).
	 A new approach that has been suggested is to provide 
force feedback using computer vision (10). Computer vision 
here refers to semantic segmentation, which is where the im-
age pixels that make up the tool are differentiated from the 
rest of the image to locate the tool in the image. The deforma-
tion of tissues around the tool tip is then used to predict the 
force being applied (11). Semantic segmentation of the tool is 
shown to be more effective when the image is transformed to 
polar coordinates with the tool’s vanishing point as the center 
(12). Therefore, identifying the vanishing point of the surgi-
cal tool, where the two edges of the tool seem to converge, 
is a critical part of the process (Figure 1). The main method 
reported to identify vanishing points in surgical fields is the 
minimum area enclosing triangle method, but it has some 
drawbacks and limitations, as discussed below.
	 This method uses the minimum area triangle enclosing 
the tool and uses the triangle’s vertex that is closest to the im-
age center to estimate the vanishing point (12). This method is 
expected to work well primarily for unoccluded images, as the 
algorithm for identifying the minimum-area triangle requires 
the tool’s edges to be clearly identifiable (12). However, if 
there are multiple tools or tools with joints, the triangle will be 
drawn around all the tools and joints, which may lead to less 
accurate results, giving this method specific and limited uses.
Currently, there are a few neural networks which have been 
trained to find the vanishing point in natural scenes (roads, 
buildings, etc.), but no neural networks have been applied to 
surgical tools to date. Results from various studies show that 
neural networks were more effective than traditional methods 
of identifying the vanishing point in natural scenes (13, 14). 
During  surgeries, the images of tools are often obstructed 
due to tissue and blood; this is called occlusion. Any method 
to identify the vanishing point must be able to do so with oc-
cluded images. Moreover, it is also unclear whether neural 
networks would perform better than the triangle method in 
different cases, such as when the images are jointed and po-
tentially occluded. 
	 However, neural networks seem to be the most promising 
as they can learn and make sophisticated human-like deci-
sions because of their consecutive, interconnected layers in-
spired by neuroscientific theories, something which the other 
method cannot do (15). Therefore, we hypothesized that a 
neural network could achieve equally high or higher accuracy 

Comparing neural networks with a traditional method 
for identifying the vanishing points of surgical tools

SUMMARY
Robot-assisted minimally invasive surgery (RMIS) 
offers numerous advantages, such as higher 
precision and shorter patient recovery time, leading 
to more successful outcomes. Force feedback from 
the surgical tool is essential for the surgeon to control 
the pressure applied. Recently, computer vision 
techniques have been explored as an alternative to 
expensive sensors for force feedback. A crucial step 
is identifying the vanishing point of the surgical tool, 
where the two edges of the tool seem to converge, 
but this becomes challenging when the tool is 
obstructed by tissue (occlusion). We hypothesized 
that neural networks could achieve higher accuracy 
than traditional techniques such as the minimum 
area enclosing triangle method in finding the 
vanishing point, particularly with occlusion. To test 
our hypothesis, we trained a neural network for 
vanishing point detection using datasets of synthetic 
images of surgical tools with and without occlusion, 
and then tested the triangle method on the same 
datasets. We then evaluated and compared their 
performances. The results partially supported the 
hypothesis as the neural network performed much 
better than the triangle method for unjointed tools, 
both with and without occlusion. For jointed tools, 
the triangle method surprisingly performed better 
than the neural network, although both methods 
require improvement in accuracy. Overall, the neural 
network’s consistency regardless of the level of 
occlusion, as compared to the triangle method’s poor 
performance when there is occlusion, demonstrates 
the neural network’s potential to improve computer 
vision for force feedback in RMIS, leading to better 
outcomes for patients.

INTRODUCTION
	 Robot-assisted minimally invasive surgeries (RMIS) are 
becoming increasingly popular, with applications such as cor-
onary artery bypass and cutting away cancer tissues (1). Over 
12 million robot-assisted surgeries have been performed, with 
advancing technologies having significant advantages, such 
as increased stability and precision, which leads to shorter re-
covery time and less medication for patients (2, 3). For these 
micro-surgical procedures, force feedback is essential to ac-
curately position the instrument and help the surgeons by im-
proving dexterity and tactile sensitivity (4). Without this, there 
could be unintentional tissue damage if too much force is ap-
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than the minimum area enclosing triangle method in finding 
the vanishing point of a surgical tool, both with and without 
occlusion. We test this hypothesis by modifying and training a 
pre-existing model for environmental landscapes on four sets 
of surgical tool images to see how it adapts to environments 
within the human body, and comparing its performance with 
that of the triangle method. 
	 As there were no pre-existing datasets available, artificial 
datasets were created to model the tools by writing a pro-
gram to generate thousands of randomized surgical images. 
To simulate occlusion, random blobs were generated to cover 
parts of the tool (Figure 2).
	 The NeurVPS Conic Convolution Neural Network for natu-
ral scenes was trained on both unoccluded and occluded im-
ages of unjointed and jointed surgical tools, and it performed 
well in identifying the vanishing point even with occlusion (14). 
The triangle method was implemented based on the method 
described by Huang et al. (12). The neural network performed 
better for unjointed tools, however the triangle method per-
formed better for jointed tools. Both methods had high angle 
errors for jointed tools, however, representing an area for fur-
ther improvement. Overall, neural networks have the poten-
tial to overcome the challenge of occlusion, showing promise 
for improving force feedback and reducing the cost of robot-
assisted surgery, enabling its adoption and leading to better 
outcomes for patients.

RESULTS
	 The angle error graphs for each method (Figures 3a, 4a, 
5a, 6a) show the cumulative distribution function of this error. 
The percentile rank on the y axis shows the percentage of im-
ages that have an angle error less than or equal to the corre-
sponding value on the x axis. This means that the angle error 
graph of a well-performing model would have a steep slope at 
first and flatten out quickly, showing that a high proportion of 
predictions have a small error.

Neural Network
	 Testing the untrained model on unjointed unoccluded tool 
images resulted in a low accuracy (90th percentile of 81°). 
After training it on the datasets, the accuracy improved by 
a lot and the model performed very similarly on unoccluded 

and occluded unjointed tools, with a 90th percentile angle 
error of 18-18.5°, and the CDF graph reaches 1 around 21° 
showing high accuracy (Figure 3a, 4a). However, the model 
performed poorly on unoccluded and occluded jointed tools, 
with a 90th percentile angle error of 62.5-64°, and the CDF 
reached 1 past 70° showing very low accuracy (Figure 5a, 
6a). The difference between the model’s performance on un-
jointed and jointed tools is also highlighted by the epoch loss 
during training (described in Materials and Methods), which 
was 3.5 for unjointed tools and 4.5-4.6 for jointed tools, show-
ing that the model is better suited to the former. The model’s 
performance is also shown by the sample output images for 
each dataset (Figures 3b, 4b, 5b, 6b).

Minimum Area Enclosing Triangle
	 For unoccluded unjointed tools, the 90th percentile of the 
angle error was 40°, which is only a bit lower than that for 
occluded unjointed tools (44°). Surprisingly, the result for un-
occluded jointed tools was better than for unjointed tools, as 
the 90th percentile was 27°. However, this method still did not 
work that well on occluded jointed tools (90th percentile: 54°), 
although it did better than the neural network.

The results of both methods (training neural network and 
minimum area enclosing triangle) are summarized in Table 1.

DISCUSSION
	 Our data gives a better understanding of the strengths and 
weaknesses of neural networks, the minimum area triangle 
method, and their effectiveness in identifying the vanishing 
points of surgical tools. As previously mentioned, surgeons 
must receive clear haptic feedback to minimize tissue dam-
age during RMIS. The location of the tool tip is required for 
this, and accurately identifying the tool’s vanishing point is a 
crucial step in this process, underscoring the need for an ef-
fective method.
	 The neural network performed better than the triangle 
method for unjointed tools, both with and without occlusion. 
The 50th percentile of the angle error was similar for both 
methods, but the 90th percentile for the triangle method was 
more than double that of the neural network, showing that the 
neural network is much more reliable. Most importantly, the 
neural network performed as well on the occluded dataset 
as it did on the unoccluded dataset, showing its potential to 
identify the vanishing point in realistic images of surgical tools 
and the consistency in its results. On the other hand, the tri-
angle method performed worse on the occluded dataset as 

Figure 1: Visual representation of how the vanishing point is 
determined. The line connecting the points (x1,y1) and (x4,y4) forms 
the left edge of the tool, and the line connecting the points (x2,y2) 
and (x3,y3) forms the right edge of the tool. The point where the lines 
converge is the predicted vanishing point.

Figure 2: Sample images from three of the four artificial datasets 
that were created to simulate surgical tools.  (a) Tool with a single 
joint. (b) Tool with two joints where each quadrilateral is smaller than 
the previous one. (c) Tool with some occlusion.
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compared to the unoccluded one, which indicates that neural 
networks are more useful when occlusion may be involved.
	 For unoccluded jointed tools, the neural network per-
formed more poorly than it did on unjointed tools with angle 
errors above 30° for the 90th percentile. The neural network 
performed very similarly for occluded jointed tools as well, 
once again confirming that it is not affected much by occlu-
sion. Since the triangle method draws a triangle around the 
entire tool, it was expected that it would perform poorly with 
jointed tools where each segment of the tool points in a dif-
ferent direction. However, the results were surprising as the 
triangle method performed better on unoccluded jointed tools 
than it did on unjointed tools, as the 90th percentile of the 
angle error was more than 10° lower for unoccluded jointed 
tools. This was also substantially better than the neural net-
work, with a 90th percentile angle error which was less than 
half that of the neural network. As expected, the triangle 
method performed much more poorly on occluded jointed 
tools, with the 90th percentile of the angle error being twice 
that of unoccluded jointed tools. 
	 Overall, these results indicate that while the minimum 
area enclosing triangle method works better for jointed tools, 
the neural network handles occlusion better. However, both 
methods still have high angle errors for jointed tools and need 
further improvement.
	 Some approaches that were tried to improve the accuracy 
of the neural network on jointed tools included inverting the 
image colors, changing the learning rate and hyperparame-
ters, and removing the image circle outline, but when applied, 
these did not improve the model’s performance. However, 
since some of the images showed good prediction of the van-
ishing point, the model could potentially be improved by train-
ing it on more images and for more epochs. 
	 The main limitation in this experiment is that artificial 
images were used instead of real-life images taken during 
surgery, due to the lack of available data. While the images 
generated by the program are a fair representation of the sur-
gical tool, it is still a relatively simplified version compared to 
the real images that the model would have to work with. It is 
also possible that there was not enough variety in the data-
set because of the train/test percentages, causing the model 
to overfit. Finally, the program used for the triangle method 
provided a more favorable result than it would in real-life due 
to the assumption that the coordinates of the vanishing point 

are already known, but this is not necessarily a limitation as 
the neural network nonetheless performed better than the tri-
angle method for unoccluded images, despite this advantage. 
Nevertheless, these results show promise for both methods 
in the future with further improvements.
	 In conclusion, the neural network performed much better 
than the minimum area enclosing triangle method in identify-
ing the vanishing point of unjointed tools, both with and with-
out occlusion, partially supporting our hypothesis. However, 
for both unoccluded and occluded jointed tools, the triangle 
method worked better than the neural network. One poten-
tial suggestion would be to utilize a method that combines 
neural networks and the triangle method. This may optimize 
the accuracy of the vanishing point prediction as the triangle 
method performs better on jointed tools while the neural net-
work is more consistent regardless of the level of occlusion. 
Overall, neural networks have a lot of potential to enable the 
application of computer vision to estimate force feedback as 
their performance is not impaired by occlusion, helping them 
overcome a significant challenge in the adoption of RMIS. 
This will be very useful in practical applications as real-life 
images are often messy and not very clear.
	 In the future, the neural network could also be trained on a 
dataset that combines the four datasets (unoccluded and oc-
cluded jointed and unjointed tools) to see if this improves the 
accuracy. More complex scenarios could also be modeled 
using datasets with multiple tools in each image. The neural 
network would need to be modified to give multiple vanishing 
point coordinates as the output, based on the number of tools 
in the image. A layer of complexity could be added by having 
tools which overlap each other, so the model would have to 
learn to differentiate the tools. Further, to simulate the mo-
tion of tools in real-life surgeries, a dataset with continuous 
motion could be created. In each consecutive image, the tool 
would be displaced by a few pixels in a given direction. When 
the series of images is viewed side-by-side, it would appear 
that the tool follows a random path within the image circle. 
These improvements could help make neural networks more 
accurate, allowing them to fully replace the minimum triangle 
method.

MATERIALS AND METHODS
Dataset
	 A Python program was written to create a dataset of 

Figure 3: Results for the neural network’s performance on 
unoccluded unjointed tools. (a) Cumulative distribution function 
(CDF) of the angle error for unoccluded unjointed surgical tools. (b) 
A sample image of the predicted vanishing point. 

Figure 4: Results for the neural network’s performance on 
occluded unjointed tools.  (a) Cumulative distribution function 
(CDF) of the angle error for occluded unjointed surgical tools. (b) A 
sample image of the predicted vanishing point. 
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10,000 images with randomly generated surgical tool imag-
es and ground truth masks with the corresponding vanish-
ing point due to a lack of published datasets including sur-
gical field vanishing points. The dataset was created using 
the ImageDraw module from Python’s ‘pillow’ library (Python 
v3.11.4). The content from endoscopic cameras is limited to 
a circular area since the image sensor is usually larger than 
the image circle of the endoscope, so the tools in the dataset 
were confined within a circle (16).
	 The dataset was divided into four subsets based upon the 
following categories: unjointed tools without occlusion, un-
jointed tools with occlusion, jointed tools without occlusion, 
and jointed tools with occlusion. The datasets with occlusion 
have black blobs covering parts of the tool to simulate the oc-
clusion caused by tissues and blood in real life. All datasets 
were split into 96% for training, 4% for testing.
	 To create the tool shape, the point from which the tool ap-
pears was randomly selected along the bottom half of the im-
age circle, as this is generally the case in real life. The second 
point was chosen randomly to the right of the first point within 
a range of π/9 radians to π/5 radians. This forms the bottom 
edge of the first quadrilateral. To create the rest of the tool, 
two points were randomly chosen to create a top edge. This 
process was then repeated with the top edge of the first quad-
rilateral being the bottom edge of the second quadrilateral 
and so on to create two or three quadrilaterals to form a joint-
ed tool (Figure 2b). Finally, a small semi-circle was drawn at 
the tip of the last quadrilateral to make the tool shape look 
realistic. To avoid any biases, all parameters were chosen 
randomly within given ranges. Note that the coordinates are 
chosen in an anti-clockwise order, with the first coordinate 
being at the bottom left (Figure 1). A GitHub repository has 
been created with the code for the dataset (17).
	 To generate the top edge of a quadrilateral, a random 
point was chosen along the perpendicular bisector (within the 
range of 45.0 to 85.0 pixels) of the bottom edge. A random 
length between 40% and 60% of the base length was chosen 
for the length of the upper edge. A line of this length was 
drawn parallel to the base, with the point on the perpendicular 
bisector as its center, forming a trapezium. This line was then 
rotated by a random angle between -π/5–π/5 radians. This 
forms the upper edge of the quadrilateral. This method can be 
easily generalized for any number of quadrilaterals using the 
top edge of the first quadrilateral as the base for the second 

one. This is the method that was finally used to generate a 
dataset of 10,000 images.
	 In real life, the tool image is often occluded due to tissues 
covering the tool. The occluded dataset was generated by 
creating blobs on the image to cover parts of the tool. The 
code for creating the blobs was generated based on code 
found on Stack Overflow (18). The ‘seedval’ and ‘thresh-
old’ parameters were randomized within a range to vary the 
amount of occlusion created by the blobs, making the occlu-
sion more realistic (Figure 2).
	 For the ground truth masks, the neural network expected 
the coordinates of the vanishing point with respect to the im-
age center, not an image with the vanishing point. Therefore, 
a ‘.txt’ file with the coordinates was given for each image. A 
third value was also required in the ‘.txt’ file: the focal length. 
However, this value can only be found based on the camera 
parameters, and this information is not available, so it was set 
to a common value of 1.0. The vanishing point is the point of 
intersection of the lines forming the two sides of the tool’s final 
quadrilateral and its coordinates are calculated as explained 
below (Figure 1).
	 To find the point of intersection of the two lines, we must 
first find the equations of the lines by calculating their respec-
tive slopes and y intercepts.

At the point where the two lines intersect, we know that y1 = y2. 
We can use this to solve for the
coordinates of the point of intersection, which is the vanishing 
point (xv,yv):

To find the coordinates of the vanishing point with respect 
to the center, the coordinates of the image center were sub-

Figure 5: Results for the neural network’s performance on 
unoccluded jointed tools. (a) Cumulative distribution function 
(CDF) of the angle error for jointed surgical tools. (b) A sample image 
of the predicted vanishing point. 

Figure 6: Results for the neural network’s performance on 
occluded jointed tools. (a) Cumulative distribution function (CDF) 
of the angle error for jointed surgical tools. (b) A sample image of the 
predicted vanishing point.
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tracted from the coordinates of the vanishing point.

Neural Network
	 The neural network used in this paper is an “end-to-end 
trainable deep network”, which uses geometry-inspired con-
volutional operators to detect the vanishing points (14). This 
uses a novel approach involving conic convolution to extract 
features like structural lines. This model was chosen because 
it is expected to be more accurate as it has been created spe-
cifically for identifying vanishing points, although in a different 
context of natural scenes. A summary of the neural network’s 
configuration is shown in the Appendix. 
	 The code used for the neural network requires a CUDA 
enabled GPU, which was not available on the local device. 
Therefore, the code was transferred from the PyCharm IDE 
on a Mac OS laptop to Google Colaboratory, where a T4 GPU 
was available. The original code uses two GPUs, but only one 
GPU was used for this paper due to hardware limitations. 
	 The source code for the neural network was written to 
accept one of three specific datasets: Wireframe dataset, 
ScanNet dataset, or Tmm17 dataset. The ‘datasets.py’ file 
contained three classes which were written specifically to 
process each of these datasets. Since the dataset of surgical 
tools has a different format and structure, a new class was 
written to process this data and change it from JPEG images 
to the tensor format required for the neural network.
	 To determine the performance of the neural network, a 
binary cross entropy loss function was used to determine the 
performance of the neural network. It tracks incorrect labeling 
and penalizes the model for confident but incorrect predic-
tions (19). If the log loss value is low, it means that the model’s 
accuracy is high. The formula represents this loss function, 
where y is the ground truth value and p is the probability that 
the predicted value for the vanishing point is correct, i.e., in 
the positive class (19).

    Binary cross entropy = – [y * log (p) + (1 – y) * log (1 – p)] 

	 The NeurVPS Conic Convolution Neural Network, which 
was trained on the Tmm17 (Transactions on Multimedia) da-
taset of natural scene images, was first tested on surgical tool 
images, using a dataset of unjointed surgical tools for evalu-
ation (14). The model was then trained and tested with four 
different datasets: unjointed unoccluded tool, unjointed oc-

cluded tools, jointed unoccluded tools, and jointed occluded 
tools. For each experiment, the neural network was trained 
for 2 epochs (i.e, 2 passes through the dataset) on a dataset 
of 10,000 images, which was split into 96% for training and 
4% for testing. The higher proportion for training was chosen 
to improve the model’s accuracy by maximizing training data 
availability.
	 During evaluation, the angle error was calculated for the 
results using both methods of finding the vanishing point. The 
angle error is the difference between the angle to the ground 
truth vanishing point and the angle to the predicted vanishing 
point, with respect to a common reference point.

Minimum Area Enclosing Triangle Method
	 To obtain the minimum area triangle (12), the vertices of 
the tool first need to be obtained. The program for this pro-
cess was created by building on the code from an online 
source (20) and using the cv2.findContours function to get 
the boundary points of the tool shape. These points were then 
used as input to the cv2.minEnclosingTriangle function, which 
returns the area and vertices of the minimum area enclosing 
triangle (Figure 7).

Table 1: Statistical results for the neural network’s and minimum area enclosing triangle method’s performance on all four datasets. 
The 50th and 90th percentiles of angle error for both methods and mean training loss for neural networks when tested on unjointed and jointed 
tools, both with and without occlusion. The 50th and 90th percentiles for the pre-trained model’s angle error are also included for the neural 
network.

Figure 7: The ground truth vanishing point of a jointed tool 
and the vanishing point predicted using the minimum area 
enclosing triangle. The yellow triangle is the minimum area 
enclosing triangle. The green point shows the ground truth vanishing 
point and the orange point shows the vanishing point predicted using 
the triangle method.
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	 The vanishing point is obtained by choosing the triangle 
vertex that is closest to the image center if at least one ver-
tex is within the image circle, and in the case where all the 
vertices are outside the image circle, it suggests choosing 
the point on the circumference that coincides with the line 
joining the tool tip and the triangle vertex nearest to it. How-
ever, in this paper, the process was slightly simplified for the 
case where the triangle vertices are outside the image circle. 
In this case, the vertex closest to the ground truth vanishing 
point was chosen as the prediction. This could be done as the 
dataset for training the neural network was created manually, 
so the ground truth vanishing point is already known.
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APPENDIX

Figure A1: Summary snapshot of the neural network configuration. The neural network configuration has been included in the Appendix, 
as it is not a result of the experiment. Rather, it is a piece of additional information for anyone interested in learning more about the neural 
network.


