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used 3D printing material (3). However, when it isn’t recy-
cled properly, it degrades slowly and contributes to the large 
amount of plastic pollution present (4,5).  Plastic consumption 
has quadrupled over the past 30 years and 22% of this plastic 
is mismanaged (6). Prior studies have investigated using re-
cycled PLA as the material in 3D printing for a more sustain-
able alternative to the directly produced virgin PLA (7). The 
use of recycled PLA mixed with unused PLA and additives, 
such as copper microparticles and organic silanes used to 
improve the PLA’s performance and processability, would be 
more cost-effective and sustainable compared to pure PLA, 
however, further study is needed to determine the most sus-
tainable and strong mixture of recycled PLA, unused PLA, 
and these aforementioned additives. Additionally, Teruel et al. 
investigated using predictive models to reduce the variability 
of recycled polypropylene plastic and Barreto et al. explored 
the potential of rice husk as a filler for PLA filaments (8,9). 
These findings are promising for opening new avenues for 
study, but still need to be investigated for longevity over mul-
tiple bouts of recycling and their effectiveness in implementa-
tion for various applications in 3D printing. Rather than mak-
ing the material more sustainable, in this study, we wanted to 
provide a direct solution to the plastic waste issue by reducing 
the distortion to parts during the printing process, leading to 
less waste produced overall. 
	 Several studies have been conducted concerning print 
distortion and failure reduction by using AI models to moni-
tor print quality in-situ (during the manufacturing process) 
(10-14). Neural networks have been developed using audio 
emissions and vision systems to classify the print quality 
for each layer printed, achieving high accuracies (80-90%), 
however they do not provide solutions for real-time changes 
that should be made to stabilize the print quality (10-12).  In 
response, other research has explored using state-of-the-art 
object detection algorithms and vision systems with neural 
networks to estimate adjustments to the process parameters 
and input values, such as altering the drive voltage of Liquid 
Metal Jet Printing to control ink volume, reaching high accura-
cies (13,14). This research can affect the print quality, but the 
complex technology involved is not accessible or applicable 
to the general public and most academic settings.
	 Previous studies suggest that using in-situ monitoring is 
either not effective in real-time scenarios for improving the 
quality of prints, or the technology necessary to make it effec-
tive is inaccessible for those without a large budget (10-14). 
Therefore, in-situ monitoring would not cut down on waste 
produced from failed or unusable prints in most cases. In re-
sponse, recent studies have focused on predicting the print 
parameters of a 3D print before the manufacturing process 
that optimize a certain factor of the part (15-17). Neural 
networks have been used to optimize the print parameters 
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SUMMARY
Additive manufacturing technologies are increasingly 
being used in both academic and corporate settings 
as an efficient and precise method of manufacturing. 
However, the accuracy of affordable 3D printing 
methods is compromised by distortion of the 
plastic filament. These inaccurate 3D prints may 
not be usable; incorrect sizing of specific features, 
such as holes, can mean the part does not fit in the 
larger assembly and would need to be discarded. 
This can contribute to plastic pollution due to 
mismanagement, compounded by difficult access to 
the recycling process of the most popular filament, 
Polylactic Acid (PLA). In this study, we investigated 
to what extent the distortion introduced in the 
additive manufacturing process can be predicted 
and minimized. We hypothesized that predicting the 
computer-aided design (CAD) dimensions based on 
historical print misalignments would be effective 
in minimizing this distortion. We used a histogram-
based gradient boosting regressor and trained it on 
3D printing data of hole dimensions printed in PLA 
filament, obtained from Mendeley Data. Our model 
predicts the CAD geometry that results in the desired 
final print dimension, accounting for distortion. The 
model had a root mean squared error of 0.0614 mm, 
a mean absolute error of 0.0452 mm, and an R2 score 
of 99.617%. These results can be used to minimize 
inaccuracies and prevent waste production.

INTRODUCTION 
	 3D printing is evolving in its use by many big companies 
to produce safe and reliable products and is developing in the 
fields of medicine, defense, engineering, and others (1). How-
ever, since accurate technologies are being monopolized or 
involve complex processes, those available for academic or 
prototyping purposes are susceptible to distortion and failure 
(2). Especially with widely used 3D printers, the plastic fila-
ment is prone to sizing mistakes which can lead to warping 
of the parts, making them unusable. For example, the printer 
may continue its job on top of a distorted piece, creating an 
unviable product. Although manual tolerancing — printing 
larger dimensions to account for distortion during the printing 
process — occurs, it is estimated and thus not a reliable way 
to achieve the desired geometry. Additionally, proper recy-
cling of this waste is hard to manage and difficult to access, 
often resulting in mishandling and consequently, pollution. 
	 Polylactic acid (PLA), a biobased polymer, is the most 
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for greater strength, hardness, surface finish, and tensile 
strength of both recycled and virgin PLA parts (15, 16). Ad-
ditionally, Nelaturi et al. used a printability map that simulated 
the printing process to evaluate the expected structural devia-
tions before manufacturing for distortion correction, however, 
did not maintain the original dimensions (17).
We aimed to add to the previous research by using an effec-
tive and cost-efficient machine learning model to predict di-
mensions instead of parameters in the 3D print and optimize 
the precision of the print. We hypothesized that predicting the 
CAD dimensions that should be printed, accounting for his-
torical print misalignments, would be effective in minimizing 
the distortion. To test this, we utilized a supervised learning 
regression model, the histogram-based gradient boosting re-
gressor, which outputs the predicted CAD geometry of holes 
based on the desired final print dimension and numerical pa-
rameters (perimeter speeds, vertical shells, and layer height), 
accounting for any distortion during the print process. Our 
model trained well on the data and had near negligible error, 
showing the potential of AI to minimize distortion in 3D printed 
PLA parts. In academic and prototyping settings, this model 
can be used as a more precise form of estimated tolerancing, 
reducing distortion and printing waste.

RESULTS
	 To determine if machine learning could be applied to pre-
dict the optimal CAD geometry, we utilized a dataset from 
Mendeley Data, which included information about printed sur-
faces with holes in PLA using a Prusa MK4 3D printer. The 
recorded data were CAD dimensions of holes (mm), the final 
printed dimensions in PLA (mm), and the print parameters: 
vertical shells, layer height (mm), and external, small, and 
overall perimeter speeds (mm/s). We picked the histogram-
based gradient boosting regressor after testing it on our data-
set in comparison with other models. We then tuned several 
of the hyperparameters of this model (max_iter, max_depth, 
learning_rate, and max_leaf_nodes), optimizing the mean 
squared error of the model with 80% training, 10% validation, 

and 10% testing. We dropped the small and external perim-
eter speeds from the input matrix since they did not affect the 
results of the model, then created our final model.
	 When visualizing our dataset, we observed a large gap 
in the data, as holes with CAD dimensions between around 
6.2 and 7.6 mm were not used in the samples (Figure 1). 
We observed some differences in the range and centers of 
distortion when we graphed the distortion against the values 
of the vertical shell, layer height, and perimeter speed values. 
This is due to the differences in the printing process associ-
ated with the specific aforementioned parameters that could 
affect how much the melted plastic spread into the hole. For 
example, if the perimeter speed is higher, the plastic may not 
have as much time to cool before another layer is extruded 
on top of it. Additionally, by comparing histograms of the hole 
dimensions before and after 3D printing, we saw a noticeable 
difference in the distributions of observations in the higher 
range of values, indicating that larger dimensions experience 
more variability between the CAD dimensions and final print-
ed dimensions (Figure 2).
	 We used the input parameters (layer height, vertical shells, 
and perimeter speeds) and the CAD dimensions of the holes 
to predict the necessary dimensions to be 3D printed account-
ing for distortion. When choosing the type of model used, we 
compared the metric scores of the models on the three vali-
dation sets (5%, 10%, and 20% splits of the data) to observe 
which had the best results with the dataset. For instance, the 
histogram-based gradient boosting regressor’s best results 
using 80% training, 10% validation, and 10% testing were 
a 0.0499 mm MAE, 0.0550 mm RMSE, and 99.3925% R2 

score. In comparison, the linear regression’s metric scores 

Figure 1: Visualization of dataset comparing the CAD model 
diameter to 3D printed diameter of holes. Scatterplot of the hole 
samples (n=180) with CAD diameters (mm) before printing on the 
x-axis and PLA 3D printed diameters (mm) on the y-axis. The values 
were obtained from the original processed dataset.

Figure 2: Histogram visualizations of CAD model diameter and 
3D printed diameter data. Histograms of the frequency of (A) CAD 
diameter (mm) and (B) 3D printed diameter (mm) ranges of the 180 
samples from the original dataset.
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with the same data split were a 0.0744 mm MAE, 0.0833 mm 
RMSE, and 98.6070% R2 score. As another example, the ran-
dom forest regressor’s metric scores with the same data split 
were a 0.0529 mm MAE, 0.0612 mm RMSE, and 99.2481% 
R2 score. 
	 We also created a table of the model’s metric values re-
sulting from individually dropping each feature from the input 
matrix of the model (perimeter speeds, layer height, vertical 
shells, and printed diameter), which showed us that dropping 
the external and small perimeter speeds (mm/s) from the in-
put did not affect the performance of the model, so those pa-
rameters were unnecessary and were dropped from the input 
matrix (Table 1). Then, when hyperparameter tuning, we cre-
ated a graph of the error corresponding to each hyperparam-
eter value for each validation set and were able to observe 
the curves the MSE went through and the optimal value for 
each hyperparameter, for example with the max depth hyper-
parameter (Figure 3).
	 Our final model was the histogram-based gradient boost-
ing regressor, which after hyper parameter tuning had a 

0.0452 mm mean absolute error (MAE), 0.0614 mm root 
mean squared error (RMSE), and 99.617% R2 score. The 
small error values indicated that our model accurately pre-
dicts the CAD diameters needed to print a particular dimen-
sion with specified parameters. Typical tolerance values for 
PLA range between 0.125 and 0.5 mm, depending on the type 
of fit desired (loose, standard, or tight) (18). Therefore, error 
values of 0.0452 and 0.0614 mm are not likely to affect the 
usefulness of the part. 
	 From the training loss curves, the mean squared error 
(MSE) decreased with more iterations of training (epochs), 
showing that the model effectively identifies patterns in the 
data. Towards the later epochs, the training loss curves all 
converge and stay constant, indicating the model has learned 
all it can from the data at that point. We also observed that 
the validation loss curves are very similar in shape and 
distribution to the training loss curves, which indicates our 
models can learn from the training data and accurately gen-
eralize the learned patterns to the validation dataset, which 
it has previously not been trained on (Figure 4). We were 
assured that our models were not over or underfitted to the 
data through our observations of these loss curves; the data 
trains the models well to make accurate predictions on the 
training datasets, and the models are able to generalize those 
established relationships to make accurate predictions on the 
validation sets as well. 
	 We visualized predictions of the model on the testing set, 
noting that they were not linear and were affected not only by 
the printed diameter but also the other input features. For ex-
ample, several data points with a printed dimension of 5.7 mm 
had differing predicted CAD dimensions due to the other pa-
rameters (vertical shells, layer height, and perimeter speeds) 
(Figure 5). We also visually examined the error of our final 
model by plotting the testing values of the final printed dimen-
sions with the corresponding residuals of the CAD geometry. 
The residuals appeared random, apart from the gap from 
around 6.0 to 7.5 mm introduced because our original dataset 
did not include printed dimensions between those values (Fi-
gure 6). The absence of a pattern in the residual plot signals 
that the relationship established by our histogram-based gra-
dient boosting regressor is adequate in predicting the CAD 
dimensions, and we do not have evidence of systematic error. 
We observed a few outliers above and below most residuals 

Table 1: Metric scores for each dropped input feature. The mean absolute error values (mm), mean squared error (mm2), and R2 when 
dropping each input parameter from the input matrix for the model using 80% training, 10% validation, and 10% testing before hyperparameter 
tuning. After the input matrix was re-defined to exclude the indicated parameter(s), the model was trained using the training set and the error 
values in the table were from testing on the validation set.

Figure 3: Graph of mean squared error for each value of the 
hyperparameter max depth. Graph of the MSE values (mm2) for 
each value of the max depth parameter in terms of the levels (which 
limits the amount of iterations of the decision trees) used in the model, 
from 1 to 20 levels, for the model using 80% training, 10% validation, 
and 10% testing. The model was tested using the validation set to 
optimize the max depth for the best mean squared error.
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in this plot (higher than 0.1 or lower than -0.1); however, the 
majority of the residuals are between -0.05 to 0.05 mm, which 
is not concerning given that PLA can also flex to a certain ex-
tent and fit into the larger part if it is slightly distorted (Figure 
6). 
	 Additionally, we performed a k-fold cross validation to eval-
uate the performance of the model when faced with different 
training and testing data. After performing the 10-fold cross 
validation, the mean RMSE was 0.0632 mm with a standard 
deviation of 0.0082 mm. The mean MAE was 0.0507 mm 
with a standard deviation of 0.0095 mm. The mean R2 score 
was 99.558% with a standard deviation of 0.1017%. The low 
standard deviations compared with the means told us that our 
model was consistent with new training and testing datasets. 
Additionally, the original results are within 1 standard devia-
tion of the mean scores, which is not unusual, so we can be 
further assured that our model did not overfit to the specific 
patterns of the validation dataset when tuning hyperparam-
eters.

DISCUSSION
	 We believe the model’s good performance was due to the 
clustering of data points in a small range, as well as the strong 
relationship between CAD geometry and parameters and the 
final print dimensions. We suggest that the histogram-based 
gradient boosting regressor performed the best due to the 
“ensemble” learning method it employs, similar to random for-
est regression. Because both methods combine several deci-
sion trees, the analysis of the patterns in the dataset is more 
complex, but accurate, which led to both methods performing 
relatively well when their metric scores were observed before 
hyperparameter tuning. However, the random forest regres-
sor uses decision trees in parallel, which do not interact with 
each other, while the histogram-based gradient boosting re-
gressor uses decision trees that iterate and improve on each 
other, leading to more precise results for certain datasets 
like ours. One limitation, however, is that contrary to a lin-

ear regressor or neural network, the histogram-based gradi-
ent boosting regressor only considers the patterns observed 
within the range of the dataset, so if extrapolated, it will not be 
able to predict accurately and will assume the same predic-
tion as the nearest input value inside the range.
	 Therefore, one aspect to take into consideration is the gap 
in data between about 6.2 and 7.5 millimeters, where there 
are no holes tested within this range of diameters. Due to the 
danger of extrapolation, we cannot assume that the observed 
patterns exist within that range, and we are limited by our 
data. Additionally, the data only contained 180 samples, and 
the range of values (5.5-8 mm) was not very large. In general, 
data within the field of additive manufacturing is sparse, so 
the collection of more data to build better models would be 
helpful. 
	 Additionally, the model using 90% training, 5% validation, 
and 5% testing data did not yield the highest accuracy despite 
having a large training dataset, which we believe is due to 
the resulting small validation set. Small validation sets could 
skew the hyperparameters to represent a minority of the da-
taset and may not result in the most effective tuning for the 
whole dataset. On the other hand, we think the model using 
60% training, 20% validation, and 20% testing data did not 
have as much training data as the model with 80% training, 
10% validation, and 10% testing to identify patterns of the da-
taset. This is why we believe the final model (80% training, 
10% validation, 10% testing) had a balance between training 
and tuning success through the training and validation datas-
ets, leading to good performance on the testing dataset. 
	 A natural expansion to this research on the relationship 
between CAD dimensions with printing parameters of holes 
and the final printed dimensions is an investigation of similar 
relationships with other CAD geometries or optimization of 
different filaments as well. For example, ABS (Acrylonitrile 
Butadiene Styrene) or TPU (Thermoplastic Polyurethane) are 
other popular filaments that could be optimized for distortion. 
Other CAD geometries to be investigated include different 
hole shapes, slots, grooves, and overhangs, as these geom-
etries are also frequently distorted. Additionally, developing 
a web application or add-on to CAD technologies that would 

Figure 4: Loss curves of the histogram-based gradient boosting 
regressor. Line graph of the mean squared error values for each 
iteration of the model through the dataset, for the training and 
validation sets (92, 138, and 192 epochs). Dotted curves represent 
the training curves and solid curves represent the validation curves 
for each training, validation, and testing split, separated by color. 
Training and validation sets were randomly selected from the original 
dataset and were used to train and tune the models. Mean squared 
error is is the error resultant from the models’ predictions on the 
training and validation sets.

Figure 5: Scatterplot of model predictions for the printed 
dimensions. Scatterplot showing the predicted CAD dimensions, 
in mm, of the holes in testing set (n=18, 10% of the total dataset) 
corresponding to the printed dimensions (mm). The model was trained 
on the training data (80% of total dataset) and the hyperparameters 
were tuned on the validation set (10% of the total dataset) before 
predicting on the testing data shown.
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output the dimension to print based on an input of the desired 
dimension and layer height, vertical shells, and perimeter 
speeds could provide ease of use and a practical applica-
tion of the findings, instead of the manual estimated toler-
ancing that occurs today. Particularly with different materials 
and complex designs, an automated process accounting for 
distortion would increase efficiency in prototyping and prod-
uct creation. If such a method were implemented and avail-
able to the larger public, the manufacturing process would 
be much more accurate and minimize these distorted parts, 
which could lead to a reduced amount of plastic waste from 
this field.
	 The primary advantage of our work compared to previous 
research lies in the usability of similar models as an effective, 
inexpensive solution to counter PLA distortion in 3D printed 
models. Our model’s training process and performance dem-
onstrates the effectiveness of a histogram-based gradient 
boosting regressor in predicting distortion from additive man-
ufacturing of PLA parts. If applied to a real-world situation, we 
have evidence to suggest machine learning models like the 
one developed in this study can be used to account for distor-
tion and decrease the plastic waste produced from distorted 
3D printed products. 

MATERIALS AND METHODS
Dataset
	 The dataset used came from Mendeley Data and was con-
tributed by Diana Popescu from the Universitatea Politehnica 
din București (19). It includes 180 samples of holes with 7 pa-
rameters; perimeter speed (mm/s), external perimeter speed 
(mm/s), small perimeter speed (mm/s), vertical shells, layer 
height (mm), and the final printed diameter (mm) were used 
as input for predicting the CAD geometry (diameter in mm) in 
PLA parts. 

Data Visualization
	 To visualize the dataset, we plotted the CAD diameter vs. 
the final printed diameter. We calculated distortion by finding 

the difference between the CAD dimension and the actual 
printed dimension. This distortion calculation method was 
chosen to account for the spread of melted plastic upon 3D 
printing holes, which usually causes the hole, and thereby the 
print dimension, to be smaller than it was supposed to be.  
For the vertical shells, perimeter speed, and layer height, 
there are a few fixed values, and the data is spread evenly 
between them. However, since the data of the CAD dimen-
sions and final printed dimensions are continuous with many 
different values included in the dataset, we also utilized his-
tograms to observe patterns in the distribution of the hole di-
mension data.

Model Selection
	 The objective of our model was to output the CAD dimen-
sions needed from an input of the desired final print dimen-
sion and the settings used (perimeter speeds, layer height, 
vertical shells) with the most precise and accurate results. 
We obtained 3 different training, validation, and testing da-
tasets by splitting the original dataset into 60% training, 20% 
validation, and 20% testing; 80% training, 10% validation, and 
10% testing; and 90% training, 5% validation, and 5% testing. 
We chose these percentages because they are in the range 
of widely accepted ratios, and present different distributions 
to see which distribution has the greatest balance between 
training the data well and not overfitting to the data.
	 To compare the metrics with this dataset and find the best 
fit for our situation, we generated multiple sklearn models us-
ing the sklearn package in python version 3.10.12 (random 
forest regression, linear regression, lasso regression, ridge 
regression, decision tree regression, support vector regres-
sion, gradient boosting regression, and histogram-based 
gradient boosting regression) and tested them on our three 
validation sets. The histogram-based gradient boosting re-
gressor resulted in the least mean squared error and mean 
absolute error, and highest R2 score when using the 80% 
training, 10% validation, and 10% testing ratio, so it was cho-
sen for our model.

Model Tuning and Testing
	 After choosing the model, we tuned its hyperparame-
ters for each data split by determining which values would 
minimize the MSE when tested on each validation set. We 
optimized the MSE, a metric that heavily punishes outliers, 
because large distortions to 3D printed parts could be un-
desirable and lead to harsher consequences than slightly 
distorted parts. We tuned the maximum depth, maximum 
iterations, learning rate, and maximum leaf nodes hyperpa-
rameters by conducting a grid search and writing functions 
for each hyperparameter that would test the mean squared 
error of each reasonable value (1-20 maximum depth, 50-200 
maximum iterations, 0.01-0.5 learning rate, and 2-31 maxi-
mum leaf nodes) on the validation sets and show the value 
that minimized the mean squared error produced. Through 
this method, we identified the hyperparameter values that re-
sulted in the lowest MSE.
	 The optimized parameters for the model using 60% train-
ing, 20% validation, and 20% testing were a max depth of 3, 
a learning rate of 0.2, a max iterations of 92, and a max leaf 
nodes of 5.  The optimized parameters for the model using 
80% training, 10% validation, and 10% testing were a max 
depth of 2, a learning rate of 0.7, a max iterations of 138, and a 

Figure 6: Randomly distributed residuals from the final 
model for each printed dimension in the testing set. Residual 
scatterplot showing the final dimensions (mm) from the testing set 
(n=18) in relation to the CAD dimension residuals (mm), which are 
the true CAD dimensions from the dataset minus the predicted CAD 
dimensions from the output of the model. The model was trained 
on the training data (80% of total dataset) and the hyperparameters 
were tuned on the validation set (10% of the total dataset) before 
predicting on the testing data shown.
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max leaf nodes of 4. The optimized parameters for the model 
using 90% training, 5% validation, and 5% testing were a max 
depth of 3, a learning rate of 0.42, a max iterations of 192, and 
a max leaf nodes of 6.
	 We observed the error values and R2 score for each of the 
three models to find which way of splitting the data was most 
effective for our dataset. We chose the model with the least 
error and highest R2 score, which was the model using 80% 
training, 10% validation, and 10% testing from the dataset, 
although the model using 60% training, 20% validation, and 
20% testing had similar scores of 0.0455 mm MAE, 0.0614 
mm RMSE, and 99.578% R2 score.
	 We also tested the effects of each input feature (perimeter 
speeds, layer height, vertical shells, and printed diameter) on 
the performance of the model by removing them one at a time 
from the input matrix and observing the change in the result-
ing model metric outputs (prior to hyperparameter tuning). 
We observed that excluding all three of the perimeter speed 
parameters from the X matrix slightly decreased the error of 
the un-tuned model and increased the R2 score, therefore im-
proving its performance when compared with the un-tuned 
model including all the input values (Table 1). However, tun-
ing the hyperparameters for this new X matrix resulted in our 
model excluding perimeter speeds to have a higher error and 
a lower R2 score (worse results) than the model including pe-
rimeter speed on the test set, with a 0.0503 mm MAE, 0.0639 
mm RMSE, and 99.585% R2 score. In other words, keeping 
the perimeter speed categories in the X matrix helped the 
model’s tuned hyper parameters accurately reflect the pat-
terns in the dataset. So, since dropping two perimeter speed 
parameters had no effect on the metric scores of the model, 
we dropped the external perimeter speed (mm/s) and small 
perimeter speed (mm/s) from the X matrix (Table 1). A final 
model was created with the dataset split, tuned hyperparam-
eters, and dropped parameters to observe the final metrics 
and accuracy of the model, which gives the CAD geometry 
needed for the desired print dimension to be achieved with 
the print parameters.
	 To evaluate the performance of our model with different 
training and testing data, we conducted a k-fold cross vali-
dation using the sklearn package in python. This procedure 
splits the dataset into k (a number that is chosen) folds, and 
each fold can be used as the testing set while the others are 
used to train the model. Therefore, the model will be trained 
and tested with k different variations and the metric scores 
can be observed to determine how skilled the model is with 
new train and test sets. We chose a k value of 10 because it 
is a widely accepted value that results in scores with low bias.
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