
20 NOVEMBER 2024  |  VOL 7  |  1Journal of Emerging Investigators  •  www.emerginginvestigators.org

Article

be tested and their robustness quantified, given their potential 
use in medical circumstances.
	 Recent medical tools, such as Med-PaLM, rely on large 
amounts of training data and validation to be successful 
in communicating with clinicians and providing accurate 
diagnoses and information for general applications (5). 
Otherwise, AI in the field of medicine has been limited to 
niche use cases, where models are only trained for a specific 
task within the field of pathology, such as analyzing lymph 
node biopsies for metastatic breast cancer (6). Furthermore, 
there is a lack of annotated data for model training (6). 
	 This study focused on using the existing abilities of text 
embedding models to accurately classify textual data in 
a medical context, without the need to train specifically for 
medical text data or rely on annotated data. The hope was 
that through testing with different kinds of text data, we could 
reach a qualitative and quantitative conclusion about the 
type of text data that can best achieve accurate diagnoses. 
However, since this data requires collection by medical 
professionals, it was difficult to obtain. Therefore, we used 
the existing knowledge embedded in LLMs and used that 
to test the applicability of text embedding models as text 
classifiers in medicine. This would allow clinicians to classify 
their text and get diagnosis help without the need to interact 
with an LLM. Additionally, by examining what type of text data 
(whether sparse or detailed), we also reached conclusions on 
the optimal way to store and retrieve data to make the best 
classifications. Since greater detail and more context usually 
leads to better sentence prediction for LLMs, we felt that it 
was worth exploring if the same behavior translated to text 
embedding models and vector databases (7).  
	 We designed a robustness test to measure the quantitative 
aspects of the textual data presented. We hypothesized that 
higher embedding dimensions, coupled with descriptive data 
in the vector database, would lead to better classifications of 
medical data. Through our experimentation, we showed that 
having a large amount of data stored in the vector database 
was far more effective for classifying text than having a 
less data. More data in the vector database also allowed 
for sparser data to query it, as the vector database’s cosine 
similarity was better able to accurately classify a sparse query 
when comparing it to a dense vector. 

RESULTS
	 We performed this study in hopes of understanding how 
embedding dimensions along with density of knowledge in our 
knowledge base would influence the quality of classification 
by the text embedding models. We quantitatively validated 
our hypothesis using a robustness test, which provided us 
with standard classification metrics — such as accuracy and 
F1 score — so that we could compare the performance of 
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SUMMARY
The advent of Large Language Models (LLMs) is 
promising and LLMs have been applied to numerous 
fields. However, it is not trivial to implement LLMs 
in the medical field, due to the high standards for 
precision and accuracy. Currently, the diagnosis of 
medical ailments must be done by hand, as it is costly 
to build a sufficiently broad LLM that can diagnose a 
wide range of diseases. Here, we explore the use of 
vector databases and embedding models as a means 
of encoding and classifying text with medical text 
data without the need to train a new model altogether. 
We used various LLMs to generate the medical data, 
then encoded the data with a text embedding model 
and stored it in a vector database. We hypothesized 
that higher embedding dimensions coupled with 
descriptive data in the vector database would lead 
to better classifications and designed a robustness 
test to test our hypothesis. By using vector databases 
and text embedding models to classify a clinician’s 
notes on a patient presenting with a certain ailment, 
we showed that these tools can be successful at 
classifying medical text data. We found that a higher 
embedding dimension did indeed yield better results, 
however, querying with simple data in the database 
was optimal for performance. We have shown in this 
study the applicability of text embedding models and 
vector databases on a small scale, and our work lays 
the groundwork for applying these tools on a larger 
scale.  

INTRODUCTION
	 The rapid advancement of medical knowledge creates 
a need for new ways to store and represent medical data. 
For example, one rapidly advancing area is natural language 
processing (NLP) and the advancements have provided 
invaluable tools, namely large language models (LLMs), which 
are built off the transformer architecture and can encode and 
process non-numerical data in a numerical way (1). 
However, LLMs are not the only major advancement in NLP in 
recent times. Vector databases and text embedding models 
have advanced in recent years and are increasingly usable 
in various contexts, such as medicine (2, 3). For example, 
researchers at Google have developed an LLM, Med-PaLM, 
to explore the uses of LLMs specifically in the medical context 
(4, 5). Text embedding models and vector databases provide 
a robust method of both storing and representing non-
numerical data, such as text data. Utilization of these tools in 
areas that use a large amount of text, like clinical data, should 
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different models. Instead of training a multi-billion parameter 
LLM locally, we explored the effectiveness of existing tools 
— namely vector databases and text embedding models — 
in the medical context (8). The LLMs used to generate the 
data were OpenAI’s gpt-3.5-turbo, Google’s flan-t5-xl, and 
Meta’s LLaMA-70b-chat (9-12). The text embedding models 
used to classify the data were OpenAI’s text-embedding-
ada-002 and Google’s textembedding-gecko@001. There 
are 18 possible robustness tests, with three LLMs to generate 
queries and ground truths and two text embedding models, 
all of which may be grouped independent of each other 
(3 x 3 x 2 = 18). For brevity’s sake, we did not analyze all 
robustness tests, and only chose the ones we believed were 
the most interesting to focus on (Appendix). We also only 
focused on eight ailments in this study: glaucoma, jaundice, 
cyanosis, psoriasis, conjunctivitis, scoliosis, skin cancer, and 
gingivitis which were chosen due to their commonality, where 
it was likely that the LLMs would have knowledge of them, as 
well as partial overlap of their symptoms. For example, skin 
cancer and psoriasis can have similar symptoms, and we 
were interested to see how the LLMs would perform in such 
contexts. 
	 We used an LLM to generate a query dataset and a ground 
truth dataset, which we then stored in a vector database. Next, 
we embedded each of the queries using a text embedding 
model in the query dataset. We then compared each query 
vector to the vectors in the vector database, and the most 
similar one was chosen. If the chosen vector was describing 
the same ailment as the query vector, then we counted this as 
a positive classification (Figure 1). 

High detail in both knowledge and query dataset
	 First, we examined a situation where two extremely 
high detail LLMs generated both query and ground truth 
databases (Figure 2). In conjunction with this, the vector 
embedding model also preserved the most information 
as its dimensionality was the highest (1536) compared to 
textembedding-gecko@001, which has a dimensionality of 
768. Consequently, the classification metrics were positive 
with a misclassification rate of only 11% and a macro F1 score 
of 0.89. 

Using sparse querying with detailed knowledge base
	 Next, we examined a situation where a less detailed LLM, 
flan-t5-xl, created the query set, and the ground truth set was 
still created by a very high detail LLM, gpt-3.5-turbo (Figure 
3). Again, the embedding model used was text-embedding-
ada-002, which has high dimensionality. The combination of 
these models resulted in a low misclassification rate of only 
3.63% and a macro F1 score of 0.96, far outperforming those 
situations where gpt-3.5-turbo generated the ground truth 
dataset and LLaMA-70b-chat generated the query dataset 
(Figure 2). 

Sparse data as knowledge base
	 Next, gpt-3.5-turbo (a detailed LLM) created the query 
dataset, which was paired with the ground truth database 
that was generated by flan-t5-xl, which usually generates 
sparse or vague responses (Figure 4). Despite text-
embedding-ada-002 being used, the high dimensionality was 
not enough to clearly distinguish between ailments as the 
misclassification rate was 31.4%. 25% of ailments had more 

Figure 1: Flow chart of robustness test pipeline. There are 3x2x3 = 18 permutations of tests possible. Each query generation model was 
paired up against each text embedding model and each knowledge generation model. Embeddings from the query generation model were 
compared with the embeddings from the knowledge generation model using a cosine similarity.
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misclassifications than actual classifications. The ailments 
that did not have high misclassification numbers — namely 
psoriasis and glaucoma — had many false positives except 
for gingivitis, with glaucoma having a precision of 0.513 and 
psoriasis having a precision of 0.459. 

Same model for knowledge and query dataset
	 We then performed a test where flan-t5-xl generated both 
the query dataset and the ground truths (Figure 5). Despite the 
ground truths and queries being generated by the same LLM, 
there still were some misclassifications, especially with skin 
cancer as it had a recall of only 0.585. Furthermore, psoriasis 
had quite a few false positives, resulting in a low precision of 
0.701. Apart from these two notes, the classification results 
were overall quite strong with a macro F1 score of 0.92. 
Interestingly, the flan-t5-xl model performed worse when it 
was querying on vectors generated by itself than when it was 
querying on vectors generated by gpt-3.5-turbo.

Effects of vector dimensionality
	 To understand the effects of vector dimensionality 
on classification, we repeated the first two tests using 
textembedding-gecko@001 rather than text-embedding-
ada-002 (Figure 6). The textembedding-gecko@001 
embedding model has a dimensionality which is half that of 
text-embedding-ada-002. Even with two detailed LLMs, here, 

the misclassification rate was 17.9% in comparison to the 11% 
with text-embedding-ada-002 (Figure 6a). The recall for skin 
cancer when textembedding-gecko@001 was used was 0.88 
as compared to 0.99 when text-embedding-ada-002 was 
used (Figure 6b, Figure 3).

DISCUSSION
	 Considering the large costs of training a medical LLM to 
quantify the validity of medical data, we used existing text 
embedding models and medical data to create text classifiers 
and tested their performance. We hypothesized that higher 
embedding dimensions, coupled with descriptive data in 
the vector database, would lead to better classifications 
of medical data. We tested this with a robustness test to 
measure both the qualitative and quantitative aspects of 
the textual data presented. In medical fields, the accuracy 
of information is paramount. Along with accuracy of the 
information, it is important that the information presented is 
fair and without bias (13). We designed the robustness test 
with this in mind. We showed that descriptive data stored in 
the vector database is more effective for classifying text than 
sparse data. Here, we discuss the implications of each test 
and the specific behaviors of each LLM and text embedding 
model. 
	 We acknowledge that our method of generating medical 
ground truths through LLMs is unconventional and may be 

Figure 2: Confusion matrix describing the results from the first robustness test where there were detailed querying and knowledge 
bases. Rows describe the true values, and columns describe the predicted values. The query dataset was generated by LLaMA 2 70b-chat, 
text-embedding-ada-002 was used as the embedding model, and the ground truth dataset in the vector database was generated by gpt-3.5-
turbo.
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slightly inconsistent with accepted medical knowledge, which 
does not make the use of LLMs necessary for a replication 
of this study. In fact, using a dataset curated by medical 
professionals would have been ideal as it would provide 
more realistic test cases. However, with the emergence of 
LLMs that specialize in the medical field that can act as a 
source of medical knowledge, such as Google’s Med-PaLM, 
such LLMs can generate data that agrees with accepted 
medical knowledge (2). Due to constraints relating to a 
lack of availability of data that provide accurate test results 
and comprehensive observable symptom lists for specific 
ailments, we opted for the generation of this data rather than 
using a curated dataset. This generation of data also allowed 
for another model component for us to vary, which was the 
LLM being used to generate the data itself.
	 It is not surprising if a text embedding model performs 
better, or has a higher accuracy and F1 score, while classifying 
text generated from the same model.  What is more interesting 
is how these models performed when queried with data from 
other models. Even though all these models are LLMs, they 
still varied greatly in their representation of the same data, 
especially in the case of google-flan-t5-xl as compared to gpt-
3.5-turbo and LLaMA 2 70b-chat.
	 The google-flan-t5-xl model unsurprisingly performed 
quite well when it was queried with data generated by itself. 
However, despite the content, length, and level of detail being 
nearly identical in the query and ground truth datasets, it still 
performed poorly in classifying “skin cancer”. The google-

flan-t5-xl model misclassified 83 queries and only classified 
117 skin cancer cases correctly, mostly misclassifying skin 
cancer as psoriasis, likely due to the model generating 
similar text for both the ailments. This, however, is not very 
representative of the real world as it is unlikely that the 
medical ground truth dataset will be as sparse as the data 
that is used to query it.
	 To assess performance when the ground truth and query 
databases were generated with different models, we began 
testing by keeping the ground truth database generated 
by the gpt-3.5-turbo model. This model is known for being 
a conversational LLM, and therefore has quite lengthy 
responses. As seen later, having a comprehensive and 
elaborate ground truth database made for a good ground truth 
model. The LLaMA 2 70b-chat model is like gpt-3.5-turbo, in 
the sense that it is also a conversational LLM and, therefore, 
exhibits the same types of characteristics. It, however, is not 
as powerful and has a smaller context window so it does not 
go into as much detail as gpt-3.5-turbo does, although it is 
much closer in detail to gpt-3.5-turbo than to google flan-t5-
xl. The LLaMA 2 queries (which, as mentioned above, were 
only three listed symptoms/lab results) performed quite well 
with the gpt-3.5-turbo generated ground truth database. 
While these two models’ responses had comparable length, 
they provided different information and LLaMA 2 was not 
as detailed, with LLaMA 2 mentioning certain symptoms 
or phrasing them in such a way that gpt-3.5-turbo would 
not. Even with this discrepancy in style and detail, the text-

Figure 3: Confusion matrix describing the results from the second robustness test where there was a sparse querying base and 
a detailed knowledge base. Rows describe the true values, and columns describe the predicted values. The query dataset was generated 
by google-flan-t5-xl, text-embedding-ada-002 was used as the embedding model, and the ground truth dataset in the vector database was 
generated by gpt-3.5-turbo.
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embedding-ada-002 model was able to sufficiently classify 
texts from these two models, with a low misclassification rate 
of 11%. 
	 What is more surprising is the efficacy of the google-flan-
t5-xl model at generating queries when gpt-3.5-turbo has 
generated the ground truths. The google-flan-t5-xl model 
generated exceptionally short queries, with each query 
being two words to a sentence long. The text-embedding-
ada-002 model performed exceptionally well when it came 
to classifying the queries generated by the google-flan-t5-xl 
model, with only 58 misclassifications out of 1600 queries. 
The text-embedding-ada-002 model and the vector database 
seemed to have an easier time finding similarities when 
the data in the vector database was more elaborate and 
comprehensive and the querying data was much shorter and 
more concise. This is good news because the ground truth 
of medical data is going to be comprehensive and elaborate, 
whereas a clinician’s notes about a patient exhibiting a certain 
ailment will typically not be as detailed. Despite the highly 
distinctive styles of information that was being presented in 
the data generated between google-flan-t5-xl and gpt-3.5-
turbo, the embedding model did well at finding similarities. 
	 It is important to note, however, that because the google-
flan-t5-xl model would output such short messages, it often 
output just the key words associated with a particular ailment. 

For example, for scoliosis, it output “bending spine.” This 
itself is a keyword and made it slightly easier to classify. 
This is a possible explanation for why the google-flan-t5-xl 
model performed better than the LLaMA 2 70b-chat model, 
even though the latter is significantly more powerful. Another 
possible explanation is that the google flan-t5-xl was prone to 
repeating these keywords, despite the temperature being set 
quite high (we set it at 1.5). The LLaMA 2 70b-chat model did 
not give a more definitive answer, such as “bending spine” for 
scoliosis, but rather had a more speculative approach when 
observing characteristics, which may be more realistic. In a 
real medical setting, the performance of the google-flan-t5-xl 
model would not be as excellent as it was here. Nonetheless, 
it is impressive that the text-embedding-ada-002 model 
and the Pinecone vector database could correctly match 
these messages that differed in length and detail, with a 
misclassification rate of 3.63%.
	 The results changed when google-flan-t5-xl became the 
model that generated the data for the ground truths. This 
data was so sparse and lacking in detail that many of the 
queries generated by the other, more descriptive models 
could fit for several ailments that the google-flan-t5-xl had 
generated as ground truth. This can be seen quite clearly 
when looking at “skin cancer”. The text-embedding-ada-002 
model and the vector database only correctly classified 35 

Figure 4: Confusion matrix describing the results from the third robustness test where there was a detailed querying base and 
a spars knowledge base. Rows describe the true values, and columns describe the predicted values. The query dataset was generated 
by gpt-3.5-turbo, text-embedding-ada-002 was used as the embedding model, and the ground truth dataset in the vector database was 
generated by google-flan-t5-xl.
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cases of skin cancer and misclassified 110, with 102 of those 
being misclassified as psoriasis, which is an ailment that also 
affects the skin. The queries generated by the gpt-3.5-turbo 
and the LLaMA 2 70b-chat models also had laboratory test 
results that would correspond with a certain ailment, whereas 
the ground truth dataset that was in the vector database did 
not have any lab test results to compare it to. Therefore, all 
queries that had only lab test results in them were most likely 
just guesses. 
	 Overall, the google-flan-t5-xl model is not robust enough 
to generate a medical ground truth dataset. The embedding 
model and the vector database performed far better and were 
more easily able to distinguish between ailments, especially 
similar ones, when the data in the vector database was far 
more descriptive. However, it is quite unlikely that the ground 
truth of medical knowledge will be short and lacking in detail, 
as there is an extensive supply of detail that is ever growing. 
Thus, google-flan-t5-xl is neither an accurate representation 
of real medical knowledge nor is it effective enough to act as 
one. 
	 Another large part of our experiment was discussing 
the role text embedding dimensionality has in performance. 
All the results discussed above were embedded using 
OpenAI’s text-embedding-ada-002 model. This model has 
a dimensionality of 1536, twice that of Google’s Vertex AI’s 

textembedding-gecko@001, which has a dimensionality 
of 768. This doubling of dimensionality resulted in a slight, 
but not unimportant, improvement in the ability of the vector 
database to find similarities between two vectors. This 
finding makes sense because the text-embedding-ada-002 
model could encode more information into its vectors, and 
therefore it was able to account for more nuanced details than 
textembedding-gecko@001 could. 
	 We reperformed the test where LLaMA-70b-chat 
generated the query dataset and gpt-3.5-turbo generated the 
ground truth dataset and the test where flan-t5-xl generated 
the query dataset and gpt-3.5-turbo generated the ground 
truth dataset. We used the textembedding-gecko@001 
embedding model rather than text-embedding-ada-002 to 
perform these tests. As before, both the google-flan-t5-
xl model and the LLaMA 2 70b-chat model performed well 
as query generators, although the former performed better. 
However, there was a noticeable drop in performance in 
both instances where textembedding-gecko@001 was used. 
Even with two highly detailed LLMs generating both the 
ground truth and query datasets, textembedding-gecko@001 
performed much worse than gpt-3.5-turbo. This is due to the 
lowered information that was encoded into the embeddings 
of textembedding-gecko@001. Also as before, while the 
embedding model performed well on the other ailments, it did 

Figure 5: Confusion matrix describing the results from the fourth robustness test where there were sparse querying and knowledge 
bases. Rows describe the true values, and columns describe the predicted values. The query dataset was generated by google-flan-t5-xl, 
text-embedding-ada-002 was used as the embedding model, and the ground truth dataset in the vector database was generated by google-
flan-t5-xl.
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considerably worse in classifying skin cancer but this time 
to a greater degree. A possible explanation for this is that to 
successfully classify skin cancer queries, the text embedding 
model needs to be able to encode greater nuance into its 
embeddings. With a dimensionality of only 768 as compared 
to text-embedding-ada-002’s 1536, nuances may have been 
lost in the smaller embedding leading to misclassifications. 
Again, google-flan-t5-xl seemed to generate remarkably 
similar messages for psoriasis and skin cancer, yet the 
text-embedding-ada-002 model seemed to be able to pick 
up the nuances between them that allowed it to distinguish 
queries between the two ailments. The textembedding-
gecko@001 model was not able to do so with the same level 
of consistency. This was expected since the textembedding-
gecko@001 model has a dimensionality which is half that of 
text-embedding-ada-002. This means that a smaller amount 
of information available in vector form, or a larger compression 
of the text data into vector space, does have a considerable 
impact on the ability of the vector database to classify text.
	 We initially hypothesized that a higher embedding 
dimension coupled with descriptive data, both in the 
knowledge and query datasets, would yield better results. 
Indeed, we saw that the text-embedding-ada-002 model 
with 1536 embedding dimensions performed far better than 
textembedding-gecko@001 on many occasions. However, 
the data did not need to be very descriptive when it was used 
to query the knowledge base, contrary to our hypothesis. The 
google-flan-t5-xl model yielded better results as the query 
model than gpt-3.5-turbo or LLaMA 2 70b-chat. However, the 
converse is not true; google-flan-t5-xl performed quite poorly 
as the knowledge base, proving that part of our hypothesis 
is correct. Overall, with a descriptive model generating the 
knowledge base and a general model querying it with pre-
trained text, embedding models can adequately classify 

medical text data. 
	 We performed this study to explore a pipeline of text 
embedding models in the medical space and we found it to 
be successful. However, we performed this study with only 
eight sufficiently different ailments, but there are many more 
ailments, often with a lot of overlap in symptoms. While we 
found that text embedding models are successful medical 
text classifiers on this small scale, further work is needed 
to determine whether this success transfers through scale. 
Ultimately, through our study, we found an effective way 
to classify medical text data while using existing models 
and without having to train multi-billion parameter LLMs. 
Additionally, we have introduced and validated a framework 
of text classification for the medical field that could be enable 
a doctor to get diagnosis classifications for many ailments at 
once without having to interact conversationally with an LLM. 

MATERIALS AND METHODS
	 The nature of this study was driven by the nature of the 
code we wrote and therefore it is important to discuss the 
way we decided to structure the process by which we test 
the vector databases and the vector embeddings model. Our 
code is included in a GitHub repository (Appendix). 

Vector Database
	 We began by treating the vector database as a 
knowledge base. Here, the vector database for each ailment 
contained correct medical knowledge and was prompted 
to include observable symptoms of a particular ailment, as 
well as a potential sample or ranges of tests and expected 
abnormalities. The classification tasks we were trying to solve 
were the abilities of vector databases and vector embedding 
models to act as adequate text classifiers. To accommodate 
this, we needed a labeled dataset that was correct for the 

Figure 6: Confusion matrix describing the results from the fifth and sixth robustness tests. Rows describe the true values, and 
columns describe the predicted values. (A) The query dataset was generated by LLaMA 2 70b-chat, textembedding-gecko@001 was used 
as the embedding model, and the ground truth dataset in the vector database was generated by gpt-3.5-turbo. (B) The query dataset was 
generated by google-flan-t5-xl, textembedding-gecko@001 was used as the embedding model, and the ground truth dataset in the vector 
database was generated by gpt-3.5-turbo.
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vector database and the embedding model to use as the 
standard. For this reason, the vector database stored the 
vectors that were supposed to be the ground truths, which 
corresponded to the correct medical classifications. To query 
and get results, we had a list of notes or test results that are 
commonly produced during examination by a clinician. These 
were then compared with the ground truth values in the vector 
database and the vector database would return the vector 
that the similarity search had evaluated to be the most similar. 
Since the similarity scores and the vectors that were returned 
from the vector database did not contain information on which 
ailment it corresponded to, we added metadata to each vector 
in the database. The metadata that was tied to this vector was 
used to determine which ailment has been selected and the 
classification decision of the vector database. 

Workflow
	 As a general framework, data was generated using a 
prompt on an LLM, which was then represented as a string. 
We then took these results from the LLMs and fed them 
into the text-embedding model, where the string data was 
converted into a vector representation of the text. We did this 
multiple times for each ailment (Table 1). Then, one vector for 
each ailment was stored in the Pinecone vector database as 
the ground truths or the knowledge base. Once there were 
ground truths in place, we queried the remaining vectors on 
those in the vector database. The query returned the vector 
in the database that the query vector was most similar to and 
a similarity score, which quantified their similarity. If the most 
similar vector and the query vector were of the same ailment 
(with a similarity score of at least 0.5), this was counted as a 
positive classification. 
	 We used three models for data generation: OpenAI’s gpt-
3.5-turbo, Meta’s LLaMA 2 70b-chat, and Google’s flan-t5-
xl. To generate the data, we used OpenAI’s API for gpt-3.5-
turbo outputs and HuggingFace for LLaMA 2 70b-chat and 
google-flan-t5-xl (9-11). To classify the text, we used two text 
embedding models: OpenAI’s text-embedding-ada-002 and 
Google’s textembedding-gecko@001. Again, for the OpenAI 
model we used the API and for textmebedding-gecko@001 
we used Google Cloud SDK. All code was written in Python, 
and we used Seaborn and Matplotlib to generate the confusion 
matrices. 

Data
	 We conducted the test on eight ailments: glaucoma, 
jaundice, cyanosis, psoriasis, conjunctivitis, scoliosis, skin 
cancer, and gingivitis (Table 1). Each ailment had one vector 
in the vector database. Since the vector in the vector database 
was acting as the ground truth of medical knowledge, there 
did not need to be many vectors and instead each vector was 
generated with text that was prompted to be comprehensive 
and with a maximum token size of 500 where a token was 
roughly three to four characters. The number of queries per 
ailment was far higher but with shorter text at only a maximum 
of 50 tokens per query. A large amount of data allowed for a 
large amount of testing for each of the ailments. However, 
the time to generate queries was quite long, so we limited 
the maximum number of queries per ailment. The individual 
queries were designed to have a low amount of data in them 
to really test the capabilities of the embedding model and the 
vector database and their ability to classify the vector in a 

fashion that preserved meaning. 
	 When querying the vector database and getting results 
using the textembedding-gecko@001 model, due to API 
request limits, we had to truncate the number of queries that 
were generated per LLM. We ended up using one third of the 
queries that were generated by both gpt-3.5-turbo and LLaMA 
2 70b chat and one fifth of the queries that were generated by 
google flan-t5-xl since it had more queries. 

Prompt Engineering
	 We treated the prompts as constant, as we did not want 
much variance in how the model structured its response, but 
we wanted variance in the data that was generated. Since 
the vector database acted as the ground truth for medical 
knowledge, we made this part of the prompt the most 
comprehensive and inclusive. The prompt for generating the 
ground truths for LLaMA 2 70b-chat and gpt-3.5-turbo that 
were then placed into the vector databases was as follows: 
“What notes would a doctor have when observing a patient 
with a {particular ailment}? Include test results. Do not include 
the patient’s name, age, gender, or any patient specific details 
including date of observation. Do not tell me that the notes are 
not comprehensive, I already know this. Do not tell me about 
anything that requires further investigation.” The prompt for 
generating each of the queries was slightly different. Here, an 
emphasis was placed on being vague to mimic the reality of 
patient observation. The generation prompt was as follows: 
“What notes would a doctor have when observing a patient 
with {a particular ailment}? Make notes short and concise. 
Laboratory test results are optional. Do not include the 
patient’s name, age, gender, or any patient specific details 
including date of observation. Do not tell me that the notes 
are not comprehensive, I already know this. Do not tell me 
about anything that requires further investigation. Do not tell 
me what ailment the patient is presented with.” The prompt 
for the query generation was remarkably similar to the prompt 
for generating ground truths, except that it made test results 
optional and put an emphasis on short and concise notes. 
	 Since google-flan-t5-xl outputs extremely short answers, 
the prompt was modified: “What are observable symptoms of 
{particular ailment}? List them out to be technical.” There was 
no mention of laboratory results because the model would not 
generate them. This sharp contrast in data format provided a 
good test for the embedding model. 
	 The results from the gpt-3.5-turbo and LLaMA 2 70b-chat 
query prompts were long lists. To reduce the uniformity of 
data and only give the text embedding model a small amount 
of context, the lists that were generated were divided so that 

Table 1: Dataset overview. Number of queries per LLM per ailment
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each query consisted of three items from the list. This reduced 
the scope that the embedding model had when comparing 
the query to the ground truth and allowed for more queries 
with fewer API calls. The splitting process was as simple as 
just taking every three items in order and embedding those. 

Robustness Test Definition
	 To address the issue of the dataset being generated by 
LLMs instead of medical professionals, we present a method 
of determining the efficacy of text embedding models and the 
vector databases that is not as heavily reliant on the quality 
of the data presented. The text embedding model classified 
the vector data by determining whether the two instances of 
text were similar. If the data carried similar meaning, then they 
were embedded close to each other or the angle between 
the vectors was small. If the embedding model could handle 
inputs from different LLMs, the outputs of which consisted of 
varying levels of length and specificity, then the embedding 
model should have been able to find similarities in data even 
though the ideas presented were represented in different 
ways. By pairing up each possible query generating LLM to 
each possible ground truth generating LLM and using each 
text embedding model to classify the text generated by both 
models, we were able to see how each text embedding 
model handled each LLM’s nuances in generating data, and 
how well it was able to embed the same data represented 
in different ways. Each one of these permutations of an 
LLM/text embedding model combination was a robustness 
test. A total of 18 different permutations of robustness tests 
were possible, involving combining three LLMs (gpt-3.5-
turbo, google-flan-t5-xl, LLaMA 2 70b-chat) twice (once 
for query generation and once for ground truth generation) 
and two text embedding models (text-embedding-ada-002, 
textembedding-gecko@001) (Figure 1). Each robustness test 
has been represented as a confusion matrix with dimensions 
of 8x8 for the eight ailments. 
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Appendix: 
All 18 robustness tests can be viewed here: Robustness Tests

https://github.com/bloodpool7/TextClassification

