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 Manually examining the language used in online job 
postings to identify the skills and qualifications that employers 
are looking for in candidates can be time-consuming and 
labor-intensive. This is especially true due to the dynamic 
nature of the jobs posted daily (3). To address this challenge, 
a data-driven approach that automates the identification of 
required skills is paramount. Such automation can facilitate 
job market analysis by people wanting to understand the 
market as a whole and analyze trends. Machine learning (ML) 
algorithms provide an opportunity to automate the process 
of identifying required skills within each job description, 
streamlining the recruitment process for both job seekers and 
recruiters.
 ML has emerged as a powerful tool for automating tasks 
in various domains like image classification, deep learning, 
and reinforcement learning (4). Specifically, the literature on 
natural language processing (NLP) has seen a tremendous 
increase in the performance of algorithms due to the use of 
large language models (5). These large language models are 
trained on vast amounts of text data, enabling them to learn 
the semantics of the language. Such models can be leveraged 
to perform a range of NLP tasks such as text classification, 
question answering, and summarization (6). These advances 
have opened up new possibilities for automating tasks such 
as prediction of skill set from a job description. 
 To go further into depth with ML approaches to solving 
this problem, one study proposed a novel Multi-Graph Neural 
Network based Skill Prediction (MGNSP) model to learn the 
mapping between job position descriptions and their required 
skills (7). This approach represents a significant step toward 
the goal of developing ML algorithms that can accurately 
predict the skills needed for various job positions. However, 
there is still significant room for improvement with this 
approach since there are larger, more capable models that 
use NLP to understand the semantic and linguistic elements 
of the job description to provide a more comprehensive and 
adaptable view of skills needed for certain jobs.
 Tokenization converts text into numerical data for NLP 
models, enabling them to process and learn from text inputs. 
It is essential for shallow machine learning models, which 
cannot interpret raw text. However, in some deep learning 
models, like transformers, tokenization is handled internally. 
There are many text processing methods to prepare data 
to feed into the NLP algorithms. Term-Frequency Inverse-
Document Frequency (TF-IDF) is a tokenization method that 
assigns numbers to words based on the frequency at which 
each word appears across multiple documents (8). TF-IDF 
proves to be better than other tokenization methods such 
as Bag of Words (BOW) at encoding context (9). Word2Vec 
is another tokenization method that accounts for the 
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This necessitates an automated approach to identify 
the required skills for job seekers and recruiters. This 
study aimed to utilize machine learning (ML) and deep 
learning algorithms to streamline skill identification 
from technology-related job descriptions. We tested the 
viability of the Bidirectional Encoder Representation 
of Transformers (BERT) language model to complete 
this multi-class, multi-label classification task. We 
hypothesized that BERT, utilizing an NLP transformer, 
would predict job-required skills more accurately 
than traditional statistical ML models. To test this, 
we utilized a dataset comprised of job descriptions 
with varying skills. We experimented with two 
preprocessing approaches, K-Means Clustering and 
Latent Dirichlet Allocation, which are both statistical 
ML models meant to cluster the job descriptions. We 
then compared the performance of the BERT tokenizer 
to a combination of text-to-number tokenization 
techniques (Term Frequency - Inverse Document 
Frequency and Word2Vec) and supervised classifiers 
(K-Nearest Neighbors, Random Forest, and Multi-
Layer Perceptron). The NLP transformer-based BERT 
model achieved the highest accuracy. We conclude 
that while traditional ML models provide some 
insights, advanced models like BERT show potential 
for more accurate skill prediction since the NLP 
transformer model we tested outperformed the ML 
models. However, the complexity of real-world data 
necessitates further refinement and development of 
these technologies. Our study shows that advanced 
deep learning-based models have the potential to 
enhance the job market’s efficiency by automating 
skill identification. 

INTRODUCTION
 The job market is an ever-evolving landscape, with new 
industries and technologies emerging all the time. Based on 
data from 2022, the job market is thriving, with an average of 
11,012,000 job openings in the US alone (1). This growth is 
projected to continue in the coming years (2). As a result, it is 
important for both recruiters and job seekers to have access 
to information about the types of skills that are needed to 
succeed in a particular field.
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context of the word when assigning values. This contextual 
understanding occurs due to the words appearing in similar 
contexts, or surrounded by similar words, in the same 
document (10). Due to the ability of the Word2Vec algorithm 
to make mathematical relationships between words close in 
proximity, it could produce different results compared to other 
methods such as TF-IDF (11). TF-IDF and Word2Vec are 
traditional feature engineering techniques that are primarily 
used in shallow ML models.
 In contrast to traditional ML models, a transformer-
based encoder is used to help large-language NLP models 
understand the context of words. Transformers are simply 
ML models that account for the context of words using self-
attention to focus on a singular word/phrase/token at a given 
time. This is done by first encoding the values into vectors of 
numbers and then using a decoder to understand the sequence 
of values and generate an output in text. Transformers are 
trained through transfer learning. Transfer learning utilizes a 
previous model trained for a specific task and applies it to 
a new task (12). The Bidirectional Encoder Representation 
of Transformers (BERT) encoder from transfer learning 
tokenizes the word by accounting for position, context, and 
attention using the BERT model (13). Specifically, in the 
context of a job posting, the BERT tokenizer encodes each 
word along with its position and surrounding context into 
vectors. The attention mechanism then assigns importance 
values to each word, determining which words in the job 
description are most relevant to the overall meaning and 
key qualifications. The BERT tokenizer that encodes words, 
position, and context in vectors is by far the most complex 
of all the tokenizers used in our experiments. When trying to 
interpret context, the algorithm can encode the position of a 
certain word in the job description from the dataset and uses 
an attention mechanism to assign importance values to the 
words (13).
 In this work, we propose a multi-class, multi-label 
classification approach to identify skills across different job 
descriptions. Unlike conventional classification paradigms, 
which associate a single label with every instance, our multi-
label paradigm allows for the assignment of multiple labels, 
in this case skills, to a single job description. This ensures a 
comprehensive assessment of the multiple skills that many 
modern job roles demand. We hypothesized that state-of-the-
art NLP transformers, known for their advanced capabilities 
in understanding and processing complex language patterns, 
would exhibit superior accuracy in predicting the skills required 
for various job roles compared to conventional statistical ML 
models.
 The primary difference between the BERT tokenizer 
used in this experiment and the other tokenizers used in 
the experiments is the attention mechanism used to assign 
importance values to words and understand the positional 
context. The BERT tokenizer paired with the BERT NLP 
language model was the primary NLP tested. We compared the 
results from the BERT NLP to other statistical ML algorithms. 
The BERT tokenizer cannot be used with the statistical ML 
models because BERT produces high-dimensional token 
embeddings; incorporating them into traditional statistical 
ML models can lead to the “curse of dimensionality” (15). 
This is because these traditional models struggle with high-
dimensional input features, which can cause performance 
degradation and increase computation time (16).

We hypothesized that the transformer framework discussed 
above, utilizing the latest advances in NLP, especially 
BERT, would yield better predictive performance on skill 
classifications for job description data when compared 
to conventional statistical ML models. The sophisticated 
transformer-based model paired with the understanding 
of positional context paired with the attention mechanism 
will likely produce more accurate results than tokenization 
methods such as Word2Vec and TF-IDF (11, 14). Our results 
show that transformer-based models such as BERT are more 
capable of extracting information from the text than traditional 
statistical ML models. This would allow job candidates to 
stop worrying about deciphering the complexities of job 
descriptions and focus on building their profiles. 

RESULTS
 To build a ML model that can predict required skills based 
on a job description, we utilized a dataset with a job description 
and skills column, where the number of skills as well as how 
they were described varied per job description. The data was 
taken from job listings online and put into a spreadsheet for 
analysis. Our dataset was split into training (60%), testing 
(20%), and validation sets (20%). The complexity of this 
dataset is in line with the complexity expected of real-world 
datasets. However, to predict the relevant skills for a given job 
description, it was necessary to preprocess the skills column 
in the dataset and transform it into a categorical outcome that 
indicates the types of skills needed (Figure 1).
 The words in the job description were converted into 
numbers in order to conduct complex computations on the 
vectors of numbers. The job descriptions in the dataset were 
converted into a vector of numbers using TF-IDF, Word2Vec, 
or BERT tokenizers. We conducted experiments using all 
three tokenization techniques so that the performance of the 
models in each case could be compared. Following this pre-
processing step combined with K-Means or LDA, the model 
can predict the presence of each skill cluster or topic for a 
given job description. However, this task is more complex 

Figure 1: Dataset pre-processing with LDA. Flowchart of the 
dataset pre-processing pipeline using Latent Dirichlet Allocation 
(LDA) for topic modeling of skills. The initial dataset is cleaned and 
split into training, validation, and test subsets. The text preprocessing 
steps within the blue box include loading a pre-trained Word2Vec 
model, applying LDA for topic extraction, and tuning the number 
of topics. A clustering model then assigns cluster numbers to 
each dataset, which are saved into CSV files and reintegrated into 
the respective datasets. This process converts skills from text to 
numerical clusters, enabling further analysis and model training. 
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than simple classification, as each job description may require 
a varying number of skills, rather than just one. The sheer 
number of different skills involved in this task prevents it from 
being cast as a mere multi-label problem. The algorithm’s 
goal is to predict the set of skills, rather than a single skill.
We found that there were multiple clusters of skills that tended 
to co-occur. Given that ML classification algorithms need 
distinct categories, we found it necessary to map the skills 
into distinct clusters or categories. We used two different 
algorithms to accomplish this: K-Means Clustering, and 
Latent Dirichlet Allocation (LDA) (17, 18).
 For the traditional ML models in our study, we combined 
one of three supervised classifiers (K-Nearest Neighbors 
(KNN), Random Forest, or Multi-Layer Perceptron (MLP)) 
with one of two tokenizers (TF-IDF or Word2Vec). These 
traditional models were compared to the BERT NLP model. 
We aimed to cover a broad spectrum of ML approaches 
based on simple rules like nearest neighbors, ensemble 
decision trees, and neural networks. KNN is straightforward 
and effective, and it is especially useful for its ability to handle 
multiclass problems and provide insights into the dataset’s 
structure through its instance-based learning (19). Random 
Forest was chosen for its robustness and performance with 
high-dimensional data, as it reduces overfitting risks and 
enhances the model’s generalizability through ensemble 
learning (20). Lastly, MLP allowed us to explore deep learning 
capabilities and is particularly useful for capturing nonlinear 
relationships in data through its layered architecture (21). 
These models collectively cover a range of different types of 
model architectures. The use of these statistical ML models is 
to compare performance to a much more sophisticated BERT 
NLP model.

K-Means Results
 The first set of experiments utilized K-means clustering to 
group the job skills. We first converted the skills into numerical 
representations using Word2vec or TF-IDF and then used 

K-means clustering to group them. Since the optimal value 
of K is unknown, we tested a range of K values to evaluate 
the distortion, or the average distance between the centers of 
different clusters as calculated by the algorithm (Figure 2a). 
We used the elbow method to determine the optimal K value, 
which balances between a small number of clusters and a low 
distortion score. We found the optimal K value to be 15. We 
saw that there was an uneven distribution in the number of 
skills contained in the clusters (Figure 2b). This could cause 
some differences in accuracy between the models using 
K-Means and LDA methods.
 Next, we used KNN, Random Forest, and MLP to create 
the ML model. For the KNN algorithm, we tuned the hyper-
parameter K between 1 and 10. The model performed the 
best when K = 1 regardless of the preprocessing method 
used. The KNN algorithm using TF-IDF tokenization had a 
testing accuracy of 24.96% compared to a testing accuracy 
value of 23.84% when using Word2Vec tokenization (Figure 
2c-d). For the random forest algorithm, the number-of-trees 
and depth were tuned from 5–100 and 5–50, respectively. 
The best model, achieving a validation accuracy of 30.83%, 
used TF-IDF tokenization with 100 trees and a depth of 45 
(Figure 3a). A similar validation accuracy of 28.80% was 
achieved using the same random forest algorithm and hyper-
parameters with Word2Vec tokenization (Figure 3c). For the 
MLP algorithm, we used a hidden layer size of 100 and tuned 
the learning rate and epochs from 20–100 and 0.00001–0.01. 
The best result of 21.66% validation accuracy was achieved 
with a learning rate of 0.001 run over 100 epochs with TF-
IDF tokenization (Figure 3b). Using a Word2Vec tokenization 
for the same algorithm resulted in a maximum validation 
accuracy of 19.11% (Figure 3d).
 We then compared our three traditional models to the 
BERT NLP, which uses its own tokenizer to convert text into 
numbers after K-means clustering to group job skills. We used 
the DistilBERT tokenizer followed by the ‘TFDistilBertModel’ 
pre-trained model with custom layers added to it. The hyper-

Figure 2: K-means performance metrics for model selection and accuracy of TF-IDF and Word2Vec tokenization methods using 
KNN. (a) The K-means elbow plot shows the relationship between the number of clusters and the distortion scores where the ideal score is 
around 0.08 to 0.09. (b) The number of skills in each cluster/group created by the K-means clustering algorithm when the number of clusters 
was 15. (c) Accuracy of the KNN algorithm for varying values of K after TF-IDF tokenization. (d) Accuracy of the KNN algorithm for varying 
values of K after Word2Vec tokenization.
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parameters ‘base_learning_rate’ and ‘epochs’ were tuned 
from 0.00001–0.01 and 20–100, respectively. We were able 
to achieve a maximum testing accuracy value of 21.42% when 
the ‘base_learning_rate’ value was 0.005 and the epochs 
value was 100.
 In this section of experiments, we found that BERT slightly 
underperformed the best statistical ML model using Random 
Forest, which performed at 31.76% testing accuracy while 
BERT performed at 21.42% testing accuracy. However, there 
was not much of a difference in accuracies between the 
Random Forest algorithm’s performance when using either 
Word2Vec or TF-IDF tokenization. By comparing the two 
testing accuracies, we can conclude that BERT with K-Means 
was not the best-performing model. However, it appears that 
the tokenization technique plays a more pivotal role in the 
MLP algorithm as the accuracies were slightly more varied 
between TF-IDF and Word2Vec tokenization.

LDA Results
 In the second set of experiments, we used LDA to group 
the skills, where the skills were represented by a distribution 
of topics inferred by the LDA model. Similar to K-means, 
LDA also requires the user to specify the number of topics. 
To determine the ideal number of topics, we calculated the 
coherence value of different topic numbers. The primary 
purpose of the coherence value is to see how similar 
words are within a given context. The score measures the 
strength of the semantic relationships between words. Using 
these coherence values, we found that the ideal number of 
topics for LDA topic modeling was 25 (Figure 4a). With the 
implementation of 25 clusters in LDA, there was still some 
variation in the number of rows in the job description dataset 
corresponding with each skill cluster (Figure 4b). This is 
expected since topic models do not aim to create topics with 
a perfectly even distribution but rather to make relevant topics 
to suit the dataset.
 After LDA was used to convert the skills in the job 
descriptions into a fixed number of topics, we used TF-

IDF and Word2Vec techniques to convert the text in the 
job description into numerical values. We then used KNN, 
Random Forest, and MLP to create the ML models.
 For the KNN algorithm, hyper-parameter K was tuned 
between 1 and 10. Using TF-IDF, the model performed the 
best at K = 1 with a validation accuracy of 10.06% (Figure 
4c). However, using Word2Vec resulted in a lower maximum 
validation accuracy of 5.06% at K = 7 (Figure 4d). For the 
Random Forest algorithm, hyper-parameters number-of-trees 
and depth were tuned from 5–100 and 5–50, respectively. 
Using TF-IDF tokenization, 50 trees and a depth of 35 resulted 
in the best model performance with a validation accuracy of 
13.19% (Figure 5a). However, the Word2Vec tokenization 
with the same Random Forest model achieved a higher 
validation accuracy value of 28.80% (Figure 5c). For the MLP 
algorithm, hyper-parameters learning rate and epochs were 
tuned from 20–100 and 0.00001–0.01, respectively. Using 
Word2Vec tokenization, a maximum validation accuracy 
value of 12.10% was achieved with a learning rate of 0.0001 
run between 50 to 100 epochs (Figure 5b). However, using a 
TF-IDF tokenization method for the same MLP model resulted 
in a validation accuracy of 15.10% (Figure 5d).
 We then compared these traditional models to BERT. 
We used the DistilBERT tokenizer followed by the 
‘TFDistilBertModel’ pre-trained model with custom layers 
added to it. The hyper-parameters ‘base_learning_rate’ 
and ‘epochs’ were tuned from 0.00001–0.01 and 20–100, 
respectively. This resulted in the highest validation accuracy 
value of 31.97% when the ‘base_learning_rate’ value was 
0.00001 and the epochs value was 100. The validation 
accuracy tended to increase as the learning rate initially 
increased from 0.00001 to 0.0005, reaching a peak at 0.0005 
for earlier epochs from 20 to 30. However, as the learning rate 
further increased to 0.01, the validation accuracy started to 
plateau and even slightly decline. This was particularly evident 
in longer training durations (80 and 100 epochs). Increasing 
the number of epochs generally leads to an improvement in 
model accuracy across all learning rates (22). However, when 

Figure 3: Accuracy of the K-Means algorithms using statistical ML models (RF, MLP). (a) Accuracy of the random-forest algorithm after 
TF-IDF tokenization for different numbers of trees and depths. (b) Accuracy values of the MLP algorithm for varying learning rates and number 
of epochs after TF-IDF tokenization. (c) Accuracy of the random-forest algorithm for different numbers of trees and depths after Word2Vec 
tokenization. (d) Accuracy values of the MLP algorithm for varying learning rates and number of epochs after Word2Vec tokenization.
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we increased the number of epochs to 150, we did not see an 
improvement in accuracy and hence stopped the experiments 
at 100 epochs. Even though the validation accuracy value 
was low, an inspection of the confusion matrix showed that 
some topics had very low performance.
 In summary, the transformer-based BERT model was 
best able to predict required skills based on job descriptions, 
particularly when skills were predicted as one of 25 
categories. The testing accuracy value was 47.19% (Figure 
6). In addition to the accuracy, all categories’ average 
precision and recall were 43.48% and 43.73%, respectively 

(Figure 7). This validated our hypothesis that transformer-
based deep learning algorithms such as BERT perform 
better than traditional statistical algorithms in predicting 
the skills required for a given job description. The primary 
difference between the BERT results from K-Means and 
LDA is that LDA topic modeling created 25 unique and useful 
topic classifications whereas K-Means clustering created 15 
topics. There was also a significant difference in validation 
accuracies between the K-Means and LDA models, with the 
K-Means approach having a much lower validation accuracy 
than the LDA approach.

Figure 4: LDA performance metrics aiding in model selection. LDA was used to convert the skills columns into categories. (a) The 
LDA coherence value plot shows the coherence scores of using a varying number of topics. An increase in the number of topics showed 
diminishing returns. (b) Distribution of 25 topics in the dataset. (c) Accuracy values of the KNN algorithm for different values of K after TF-IDF 
pre-processing and clustering values using LDA. (d) Accuracy values of the KNN algorithm for different values of K after Word2Vec pre-
processing and clustering with LDA.

Figure 5: Accuracy of the LDA algorithms using statistical ML models (RF, MLP). (a) Application of the random-forest algorithm with TF-
IDF tokenization with LDA. (b) Accuracy values of the MLP algorithm with TF-IDF tokenization in LDA. (c) Use of the random-forest algorithm 
with Word2Vec tokenization in LDA. (d) Accuracy values of the MLP algorithm with Word2Vec tokenization in LDA.
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DISCUSSION
 Our study integrates and expands upon previous 
research demonstrating the efficacy of advanced ML models, 
particularly BERT, in interpreting complex text data within 
job descriptions. When K-Means was used to cluster job 
descriptions’ skills into groups, the KNN algorithm performed 
slightly better using TF-IDF with a validation accuracy of 
24.96% compared to Word2Vec with a validation accuracy of 
23.84%. Similarly, using LDA, TF-IDF featurization resulted 
in an optimal validation accuracy of 10.06% versus 5.06% 
for Word2Vec for the KNN algorithm. Overall, we saw that 
the KNN algorithm performed better when the job description 
was featurized using TF-IDF compared to Word2Vec in both 
K-Means and LDA experiments. Analysis of the random 
forest algorithm in K-Means experiments showed that TF-
IDF featurization yielded a validation accuracy of 30.83% 
while the same random forest algorithm run on Word2Vec 
had a validation accuracy of only 28.80%. LDA also showed 
similar results with TF-IDF having better accuracy values 
with the Random Forest algorithm than Word2Vec. Lastly, 
the MLP algorithm in K-Means had a validation accuracy of 
21.66% when used with the TF-IDF tokenizer. When used 
with Word2Vec, the validation accuracy dropped to 19.11%. 
A similar pattern was seen in LDA as well, where the TF-
IDF tokenizer yielded higher accuracy than the Word2Vec 
tokenization. This is an interesting result because Word2Vec 
is considered to be a more sophisticated technique to convert 
text to numbers since Word2Vec has the ability to encode 
context more clearly (10). Utilizing a pre-built Word2Vec model 
trained on millions of documents like Wikipedia enables the 
model to have a huge vocabulary with meaningful associations 
between words. However, in the case of this dataset, the 
words that appear in job descriptions might be unique enough 
that they are not a part of the Word2Vec vocabulary. This may 
be why TF-IDF, which learns the vocabulary based on training 
data, performed better.

 One of the more surprising results from our study was 
the relatively low performance improvement when utilizing 
advanced NLP techniques, such as BERT, compared to more 
traditional methods like TF-IDF and Word2Vec in certain 
phases of our experiments. Although BERT paired with the 
LDA topic modeling generally outperformed other models, 
the margin of improvement was smaller than anticipated. 
This was particularly true when using K-Means, where BERT 
achieved only slightly better accuracy than the random forest 
algorithm run on TF-IDF. 
 However, overall, the statistical ML models produced 
suboptimal results compared to the testing accuracy of the 
best-performing BERT model that used LDA; therefore, this 
reinforces our decision to use BERT as our primary NLP 
algorithm as opposed to statistical ML models. In the K-Means 
experiments, BERT achieved a testing accuracy of 21.42%, 
which did not seem to severely outperform the statistical ML 
algorithms just reviewed. However, the performance of BERT 
improved when using LDA, with the highest testing accuracy 
value at 47.19%, which was better than the other ML models. 
This relatively low accuracy value can partly be attributed to 
the complex and noisy nature of the job descriptions in the 
dataset. Job descriptions don’t typically have uniform structure 
and contain a wide variety of language, making it difficult for 
even the most sophisticated models to consistently interpret 
them correctly. The inherent variability in how different roles 
and skills are described across industries could lead to 
challenges in model training, where the model struggles to 
generalize from the training data to unseen job descriptions. 
Additionally, the use of pre-trained models like BERT and the 
other statistical ML models, which are not specifically tuned 
for the domain of job descriptions, may not capture all the 
nuances needed to accurately predict skills from these texts. 
This suggests a need for more domain-specific pre-training or 
fine-tuning on job-related texts.
 Another unexpected pattern we noticed was that BERT 
performed much better with LDA clustering than K-Means 
clustering. However, the performance improvement on BERT 
from using LDA was not reflected in the other ML algorithms 
(KNN, random forest, MLP). In some cases, LDA clustering 
made the accuracy values for the ML algorithms go down 
significantly. This might be because LDA has a much more 

Figure 6: Test confusion matrix using BERT with LDA classified 
and pre-processed data. Test confusion matrix obtained using 
the BERT algorithm following clustering using LDA and BERT 
tokenization to predict the cluster numbers. The algorithm achieved 
a 47.19% accuracy with 25 topics.

Figure 7: Precision and Recall values for BERT by class. Precision 
(blue, correct predictions to total predictions) and recall (red, correct 
predictions to total instances) metrics for each topic. The model’s 
performance is evaluated after applying LDA for topic modeling 
with the BERT classifier and the BERT tokenizer, demonstrating 
variations in prediction accuracy across different clusters.
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advanced clustering mechanism that was not detected by 
the standard ML models but was more easily recognized 
by BERT. The advanced capabilities of BERT likely made 
it easier for the model to recognize the more sophisticated 
clustering patterns of LDA.
 The primary limitation of this study is the reliance on a 
single source of job descriptions that were all related to 
technology. This could have introduced a bias based on the 
style of writing specific to that source and may not generalize 
well across different platforms or job markets. Moreover, the 
conversion of skills into numerical clusters or topics might 
oversimplify the rich, nuanced information skills descriptions 
can provide, potentially leading to a loss of valuable insights 
about the interrelationships and subtleties among different 
skills.
 The findings of Lê Văn Duyệt, et al. on Skill2vec 
highlighted the potential of neural network architectures 
derived from Word2vec for extracting skill-related information 
from job descriptions (24). Both our study and the Skill2Vec 
study underscore the importance of contextual understanding 
in text analytics within the recruitment domain, albeit using 
different technological approaches. Our use of BERT and 
transformer-based models drew a direct parallel to Skill2vec’s 
reliance on neural networks inspired by Word2Vec. However, 
where Skill2vec focuses on generating a new vector space 
to explore skill relationships, our approach leveraged the 
pre-trained capabilities of BERT to enhance classification 
accuracy directly from textual descriptions, thereby reducing 
the need for extensive pre-processing typically associated 
with traditional models like KNN or Random Forest. Our study 
has made clear improvements compared to this approach 
since we are using a pre-trained model that has been trained 
on various types of data across the internet making it more 
capable of finding useful patterns for our classification task. 
While the Skill2Vec model claimed that 22% of the skills 
extracted were irrelevant, our model extracts only relevant 
skills and assigns probability values to these skills thereby 
ranking them by importance. After probability values have 
been assigned, the most relevant skills are assigned to the job 
description. Therefore, our model offers a unique approach to 
skill extraction.
 In the future, we hope to develop more sophisticated 
methods for preprocessing and feature extraction that 
can better capture the complexities and variations in job 
descriptions and enhance model performance. Incorporating 
more data from other web sources could result in a more 
representative dataset that would help capture the variations 
and nuances in job postings across different websites. Our 
work shows how a transformer-based model paired with 
semantic analysis is superior compared to statistical ML 
models for multi-class, multi-label problems for analyzing 
convoluted textual data. This observation holds true 
specifically when using BERT to conduct multi-class, multi-
label semantic analysis with the utilization of topic modeling 
algorithms such as LDA.

MATERIALS AND METHODS
Dataset
 The dataset used for this study consisted of 22,000 
job listings. These job listings were extracted from Dice.
com, a prominent US-based technology job board, using 
Prompt Clouds’s in-house web crawling service to store 

the data in Kaggle. The dataset we obtained from Kaggle 
contained 12 columns, including ‘advertiseurl’, ‘company’, 
‘employmenttype_jobstatus’, ‘jobdescription’, ‘jobid’, 
‘joblocation_address’, ‘jobtitle’, ‘postdate’, ‘shift’, ‘site_name’, 
‘uniq_id’, and ‘skills’. There were 1331 unique skills across 
all columns. The purpose of our ML and NLP models was to 
validate the selection of these skills done by the web crawler 
and train a more generalized model that can do the same 
tasks for any provided job description.

Dataset preprocessing
 To ensure accurate model evaluation, we split the dataset 
into three distinct parts: training (60% of the dataset), testing 
(20% of the dataset), and validation (20% of the dataset). Text 
preprocessing techniques were fit on the training set and 
applied to two other parts of the dataset to ensure uniformity 
and consistency. The validation set was utilized to assess 
the model’s accuracy during hyper-parameter tuning on the 
training dataset, and the testing set was used to evaluate the 
final model performance.
There are several methods of text preprocessing that were 
used to prepare the dataset for learning the relationships 
between job descriptions and skills. All punctuation, 
unnecessary whitespace, and null values were removed 
from the dataset using a Python script. Then, we removed 
the columns that provided no information regarding the job 
that would help with skills prediction. These columns included 
‘advertiserurl’, ‘site_name’, ‘jobid’, ‘uniq_id’, and ‘shift’. In the 
third step, we utilized another Python script to extract the 
individual skills using comma separation. Skills exceeding 15 
characters were filtered out to eliminate any extraneous and 
excessively long skills. The length of this list of unique skills 
was 1,331.
 In the first method, we converted each skill into a vector of 
numbers using the Word2Vec algorithm by Gensim or the TF-
IDF algorithm by Sci-Kit Learn performed by creating Python 
scripts with the open-source packages specified above to 
perform the text tokenization on the data. Then, the algorithm 
splits everything into various clusters/topics by applying the 
K-means clustering algorithm using Sci-Kit Learn to assign 
a cluster of skills to each job description instead of individual 
skills. To determine the ideal number of clusters, we employed 
the elbow method while experimenting with various cluster 
numbers since increasing the number of clusters from 10 to 
15 reduced the distortion value by less than 0.02 points (23).
In the second phase of the experiment, we replaced the 
K-Means clustering algorithm with LDA. Unlike K-Means, 
which clusters based on numerical values, LDA was chosen 
for its more advanced ability to create labeled topics. When 
using LDA, we utilized Sci-Kit Learn’s LDA package to extract 
topics and their distribution across each set of skills in each 
column. We applied LDA to the skill sets in each column 
after tokenizing with Word2Vec/TF-IDF, and the resulting 
topic distribution was assigned to each job description. We 
selected the number of topics based on a graph of coherence 
scores. A balance was required between achieving a low 
coherence score and maintaining a manageable number of 
topics. While a low coherence score often results from having 
many topics, too many topics can reduce the usefulness of 
classifications by creating overly similar categories. It was 
important to carefully judge this balance to ensure the topics 
were both distinct and meaningful. Since many statistical ML 
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algorithms are incapable of handling multi-label classification, 
we made sure LDA only predicted a single class for each job 
description making the task easier to handle while retaining 
accuracy. We ensured this single class prediction by taking 
the probabilities of all classes and only assigning the highest 
probability class to the given job description.
 The next step was to convert the job description column 
into numbers since ML algorithms only understand numerical 
data. Three different methods were employed in this step: TF-
IDF, Word2Vec, and BERT tokenization, the only tokenization 
tool provided by the HuggingFace package.
 As a result, many combinations of the dataset were 
generated with different clustering and tokenization 
techniques. These were used in training ML models. The 
TF-IDF and Word2Vec tokenization techniques were 
used in conjunction with the statistical ML models (KNN, 
Random Forest, and MLP) provided by Sci-Kit Learn, while 
BERT tokenization was utilized exclusively with the BERT 
algorithms. 

ML Algorithms
 For the traditional ML models, tokenization techniques 
such as TF-IDF and Word2Vec were utilized, resulting in six 
distinct models. Hyper-parameter tuning was performed on 
each model to identify the model with the highest accuracy 
value using a validation dataset, followed by testing the best 
model in each of the six cases with a separate test dataset.
In the case of KNN, the hyper-parameter K was varied between 
1 and 10. In the case of random forest, the hyper-parameter 
number of trees and depth were varied from 5–100 and 5– 50, 
respectively. In the case of MLP, the two parameters tuned 
were learning rate and epochs. The learning rate was tuned 
between 0.00001 and 0.01 while the epochs were tuned from 
20 to 100.
 In the case of deep learning models, BERT was used 
for tokenization as well as training the ML algorithm. The 
transformer-based model was constructed on top of a pre-
trained transformer taken from the HuggingFace open-source 
platform (25). Nine trainable layers were added to the initial 
pre-trained model to tailor it for a multi-class classification 
task. The pre-trained model’s weights were frozen to avoid 
tampering with the imported model. The custom layer begins 
with two distinct input layers, one each for input IDs and 
input attention. The transformer’s output is then processed to 
extract the hidden state of the classification (CLS) token, which 
is passed through a series of dense layers, each followed by 
a dropout layer for regularization. These layers consisted of 
two dense layers with 256 and 64 neurons, respectively, each 
using a LeakyReLU activation function and GlorotNormal 
weight initialization. The final output layer was a dense layer 
with 15 neurons (corresponding to 15 classes) and used a 
softmax activation function for multi-class classification. The 
model, compiled with an Adaptive moment estimation (Adam) 
optimizer and mean squared error loss function, aims to 
optimize classification accuracy. There were three additional 
dense layers added to the BERT model, one of which was an 
output layer containing the same number of neurons as the 
number of predictable classes. Hyper-parameters batch size 
and learning rate were tuned from 16–128 and 0.0001–0.01, 
respectively, and evaluated using the validation dataset to 
determine the model with the highest performance. 
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