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of cancer, radiotherapy, chemotherapy, and targeted drugs 
like cetuximab, are limited in their effectiveness due to the 
unique and diverse nature of HNCSS (5). This underscores 
the urgent need for early diagnosis, especially in light of the 
projected 30% increase in HNSCC cases by 2030 (1).
	 Epigenetic	modifications	in	the	human	genome,	including	
histone	modifications	and	nucleic	acid	methylations,	are	critical	
in regulating gene expression by modulating transcription factor 
binding	 (6).	 These	modifications	 are	 particularly	 relevant	 in	
HNC,	where	they	play	a	significant	role	in	carcinogenesis	and	
cancer development (5). For example, DNA methyltransferase 
catalyzes the formation of 5-methylcytosine (5mC) within 
the DNA, occurring predominantly at CpG sites, where 
a cytosine base is followed by a guanine base in the 5’ to 
3’ direction (3). 5mC can undergo active demethylation 
catalyzed by Ten-eleven translocation (TET) proteins through 
stepwise oxidation to 5-hydroxymethylcytosine (5hmC), 
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) 
(7,8). This 5mC active demethylation pathway is crucial 
since	it	influences	gene	expression	by	controlling	chromatin	
accessibility and transcription repression (9). Unlike 5fC and 
5caC, 5hmC remains relatively unchanged through the cell 
cycle, a necessary feature of inheritable epigenetic markers 
(10). 5hmC content levels vary depending on tissue type, 
from 0.40-0.65% (e.g. in brain, rectum, and colon) to 0.05-
0.06% (e.g. in heart, breast, and placenta tissues) (11). In 
many types of cancer, 5hmC has been found at decreased 
levels (12). Though 5hmC is rare and less studied than 5mC, 
it	 may	 be	 better	 at	 reflecting	 gene	 expressivity	 through	 its	
correlation with active transcription unlike 5mC, which is 
generally associated with gene repression (13). 5hmC is often 
located at enhancer regions or active gene bodies and makes 
5hmC a potential indicator of not just the state of transcription 
activity but also a measure of change in such activities (13). At 
the	same	time,	5hmC	is	a	more	malleable	modification	than	
5mC because 5hmC is an intermediate in the active DNA 
demethylation process, meaning 5hmC   can be more readily 
reversed or altered by enzymes such as TET (Ten-Eleven 
Translocation) proteins. This property makes 5hmC a dynamic 
marker	that	can	reflect	the	state	of	biological	processes	more	
immediately and suggests that 5hmC has great potential as a 
novel biomarker for disease diagnosis and prognosis. 
 In recent years, promising research has been conducted 
on the use of 5mC and 5hmC as biomarkers for early cancer 
diagnoses (14). For example, two 5mC biomarkers for colon 
cancer diagnosis have been approved by the FDA, and 
products such as Cologuard have been used for the annual 
screening of stool samples for people older than 50 years old 
(15).  In head and neck cancer, 5hmC levels have been found 
to	 significantly	 correlate	with	 tumor	 stages	and	 recurrence,	
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SUMMARY
Head and neck cancer (HNC) is the seventh most 
common cancer worldwide and identifying biomarkers 
for its diagnosis, prognosis, and treatment success 
monitoring is crucial. Recent studies suggested that 
5-hydroxymethylcytosine (5hmC), a modified DNA 
base that can impact gene expressions, has great 
potential as a biomarker for the diagnosis of various 
cancers. However, whether 5hmC can be used as a 
biomarker for HNC detection remains unexplored. In 
contrast to fresh HNC tissues from patients, formalin-
fixed and paraffin-embedded (FFPE) samples are 
much more readily available for biomarker seeking. 
However, FFPE samples usually have severe DNA 
damage, leading to a large percentage of ssDNA 
fragments and making the sample incompatible 
with the current technology for 5hmC profiling. We 
hypothesized that using a new approach for 5hmC 
profiling that is compatible with ssDNA fragments 
would allow us to identify the potential 5hmC 
biomarker for HNC diagnosis in FFPE samples by 
comparing the differences in 5hmC distribution 
between tumor and adjacent normal tissues. Here, we 
report the use of an improved CMS-seq. method to 
sequence FFPE samples from HNC tumors and their 
adjacent normal tissues to generate pairs of genomic 
data from four different patients. After sequencing 
and data analysis, we identified 339 genes with 
differentiable 5hmC levels (p-value <0.05). Among 
them, three genes (PRKD2, HADHA, and AIPL1) have 
p-adjusted values less than 0.05, suggesting that 
the distinct 5hmC pattern in these three genes has 
promising potential as biomarkers for HNC diagnosis.

INTRODUCTION
 Head and neck cancer (HNC) is the seventh most 
common cancer worldwide, comprising ~4.5% of cancer 
diagnoses and 4.6% of cancer deaths (1). The most common 
subtype, head and neck squamous cell carcinoma (HNSCC), 
accounts for about 90% of HNC cases (2). HNSCC is one 
of the most aggressive cancers, and more than half of the 
diagnosed	 patients	 have	 a	 survival	 rate	 of	 less	 than	 five	
years (3,4). The treatment of HNSCC is complicated by its 
heterogeneity, or variation in tumor characteristics among 
patients, often leading to locoregional recurrence, where 
cancer returns to the original tumor site or nearby regions, 
or distant metastasis, the spread of cancer to other parts of 
the body (2). Current treatments, including surgical removal 
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and low levels of 5hmC are associated with poorer survival 
(4). However, whether 5hmC can serve as a biomarker for 
HNC diagnosis has not been explored. One of the key reasons 
is that fresh tumor tissues with intact double-stranded DNA 
(dsDNA) are usually hard to obtain in large numbers from 
patients.	 On	 the	 other	 hand,	 formalin-fixed	 and	 paraffin-
embedded (FFPE) samples are readily available and have 
been indispensable in preserving biopsy specimens for years 
in cancer diagnosis and research (16). The longevity of FFPE 
samples and cost-effective storage have led to an expansive 
FFPE sample collection, making up the vast majority of all 
available biological samples (16). Therefore, FFPE samples 
are a great resource for seeking biomarkers. However, they 
have been underutilized in genomic sequencing studies 
compared to fresh-frozen tissue samples (17,18). FFPE 
samples contain DNA of inferior quality because formalin 
fixation	causes	hydrolytic	damage,	fragmentation,	and	cross-
linkages, leading to the formation of single-stranded DNA 
(ssDNA) with percentages as high as 60% (19). These ssDNA 
fragments	 are	 not	 compatible	 with	 current	 5hmC	 profiling	
methods such as 5hmC-seal, which only works for dsDNA 
fragments (Figure 1) (20).  Although very powerful, the 5hmC-
Seal	 method	 requires	 dsDNA	 since	 the	 β-GT-catalyzed	

glycosylation reaction only works for dsDNA, but not ssDNA. 
Other	 methods,	 such	 as	 TET-assisted	 bisulfite	 sequencing	
and	oxidative	bisulfite	sequencing,	have	drawbacks	in	5hmC	
enrichment	 because	 they	 require	 significant	 sequencing	
depth	 and	 rely	 on	 harsh	DNA	 treatments,	 such	 as	 bisulfite	
conversion (21,22). These treatments degrade DNA, 
potentially leading to incomplete conversion and biases 
against GC-rich regions, which lowers sequencing accuracy 
and makes further data analysis less reliable (22). Traditional 
cytosine-5-methylenesulfonate sequencing (CMS-seq) uses 
conventional	 bisulfite	 sequencing	 (BS)	 treatment	 to	 convert	
5hmC to cytosine-5-methylenesulfonate (CMS) and then 
uses anti-CMS antibody for enrichment and sequencing (23). 
Despite its success, this method still suffers two limitations: 
(i)	 Conventional	 BS	 treatment	 causes	 an	 undesirable	 base	
conversion from C to deoxyuridine (dU), which reduces 
complexity and causes mapping issues; and (ii) conventional 
BS	 treatment	 also	 causes	 severe	 DNA	 damage,	 requiring	
high input of DNA (500 to 1000 ng).
 To address this incompatibility, we hypothesized that 
a	 new	 approach	 for	 5hmC	 profiling	 making	 use	 of	 ssDNA	
fragments would allow us to use FFPE samples to investigate 
the potential using 5hmC as a biomarker for HNC diagnosis 

Figure 1: Comparison of the workflow of 5hmC-Seal and CMS-seq. FFPE	DNA	was	first	fragmented	to	~200	bp	length.	In	the	5hmC-Seal	
method	(left),	5hmC	is	 labeled	with	a	glucose	moiety	using	T4	β-glucosyltransferase,	which	allows	selective	pull-down	of	5hmC-modified	
dsDNA fragments, as the method only works for double-stranded DNA. The CMS-seq method (right) works better for FFPE samples since 
CMS-seq works for both dsDNA and ssDNA fragments. 5hmC on dsDNA and ssDNA fragments were converted into CMS and all 5hmC-
containing fragments were then pulled down by an anti-CMS antibody. In both methods, NGS libraries were constructed from the enriched 
5hmC-containing sequences.
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by comparing the differences in 5hmC distribution between 
tumor and adjacent normal tissues. Here, we developed 
an improved CMS-seq method for 5hmC enrichment and 
library construction and demonstrated that it can be used 
on FFPE DNA samples extracted from cancer and adjacent 
normal	 tissues.	We	 improved	CMS-seq	by	using	a	new	BS	
recipe at neutral conditions, which can overcome these two 
limitations and successfully construct libraries from 50 ng of 
DNA	extracted	from	FFPE	tissues.	We	identified	three	genes	
showing distinct 5hmC distribution patterns, suggesting 
that they have promising potential as biomarkers for HNC 
diagnosis.

RESULTS
Improved CMS-seq method
 We initially focused on optimizing a newly developed 
5hmC	 profiling	 method	 termed	 CMS-seq,	 which	 works	 for	
both dsDNA and ssDNA, to improve library construction 
efficiency	(Figure 1). Our developments help achieved 200-
fold enrichment of CMS-containing fragments and were 

compatible with both dsDNA and ssDNA (Figure 1). These 
improvements	 resulted	 in	 higher	 specificity,	 more	 reliable	
5hmC	 profiling,	 and	 better	 overall	 data	 quality	 without	 the	
serious DNA damage or undesired C-to-U conversion 
observed in earlier methods (Figure 1). 

Data analysis of CMS-seq libraries
	 We	established	a	pipeline	for	data	analysis	and	identified	
14,606 genes for downstream analysis, selecting only genes 
with more than 50 total reads in at least one sample to ensure 
statistical robustness (Figure 2).	 Our	 confidence	 in	 the	
analysis	 increased	as	 the	differences	 in	5hmC-modification	
levels between tumor and normal tissue genes widened. 
Notably, tumor tissues have previously been shown to more 
often exhibit downregulation in 5hmC compared to normal 
ones	(24).	Our	analysis	identified	261	genes	with	tumor	tissues	
containing less than half of the 5hmC content level compared 
to healthy tissues. On the other hand, only 78 genes showed 
higher	5hmC	content.	In	total,	339	genes	were	identified	as	
both statistically robust (p-value < 0.05) and having more 

Figure 2: Data analysis workflow. The	 flowchart	 depicts	 the	 steps	 from	processing	 the	Next	Generation	Sequencing	data	 to	 analysis	
and visualization in R Studio. After a quality check (FastQC) and trimming (Trim-galore), reads are aligned to the hg19 reference genome 
(Bowtie2),	followed	by	processing	(Samtools)	and	counting	of	gene	reads	(FeatureCounts).	Statistically	significant	genes	(p-adjusted	value	<	
0.05)	are	identified	using	DESeq2,	and	non-significant	genes	are	discarded.	Significant	genes	undergo	further	literature	research	and	data	
visualization.	The	reference	genome	was	obtained	from	the	National	Center	for	Biotechnology	Information	publicly	available	database.	The	
gene	body	annotation	file	was	generated	using	R	from	the	reference	genome.	Points	labeled	with	the	starting	character	“N”	are	plotted	from	
normal	samples	and	“T”	from	tumor	samples.	Points	labeled	with	the	same	ending	number	are	from	samples	from	the	same	individual.	
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than a two-fold change in 5hmC levels amongst sample 
pairs (Figure 3). Additionally, we employed the p-adjusted 
value	 to	 enhance	 the	 statistical	 robustness	 of	 our	 findings.	
After adjusting for false positives using a p-adjusted value 
threshold of 0.05, we pinpointed three genes of particular 
interest: PRKD2, HADHA, and AIPL1 (Figure 3).
 Principal Component Analysis (PCA) is a statistical method 
that	simplifies	the	complexity	of	a	data	set	by	transforming	the	
original set of variables into a reduced number of principal 
components	 (25).	 The	 first	 principal	 component	 captures	
the largest variance in the dataset, and the second principal 
component accounts for the next largest variance, indicated 
by the x- and y-axis, respectively. The resulting plot allows 
us to gauge the similarity between samples based on the 
proximity of their respective points. In our analysis, using all 
14,606 genes did not reveal a clear distinction between tumor 
and adjacent normal tissues (Figure 4a). However, a notable 
variation and separation were exhibited when only the 339 
statistically	 significant	 genes	 were	 analyzed	 through	 PCA	
(Figure 4b). Without excluding the unique characteristics 
of each sample, PCA analysis shows that distinct 5hmC 
features can separate tumor tissues from adjacent normal 
ones, predominantly along the second principal component 
(Figure 4).
 To highlight differences between normal and tumor 
tissues, we normalized the 5hmC levels for each gene using 
z-scores. Genes with low 5hmC levels are represented by 
lower z-scores, while higher z-scores indicate genes with 
elevated	5hmC	modification.	This	normalization	allowed	us	to	
clearly	identify	patterns	of	5hmC	modification	across	samples	
(Figure 5). There is a clear contrast in 5hmC levels between 
tumor and normal tissue DNA (Figure 5). Tumor tissue DNA 

generally	 exhibited	 significantly	 lower	 5hmC	 levels	 (Figure 
5). Intriguingly, one pair of tumor and normal samples from 
a patient displayed an unusually high level of 5hmC across 
multiple genes compared to the other three pairs of samples 
(Figure 5). The presence of the outlier pair suggests that this 
individual might possess unique circumstances resulting in a 
more	saturated	5hmC	landscape	than	identified	in	the	other	
three pairs. 

Candidate genes
 PRKD2 is a gene in humans that encodes the Protein 
Kinase D2 (PKD2) enzyme and plays a critical role in various 
cellular processes, including cell proliferation, survival, 
migration, and the formation of new blood vessels (26). Our 
results indicated that PRKD2 exhibited lower levels of 5hmC 
in tumor tissues than normal ones (Figure 3). Using Gene 
Expression	 Profiling	 Interactive	 Analysis	 (GEPIA	 2),	 we	
mapped the expression levels of PRKD2 in 519 HNC and 44 
healthy patient samples from publicly available datasets: The 
Cancer Genome Atlas Program (TCGA) and The Genotype-
Tissue Expression (GTEx), respectively (27). We found that 
the expression of the PRKD2 gene was much higher in 
HNC patients than in healthy controls (Figure 6a). ANOVA 
differential method was used for tumor versus paired normal 
sample.	 Although	 there	 was	 not	 a	 statistically	 significant	
difference, the mean transcription per million (TPM) rate in 
tumor samples suggested a higher gene expression trend of 
43 while it was only 24 in normal samples. As prior studies 
suggested that low levels of 5hmC correlate with decreased 
gene expression, we concluded that a more complicated 
relationship exists between 5hmC transcription regulation 
mechanisms and PRKD2 (12,13).

Figure 3:  Volcano plot illustrating the 5hmC-modification differences in genes between the HNC tumors and adjacent normal 
tissue DNA. The two vertical green lines distinguish genes that have at least a 2-fold change in 5hmC concentration. Genes to the left of 
the leftmost green line have over a 2-fold decrease in 5hmC concentration between tumor tissues and normal tissues. Conversely, genes 
to the right of the rightmost green line have over a 2-fold increase in 5hmC concentration in tumor tissue as compared to normal tissue. The 
y-axis represents the -log10 of the probability value (p-value) of each gene, where a p-value under 0.05 is considered statistically relevant 
and	sectioned	above	the	blue	line.	Genes	with	p-adjusted	values	less	than	0.05	using	Benjamini-Hochberg	procedure	were	colored	in	red	to	
distinguish them as the most statistically accurate data in this set.
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	 To	 further	 investigate	 how	 5hmC	modification	 regulates	
gene	 expression,	 we	 loaded	 our	 sample	 files	 into	 the	
Integrative Genomics Viewer (IGV) to visualize each 
sample’s reads mapped to genomic regions (28). In a 5hmC 
concentrated area of PRKD2 in chromosome 19, we found 
a comparable amount of 5hmC between the tumor samples 
(T1-T4) and normal samples (N1-N4). Interestingly, most of 
the 5hmC in the tumor samples at this snapshot within the 
gene body were shifted slightly forward compared to the 
healthy samples which suggested the location of 5hmC also 
plays a role in regulating gene expression (Figure 7).
 HADHA encodes a subunit of the mitochondrial 
trifunctional protein (MTP), which is essential for breaking 
long-chain fatty acids in the mitochondria (29). Changes in 
metabolism	and	mitochondrial	mutations	can	also	 influence	
cancer cell survival and proliferation (30). When evaluating 
HADHA	expression	levels,	we	found	no	significant	difference	
between normal and tumor samples. The log2fold change 
was negligible, and the median values produced from GEIPA 
2 were nearly level (Figure 6b). This suggests that HADHA 
does	 not	 show	 a	 significant	 difference	 in	 our	 current	 study	
between the two conditions. 
 AIPL1 has been found to play an important role in the eye 
and the functioning of photoreceptors, which detect light and 
enable vision in the retina (31). We note that GEIPA 2 indicates 
a much smaller expression level of AIPL1, most commonly 
only slightly above zero TPM (Figure 6c). Additionally, there 
is	no	significant	change	in	transcription	levels.	Therefore,	we	
see little correlation between AIPL1 expression levels and 
head-neck cancer. 

DISCUSSION
 In this study, we utilized FFPE DNA samples, an 
underutilized but common form of DNA preservation. 
Throughout the study, we performed rigorous quality control 

and assessed DNA concentration to ensure usable libraries 
for sequencing. While FFPE samples are known to yield 
damaged DNA, our results demonstrate that FFPE DNA 
samples	 can	 be	 used	 for	 5hmC-containing	 gene	 profiling	
using our improved CMS-seq method. Other studies have 
also	 found	 FFPE	 samples	 contain	 a	 sufficient	 amount	 of	

Figure 4: PCA plots to visualize the variance of 5hmC-containing genes. PCA was used to reduce the dimensionality of the dataset 
and	highlight	differences	between	tumor	and	normal	samples	based	on	5hmC	modification	levels.	The	input	data	were	derived	from	CMS-
seq	libraries,	where	the	levels	of	5hmC	in	each	gene	were	quantified.	Statistically	significant	genes	were	identified	using	a	two-fold	change	
threshold	and	a	p-value	<	0.05,	adjusted	using	a	Benjamini-Hochberg	procedure	for	 false	discovery	rate.	Points	 labeled	with	 the	starting	
character	“N”	are	plotted	from	normal	samples	and	“T”	from	tumor	samples.	Points	labeled	with	the	same	ending	number	are	from	samples	
from	the	same	individual.	(a)	PCA	plot	using	all	5hmC-modified	genes.	(b)	PCA	plot	restricted	to	only	using	the	most	statistically	relevant	336	
5hmC-modified	genes.

Figure 5: Comparative heatmap of 5hmC concentrations. The 
dendrograms (brackets) on the top and left sides of the heatmap 
represent hierarchical clustering of samples (columns) and genes 
(rows), respectively. Clustering determined based on the similarity 
of 5hmC levels between samples or genes, with closely related ones 
grouped together, to compare the 5hmC levels in various samples 
at the gene level. Each tissue sample is depicted by a column of 
color-coded strips that indicate the normalized concentration of 
5hmC in genes using z-scores, represented by a row. The color 
gradient extends from blue (the lowest 5hmC concentration) to red 
(the highest 5hmC concentration), relative to the whole dataset.
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extractable DNA for NGS sequencing and that there is no 
significant	quality	difference	from	DNA	extracted	from	FFPE	
samples stored for only 1-2 years or for more than a decade 
(16,17). 
 There is variety in 5hmC levels even within the normal 
and tumor tissue groups. These differences can result from a 
combination of many factors, including the patient’s lifestyle, 
environment, habits, and other unique circumstances that are 
not limited to hereditary traits. While cancer is not the only 
factor that can change someone’s epigenetic patterns, we 
can still identify a clear distinction in 5hmC levels between the 
healthy and tumor tissues of the same patients. One outlier 
out	 of	 four	 total	 samples	may	 reflect	 the	 biological	 sample	
differences, and the probability of 5hmC as a biomarker 

to detect HNC, but not affect the overall robustness of the 
CMS-seq method. This study investigates the possibility of 
using CMS-seq to identify 5hmC as a potential biomarker for 
HNC detection. Our CMS-seq method can be extended to 
many FFPE samples to seek disease biomarkers for a wider 
dataset to increase accuracy and robustness in the future.
	 We	 identified	 three	genes,	PRKD2, HADHA, and AIPL1, 
as	the	most	statistically	significant,	with	5hmC	levels	at	least	
eight times smaller in tumor tissues than in their healthy 
counterparts.	 The	 identified	 genes	 based	 on	 5hmC	 levels	
correlate to HNC, demonstrating the promising potential of 
5hmC in distinguishing HNC’s epigenetic landscape and 
in discovering new candidates for biomarker research. 
This would be useful for HNC treatment because of HNC’s 
heterogeneous nature (5). 
 The low levels of 5hmC in these three genes may facilitate 
HNSCC development. The shifting in 5hmC enrichment 
location observed in PRKD2 may help us understand the 
mechanisms and role of 5hmC in cancer biology in future 
research. At the same time, we examined the expression 
levels	 of	 the	 three	 identified	 genes	 in	 HNC	 patients,	
leveraging the publicly available databases TCGA and GTEx. 
Of	 the	 three	genes	we	 identified,	PRKD2 might play a role 
in tumor progression of HNC, while HADHA and AIPL1 do 
not	 appear	 to	 significantly	 influence	 tumor	 progression	 or	
suppression based on their expression levels. We found that 
the 5hmC level is not always positively correlated to the gene 
expression level, as in the case of PRKD2, underscoring the 
complexity of 5hmC regulatory function. 
 Nevertheless, we also note the limitations of this study. 
The	small	sample	size	limits	the	statistical	significance	of	our	
work. We tested four individual’s HNC tumor tissue and normal 
tissue samples in this pilot study, and larger-scale studies will 
be needed to draw more solid conclusions. Still, the lower 
level of 5hmC found in HNC tumor compared to surrounding 
healthy tissues suggests that 5hmC level itself may be a 
good biomarker for HNC. Furthermore, 5hmC can potentially 

Figure 6: The gene expression levels of PRKD2, HADHA, and 
AIPL1 in HNC patients vs. healthy controls using publicly 
available databases. Gene expression levels in transcripts per 
million of (a) PRKD2, (b) HADHA, and (c) AIPL1 in 518 head-neck 
tumors (T, red box) compared to 44 paired normal samples (N, gray 
box) along x-axis. The comparison and the graph were automatically 
generated	from	the	platform,	Gene	Expression	Profiling	Interactive	
Analysis (GEPIA 2, using the ANOVA test. The compared expressions 
of tumor and normal samples of the three genes were not shown to 
be	statistically	significant.

Figure 7: A snapshot of decreased 5hmC level in tumors within PRKD2. An example of a shifted pattern in PRKD2 5hmC-containing 
sequence using the human reference genome hg19 through Integrative Genomics Viewer (IGV). Samples listed from top to bottom with N = 
normal	and	T	=	tumor.	Samples	labeled	with	the	same	ending	number	came	from	the	same	individual.	The	bar	heights	reflect	5hmC	coverage,	
with higher bars indicating more 5hmC. Colors represent nucleotide bases: red (T), blue (C), green (A), and orange (G).
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identify biomarkers, but more work is needed to identify 
statistically robust biomarkers. Furthermore, our research 
was only focused on the 5hmC levels in the gene body so 
additional studies will be needed to identify biomarkers, such 
as	a	detailed	examination	of	the	gene’s	expression	profiles.
This project contributes to the continuously growing 
knowledge	 on	 5hmC	 modification	 in	 cancer	 research	 and	
explores the traditionally unpopular use of FFPE samples in 
epigenetic	sequencing.	By	addressing	 the	 limitations	noted,	
future studies using 5hmC could advance our understanding 
of HNC’s epigenetic landscape and improve treatment 
strategies by discovering novel biomarkers.

MATERIALS AND METHODS
Construction of 5hmC-enriched Next Generation 
Sequencing library
 Pre-extracted genomic DNA was used from four pairs 
of human HNC tumors and adjacent normal tissue FFPE 
samples up to a decade old (unpublished, University of 
Chicago). From each, 50 ng of FFPE-isolated DNA was used 
as input. The DNA samples were fragmented and adapter-
ligated using the KAPA Hyper Prep Kit (Roche, Indianapolis, 
IN).	Then,	the	DNA	was	subjected	to	BS	treatment	at	neutral	
pH conditions to avoid undesired C-to-U conversion, severe 
DNA damage, and ensure only 5hmC transformed into CMS. 
An anti-CMS serum was used to pull down 5hmC-containing 
DNA fragments from all samples through magnetic protein 
beads. The DNA fragments that did not contain CMS were 
discarded.	 The	 beads	 containing	 DNA	 identified	 with	 CMS	
were	 released	 by	 heating	 the	 samples	 at	 95°C	 for	 five	
minutes. Since a 3’-adaptor was introduced, linear PCR was 
conducted to amplify the enriched DNA fragments to avoid 
the loss of DNA fragments with a very small number of copies 
and to maintain DNA quality. Then 5’-ligation and PCR was 
performed to amplify the fragment reads exponentially and 
complete libraries (Figure 1). The constructed libraries were 
then sent for NGS Illumina sequencing. 

Quality control and processing
 The eight libraries were paired-end sequenced to 100 bp 
using the Illumina NovaSeq 6000 sequencer and returned 
in	 the	 form	of	sixteen	paired-end	FASTQ	files.	All	 raw	data	
processing and sequence alignment was done through 
a	 Linux	 command	 line	 server.	 The	 FASTQ	 files	 were	 run	
through FastQC to visualize the raw data quality. Using the 
FastQC	reports,	further	data	refining	steps	were	determined	
to ensure quality during downstream analysis. The raw data 
files	were	quality-trimmed	using	Trim	Galore,	scripted	to	take	
paired-end	files	as	input	(32).	Trim	Galore	defaults	to	cutting	
base pair reads using a base quality requirement of Phred 
score 20, representing a probability of 1 error in 100 reads 
and the autodetected adapter sequences. If sequences were 
determined to be too short after trimming for high-accuracy 
alignment, the entire sequence was discarded by Trim Galore. 
For	every	pair	of	input	files,	an	output	file	containing	75%	to	
85%	of	the	original	data	that	passed	the	quality	control	filters	
was used for downstream analysis (Table 1). The reads were 
then	aligned	using	Bowtie2	due	to	its	ability	to	align	reads	with	
lengths greater than 50 bps (base pairs) to large reference 
genomes (33). The counts per gene were analyzed and 
differential	 5hmC-modified	 genes	 were	 identified	 in	 tumor	
tissues compared to healthy tissues (Figure 2).

Sequence alignment and read quantification
The processed sequences were aligned to the reference 
genome GRCh37 (hg19), obtained from the National Center for 
Biotechnology	Information	(NCBI),	using	Bowtie	2	(33).	When	
aligning,	one	misalignment	was	allowed	for	flexibility	without	
compromising accuracy. After alignment, the sequences 
were sorted using Samtools based on genome coordinates to 
prepare	for	read	quantification	(34).	The	number	of	reads	that	
map to a gene was counted using the FeatureCounts tool, 
which uses existing annotations from the reference genome 
to assign reads and quantify 5hmC expression levels in gene 
bodies (35). The package DESeq2 was used for differential 
expression	analysis	to	identify	the	genes	showing	significantly	
different 5hmC expression levels between each tumor and 
normal tissue sample pair (36). The Wald test was used by 
DESeq2 to calculate raw p-values (36).

Data analysis and visualization
	 To	analyze	the	5hmC	profiling	data,	the	CMS-seq	libraries	
were	processed	by	first	 identifying	14,606	genes	with	more	
than 50 total reads across all eight samples for downstream 
analysis. This step helped ensure statistical robustness and 
avoided	bias	toward	genes	with	minimal	5hmC	modifications.	
The z-scores were then calculated for the 5hmC levels of 
each gene, normalizing them to the dataset, which allowed 
5hmC concentration levels across samples to be visualized 
in RStudio.
 For dimensionality reduction and pattern recognition, 
Principal Component Analysis (PCA) was performed, using 
the	 339	 statistically	 significant	 genes	 with	 over	 a	 two-fold	
change in 5hmC levels between tumor and normal tissues. 
Tumor samples were differentiated from normal tissues using 
PCA by examining their clustering patterns along the principal 
components. Additionally, volcano plots were generated in 
RStudio	 to	 highlight	 genes	 with	 the	most	 significant	 5hmC	
modifications	 between	 tumor	 and	 normal	 tissues,	 and	 a	
p-adjusted value threshold of 0.05, calculated using the 
Benjamini-Hochberg	 procedure	 in	 DESeq2,	 was	 applied	 to	
improve	statistical	confidence	(36).

Selected genes validation through public platforms
 The expression levels of PRKD2, HADHA, and AIPL1 
were investigated using two publicly available datasets. 

Table 1: Overview of the eight NGS libraries after alignment 
using Qualimap. The counts of sequences acquired for each sample, 
alignment percentage to the human reference genome (hg19), and 
average sequence length. Points labeled with the starting character 
“N”	are	plotted	 from	normal	samples	and	“T”	 from	tumor	samples.	
Points labeled with the same ending number are from samples from 
the same individual.
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One was The Cancer Genome Atlas (TCGA), which gives 
gene expression information for different cancer types. The 
other was The Genotype-Tissue Expression (GTEx), which 
gives gene expression information for normal tissues. Gene 
Expression	Profiling	Interactive	Analysis	(GEPIA	2)	was	used	
to assess differential gene expression across sample groups 
from the two datasets.
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