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of cancer, radiotherapy, chemotherapy, and targeted drugs 
like cetuximab, are limited in their effectiveness due to the 
unique and diverse nature of HNCSS (5). This underscores 
the urgent need for early diagnosis, especially in light of the 
projected 30% increase in HNSCC cases by 2030 (1).
	 Epigenetic modifications in the human genome, including 
histone modifications and nucleic acid methylations, are critical 
in regulating gene expression by modulating transcription factor 
binding (6). These modifications are particularly relevant in 
HNC, where they play a significant role in carcinogenesis and 
cancer development (5). For example, DNA methyltransferase 
catalyzes the formation of 5-methylcytosine (5mC) within 
the DNA, occurring predominantly at CpG sites, where 
a cytosine base is followed by a guanine base in the 5’ to 
3’ direction (3). 5mC can undergo active demethylation 
catalyzed by Ten-eleven translocation (TET) proteins through 
stepwise oxidation to 5-hydroxymethylcytosine (5hmC), 
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) 
(7,8). This 5mC active demethylation pathway is crucial 
since it influences gene expression by controlling chromatin 
accessibility and transcription repression (9). Unlike 5fC and 
5caC, 5hmC remains relatively unchanged through the cell 
cycle, a necessary feature of inheritable epigenetic markers 
(10). 5hmC content levels vary depending on tissue type, 
from 0.40-0.65% (e.g. in brain, rectum, and colon) to 0.05-
0.06% (e.g. in heart, breast, and placenta tissues) (11). In 
many types of cancer, 5hmC has been found at decreased 
levels (12). Though 5hmC is rare and less studied than 5mC, 
it may be better at reflecting gene expressivity through its 
correlation with active transcription unlike 5mC, which is 
generally associated with gene repression (13). 5hmC is often 
located at enhancer regions or active gene bodies and makes 
5hmC a potential indicator of not just the state of transcription 
activity but also a measure of change in such activities (13). At 
the same time, 5hmC is a more malleable modification than 
5mC because 5hmC is an intermediate in the active DNA 
demethylation process, meaning 5hmC   can be more readily 
reversed or altered by enzymes such as TET (Ten-Eleven 
Translocation) proteins. This property makes 5hmC a dynamic 
marker that can reflect the state of biological processes more 
immediately and suggests that 5hmC has great potential as a 
novel biomarker for disease diagnosis and prognosis. 
	 In recent years, promising research has been conducted 
on the use of 5mC and 5hmC as biomarkers for early cancer 
diagnoses (14). For example, two 5mC biomarkers for colon 
cancer diagnosis have been approved by the FDA, and 
products such as Cologuard have been used for the annual 
screening of stool samples for people older than 50 years old 
(15).  In head and neck cancer, 5hmC levels have been found 
to significantly correlate with tumor stages and recurrence, 
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SUMMARY
Head and neck cancer (HNC) is the seventh most 
common cancer worldwide and identifying biomarkers 
for its diagnosis, prognosis, and treatment success 
monitoring is crucial. Recent studies suggested that 
5-hydroxymethylcytosine (5hmC), a modified DNA 
base that can impact gene expressions, has great 
potential as a biomarker for the diagnosis of various 
cancers. However, whether 5hmC can be used as a 
biomarker for HNC detection remains unexplored. In 
contrast to fresh HNC tissues from patients, formalin-
fixed and paraffin-embedded (FFPE) samples are 
much more readily available for biomarker seeking. 
However, FFPE samples usually have severe DNA 
damage, leading to a large percentage of ssDNA 
fragments and making the sample incompatible 
with the current technology for 5hmC profiling. We 
hypothesized that using a new approach for 5hmC 
profiling that is compatible with ssDNA fragments 
would allow us to identify the potential 5hmC 
biomarker for HNC diagnosis in FFPE samples by 
comparing the differences in 5hmC distribution 
between tumor and adjacent normal tissues. Here, we 
report the use of an improved CMS-seq. method to 
sequence FFPE samples from HNC tumors and their 
adjacent normal tissues to generate pairs of genomic 
data from four different patients. After sequencing 
and data analysis, we identified 339 genes with 
differentiable 5hmC levels (p-value <0.05). Among 
them, three genes (PRKD2, HADHA, and AIPL1) have 
p-adjusted values less than 0.05, suggesting that 
the distinct 5hmC pattern in these three genes has 
promising potential as biomarkers for HNC diagnosis.

INTRODUCTION
	 Head and neck cancer (HNC) is the seventh most 
common cancer worldwide, comprising ~4.5% of cancer 
diagnoses and 4.6% of cancer deaths (1). The most common 
subtype, head and neck squamous cell carcinoma (HNSCC), 
accounts for about 90% of HNC cases (2). HNSCC is one 
of the most aggressive cancers, and more than half of the 
diagnosed patients have a survival rate of less than five 
years (3,4). The treatment of HNSCC is complicated by its 
heterogeneity, or variation in tumor characteristics among 
patients, often leading to locoregional recurrence, where 
cancer returns to the original tumor site or nearby regions, 
or distant metastasis, the spread of cancer to other parts of 
the body (2). Current treatments, including surgical removal 
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and low levels of 5hmC are associated with poorer survival 
(4). However, whether 5hmC can serve as a biomarker for 
HNC diagnosis has not been explored. One of the key reasons 
is that fresh tumor tissues with intact double-stranded DNA 
(dsDNA) are usually hard to obtain in large numbers from 
patients. On the other hand, formalin-fixed and paraffin-
embedded (FFPE) samples are readily available and have 
been indispensable in preserving biopsy specimens for years 
in cancer diagnosis and research (16). The longevity of FFPE 
samples and cost-effective storage have led to an expansive 
FFPE sample collection, making up the vast majority of all 
available biological samples (16). Therefore, FFPE samples 
are a great resource for seeking biomarkers. However, they 
have been underutilized in genomic sequencing studies 
compared to fresh-frozen tissue samples (17,18). FFPE 
samples contain DNA of inferior quality because formalin 
fixation causes hydrolytic damage, fragmentation, and cross-
linkages, leading to the formation of single-stranded DNA 
(ssDNA) with percentages as high as 60% (19). These ssDNA 
fragments are not compatible with current 5hmC profiling 
methods such as 5hmC-seal, which only works for dsDNA 
fragments (Figure 1) (20).  Although very powerful, the 5hmC-
Seal method requires dsDNA since the β-GT-catalyzed 

glycosylation reaction only works for dsDNA, but not ssDNA. 
Other methods, such as TET-assisted bisulfite sequencing 
and oxidative bisulfite sequencing, have drawbacks in 5hmC 
enrichment because they require significant sequencing 
depth and rely on harsh DNA treatments, such as bisulfite 
conversion (21,22). These treatments degrade DNA, 
potentially leading to incomplete conversion and biases 
against GC-rich regions, which lowers sequencing accuracy 
and makes further data analysis less reliable (22). Traditional 
cytosine-5-methylenesulfonate sequencing (CMS-seq) uses 
conventional bisulfite sequencing (BS) treatment to convert 
5hmC to cytosine-5-methylenesulfonate (CMS) and then 
uses anti-CMS antibody for enrichment and sequencing (23). 
Despite its success, this method still suffers two limitations: 
(i) Conventional BS treatment causes an undesirable base 
conversion from C to deoxyuridine (dU), which reduces 
complexity and causes mapping issues; and (ii) conventional 
BS treatment also causes severe DNA damage, requiring 
high input of DNA (500 to 1000 ng).
	 To address this incompatibility, we hypothesized that 
a new approach for 5hmC profiling making use of ssDNA 
fragments would allow us to use FFPE samples to investigate 
the potential using 5hmC as a biomarker for HNC diagnosis 

Figure 1: Comparison of the workflow of 5hmC-Seal and CMS-seq. FFPE DNA was first fragmented to ~200 bp length. In the 5hmC-Seal 
method (left), 5hmC is labeled with a glucose moiety using T4 β-glucosyltransferase, which allows selective pull-down of 5hmC-modified 
dsDNA fragments, as the method only works for double-stranded DNA. The CMS-seq method (right) works better for FFPE samples since 
CMS-seq works for both dsDNA and ssDNA fragments. 5hmC on dsDNA and ssDNA fragments were converted into CMS and all 5hmC-
containing fragments were then pulled down by an anti-CMS antibody. In both methods, NGS libraries were constructed from the enriched 
5hmC-containing sequences.
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by comparing the differences in 5hmC distribution between 
tumor and adjacent normal tissues. Here, we developed 
an improved CMS-seq method for 5hmC enrichment and 
library construction and demonstrated that it can be used 
on FFPE DNA samples extracted from cancer and adjacent 
normal tissues. We improved CMS-seq by using a new BS 
recipe at neutral conditions, which can overcome these two 
limitations and successfully construct libraries from 50 ng of 
DNA extracted from FFPE tissues. We identified three genes 
showing distinct 5hmC distribution patterns, suggesting 
that they have promising potential as biomarkers for HNC 
diagnosis.

RESULTS
Improved CMS-seq method
	 We initially focused on optimizing a newly developed 
5hmC profiling method termed CMS-seq, which works for 
both dsDNA and ssDNA, to improve library construction 
efficiency (Figure 1). Our developments help achieved 200-
fold enrichment of CMS-containing fragments and were 

compatible with both dsDNA and ssDNA (Figure 1). These 
improvements resulted in higher specificity, more reliable 
5hmC profiling, and better overall data quality without the 
serious DNA damage or undesired C-to-U conversion 
observed in earlier methods (Figure 1). 

Data analysis of CMS-seq libraries
	 We established a pipeline for data analysis and identified 
14,606 genes for downstream analysis, selecting only genes 
with more than 50 total reads in at least one sample to ensure 
statistical robustness (Figure 2). Our confidence in the 
analysis increased as the differences in 5hmC-modification 
levels between tumor and normal tissue genes widened. 
Notably, tumor tissues have previously been shown to more 
often exhibit downregulation in 5hmC compared to normal 
ones (24). Our analysis identified 261 genes with tumor tissues 
containing less than half of the 5hmC content level compared 
to healthy tissues. On the other hand, only 78 genes showed 
higher 5hmC content. In total, 339 genes were identified as 
both statistically robust (p-value < 0.05) and having more 

Figure 2: Data analysis workflow. The flowchart depicts the steps from processing the Next Generation Sequencing data to analysis 
and visualization in R Studio. After a quality check (FastQC) and trimming (Trim-galore), reads are aligned to the hg19 reference genome 
(Bowtie2), followed by processing (Samtools) and counting of gene reads (FeatureCounts). Statistically significant genes (p-adjusted value < 
0.05) are identified using DESeq2, and non-significant genes are discarded. Significant genes undergo further literature research and data 
visualization. The reference genome was obtained from the National Center for Biotechnology Information publicly available database. The 
gene body annotation file was generated using R from the reference genome. Points labeled with the starting character “N” are plotted from 
normal samples and “T” from tumor samples. Points labeled with the same ending number are from samples from the same individual. 
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than a two-fold change in 5hmC levels amongst sample 
pairs (Figure 3). Additionally, we employed the p-adjusted 
value to enhance the statistical robustness of our findings. 
After adjusting for false positives using a p-adjusted value 
threshold of 0.05, we pinpointed three genes of particular 
interest: PRKD2, HADHA, and AIPL1 (Figure 3).
	 Principal Component Analysis (PCA) is a statistical method 
that simplifies the complexity of a data set by transforming the 
original set of variables into a reduced number of principal 
components (25). The first principal component captures 
the largest variance in the dataset, and the second principal 
component accounts for the next largest variance, indicated 
by the x- and y-axis, respectively. The resulting plot allows 
us to gauge the similarity between samples based on the 
proximity of their respective points. In our analysis, using all 
14,606 genes did not reveal a clear distinction between tumor 
and adjacent normal tissues (Figure 4a). However, a notable 
variation and separation were exhibited when only the 339 
statistically significant genes were analyzed through PCA 
(Figure 4b). Without excluding the unique characteristics 
of each sample, PCA analysis shows that distinct 5hmC 
features can separate tumor tissues from adjacent normal 
ones, predominantly along the second principal component 
(Figure 4).
	 To highlight differences between normal and tumor 
tissues, we normalized the 5hmC levels for each gene using 
z-scores. Genes with low 5hmC levels are represented by 
lower z-scores, while higher z-scores indicate genes with 
elevated 5hmC modification. This normalization allowed us to 
clearly identify patterns of 5hmC modification across samples 
(Figure 5). There is a clear contrast in 5hmC levels between 
tumor and normal tissue DNA (Figure 5). Tumor tissue DNA 

generally exhibited significantly lower 5hmC levels (Figure 
5). Intriguingly, one pair of tumor and normal samples from 
a patient displayed an unusually high level of 5hmC across 
multiple genes compared to the other three pairs of samples 
(Figure 5). The presence of the outlier pair suggests that this 
individual might possess unique circumstances resulting in a 
more saturated 5hmC landscape than identified in the other 
three pairs. 

Candidate genes
	 PRKD2 is a gene in humans that encodes the Protein 
Kinase D2 (PKD2) enzyme and plays a critical role in various 
cellular processes, including cell proliferation, survival, 
migration, and the formation of new blood vessels (26). Our 
results indicated that PRKD2 exhibited lower levels of 5hmC 
in tumor tissues than normal ones (Figure 3). Using Gene 
Expression Profiling Interactive Analysis (GEPIA 2), we 
mapped the expression levels of PRKD2 in 519 HNC and 44 
healthy patient samples from publicly available datasets: The 
Cancer Genome Atlas Program (TCGA) and The Genotype-
Tissue Expression (GTEx), respectively (27). We found that 
the expression of the PRKD2 gene was much higher in 
HNC patients than in healthy controls (Figure 6a). ANOVA 
differential method was used for tumor versus paired normal 
sample. Although there was not a statistically significant 
difference, the mean transcription per million (TPM) rate in 
tumor samples suggested a higher gene expression trend of 
43 while it was only 24 in normal samples. As prior studies 
suggested that low levels of 5hmC correlate with decreased 
gene expression, we concluded that a more complicated 
relationship exists between 5hmC transcription regulation 
mechanisms and PRKD2 (12,13).

Figure 3:  Volcano plot illustrating the 5hmC-modification differences in genes between the HNC tumors and adjacent normal 
tissue DNA. The two vertical green lines distinguish genes that have at least a 2-fold change in 5hmC concentration. Genes to the left of 
the leftmost green line have over a 2-fold decrease in 5hmC concentration between tumor tissues and normal tissues. Conversely, genes 
to the right of the rightmost green line have over a 2-fold increase in 5hmC concentration in tumor tissue as compared to normal tissue. The 
y-axis represents the -log10 of the probability value (p-value) of each gene, where a p-value under 0.05 is considered statistically relevant 
and sectioned above the blue line. Genes with p-adjusted values less than 0.05 using Benjamini-Hochberg procedure were colored in red to 
distinguish them as the most statistically accurate data in this set.
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	 To further investigate how 5hmC modification regulates 
gene expression, we loaded our sample files into the 
Integrative Genomics Viewer (IGV) to visualize each 
sample’s reads mapped to genomic regions (28). In a 5hmC 
concentrated area of PRKD2 in chromosome 19, we found 
a comparable amount of 5hmC between the tumor samples 
(T1-T4) and normal samples (N1-N4). Interestingly, most of 
the 5hmC in the tumor samples at this snapshot within the 
gene body were shifted slightly forward compared to the 
healthy samples which suggested the location of 5hmC also 
plays a role in regulating gene expression (Figure 7).
	 HADHA encodes a subunit of the mitochondrial 
trifunctional protein (MTP), which is essential for breaking 
long-chain fatty acids in the mitochondria (29). Changes in 
metabolism and mitochondrial mutations can also influence 
cancer cell survival and proliferation (30). When evaluating 
HADHA expression levels, we found no significant difference 
between normal and tumor samples. The log2fold change 
was negligible, and the median values produced from GEIPA 
2 were nearly level (Figure 6b). This suggests that HADHA 
does not show a significant difference in our current study 
between the two conditions. 
	 AIPL1 has been found to play an important role in the eye 
and the functioning of photoreceptors, which detect light and 
enable vision in the retina (31). We note that GEIPA 2 indicates 
a much smaller expression level of AIPL1, most commonly 
only slightly above zero TPM (Figure 6c). Additionally, there 
is no significant change in transcription levels. Therefore, we 
see little correlation between AIPL1 expression levels and 
head-neck cancer. 

DISCUSSION
	 In this study, we utilized FFPE DNA samples, an 
underutilized but common form of DNA preservation. 
Throughout the study, we performed rigorous quality control 

and assessed DNA concentration to ensure usable libraries 
for sequencing. While FFPE samples are known to yield 
damaged DNA, our results demonstrate that FFPE DNA 
samples can be used for 5hmC-containing gene profiling 
using our improved CMS-seq method. Other studies have 
also found FFPE samples contain a sufficient amount of 

Figure 4: PCA plots to visualize the variance of 5hmC-containing genes. PCA was used to reduce the dimensionality of the dataset 
and highlight differences between tumor and normal samples based on 5hmC modification levels. The input data were derived from CMS-
seq libraries, where the levels of 5hmC in each gene were quantified. Statistically significant genes were identified using a two-fold change 
threshold and a p-value < 0.05, adjusted using a Benjamini-Hochberg procedure for false discovery rate. Points labeled with the starting 
character “N” are plotted from normal samples and “T” from tumor samples. Points labeled with the same ending number are from samples 
from the same individual. (a) PCA plot using all 5hmC-modified genes. (b) PCA plot restricted to only using the most statistically relevant 336 
5hmC-modified genes.

Figure 5: Comparative heatmap of 5hmC concentrations. The 
dendrograms (brackets) on the top and left sides of the heatmap 
represent hierarchical clustering of samples (columns) and genes 
(rows), respectively. Clustering determined based on the similarity 
of 5hmC levels between samples or genes, with closely related ones 
grouped together, to compare the 5hmC levels in various samples 
at the gene level. Each tissue sample is depicted by a column of 
color-coded strips that indicate the normalized concentration of 
5hmC in genes using z-scores, represented by a row. The color 
gradient extends from blue (the lowest 5hmC concentration) to red 
(the highest 5hmC concentration), relative to the whole dataset.
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extractable DNA for NGS sequencing and that there is no 
significant quality difference from DNA extracted from FFPE 
samples stored for only 1-2 years or for more than a decade 
(16,17). 
	 There is variety in 5hmC levels even within the normal 
and tumor tissue groups. These differences can result from a 
combination of many factors, including the patient’s lifestyle, 
environment, habits, and other unique circumstances that are 
not limited to hereditary traits. While cancer is not the only 
factor that can change someone’s epigenetic patterns, we 
can still identify a clear distinction in 5hmC levels between the 
healthy and tumor tissues of the same patients. One outlier 
out of four total samples may reflect the biological sample 
differences, and the probability of 5hmC as a biomarker 

to detect HNC, but not affect the overall robustness of the 
CMS-seq method. This study investigates the possibility of 
using CMS-seq to identify 5hmC as a potential biomarker for 
HNC detection. Our CMS-seq method can be extended to 
many FFPE samples to seek disease biomarkers for a wider 
dataset to increase accuracy and robustness in the future.
	 We identified three genes, PRKD2, HADHA, and AIPL1, 
as the most statistically significant, with 5hmC levels at least 
eight times smaller in tumor tissues than in their healthy 
counterparts. The identified genes based on 5hmC levels 
correlate to HNC, demonstrating the promising potential of 
5hmC in distinguishing HNC’s epigenetic landscape and 
in discovering new candidates for biomarker research. 
This would be useful for HNC treatment because of HNC’s 
heterogeneous nature (5). 
	 The low levels of 5hmC in these three genes may facilitate 
HNSCC development. The shifting in 5hmC enrichment 
location observed in PRKD2 may help us understand the 
mechanisms and role of 5hmC in cancer biology in future 
research. At the same time, we examined the expression 
levels of the three identified genes in HNC patients, 
leveraging the publicly available databases TCGA and GTEx. 
Of the three genes we identified, PRKD2 might play a role 
in tumor progression of HNC, while HADHA and AIPL1 do 
not appear to significantly influence tumor progression or 
suppression based on their expression levels. We found that 
the 5hmC level is not always positively correlated to the gene 
expression level, as in the case of PRKD2, underscoring the 
complexity of 5hmC regulatory function. 
	 Nevertheless, we also note the limitations of this study. 
The small sample size limits the statistical significance of our 
work. We tested four individual’s HNC tumor tissue and normal 
tissue samples in this pilot study, and larger-scale studies will 
be needed to draw more solid conclusions. Still, the lower 
level of 5hmC found in HNC tumor compared to surrounding 
healthy tissues suggests that 5hmC level itself may be a 
good biomarker for HNC. Furthermore, 5hmC can potentially 

Figure 6: The gene expression levels of PRKD2, HADHA, and 
AIPL1 in HNC patients vs. healthy controls using publicly 
available databases. Gene expression levels in transcripts per 
million of (a) PRKD2, (b) HADHA, and (c) AIPL1 in 518 head-neck 
tumors (T, red box) compared to 44 paired normal samples (N, gray 
box) along x-axis. The comparison and the graph were automatically 
generated from the platform, Gene Expression Profiling Interactive 
Analysis (GEPIA 2, using the ANOVA test. The compared expressions 
of tumor and normal samples of the three genes were not shown to 
be statistically significant.

Figure 7: A snapshot of decreased 5hmC level in tumors within PRKD2. An example of a shifted pattern in PRKD2 5hmC-containing 
sequence using the human reference genome hg19 through Integrative Genomics Viewer (IGV). Samples listed from top to bottom with N = 
normal and T = tumor. Samples labeled with the same ending number came from the same individual. The bar heights reflect 5hmC coverage, 
with higher bars indicating more 5hmC. Colors represent nucleotide bases: red (T), blue (C), green (A), and orange (G).
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identify biomarkers, but more work is needed to identify 
statistically robust biomarkers. Furthermore, our research 
was only focused on the 5hmC levels in the gene body so 
additional studies will be needed to identify biomarkers, such 
as a detailed examination of the gene’s expression profiles.
This project contributes to the continuously growing 
knowledge on 5hmC modification in cancer research and 
explores the traditionally unpopular use of FFPE samples in 
epigenetic sequencing. By addressing the limitations noted, 
future studies using 5hmC could advance our understanding 
of HNC’s epigenetic landscape and improve treatment 
strategies by discovering novel biomarkers.

MATERIALS AND METHODS
Construction of 5hmC-enriched Next Generation 
Sequencing library
	 Pre-extracted genomic DNA was used from four pairs 
of human HNC tumors and adjacent normal tissue FFPE 
samples up to a decade old (unpublished, University of 
Chicago). From each, 50 ng of FFPE-isolated DNA was used 
as input. The DNA samples were fragmented and adapter-
ligated using the KAPA Hyper Prep Kit (Roche, Indianapolis, 
IN). Then, the DNA was subjected to BS treatment at neutral 
pH conditions to avoid undesired C-to-U conversion, severe 
DNA damage, and ensure only 5hmC transformed into CMS. 
An anti-CMS serum was used to pull down 5hmC-containing 
DNA fragments from all samples through magnetic protein 
beads. The DNA fragments that did not contain CMS were 
discarded. The beads containing DNA identified with CMS 
were released by heating the samples at 95°C for five 
minutes. Since a 3’-adaptor was introduced, linear PCR was 
conducted to amplify the enriched DNA fragments to avoid 
the loss of DNA fragments with a very small number of copies 
and to maintain DNA quality. Then 5’-ligation and PCR was 
performed to amplify the fragment reads exponentially and 
complete libraries (Figure 1). The constructed libraries were 
then sent for NGS Illumina sequencing. 

Quality control and processing
	 The eight libraries were paired-end sequenced to 100 bp 
using the Illumina NovaSeq 6000 sequencer and returned 
in the form of sixteen paired-end FASTQ files. All raw data 
processing and sequence alignment was done through 
a Linux command line server. The FASTQ files were run 
through FastQC to visualize the raw data quality. Using the 
FastQC reports, further data refining steps were determined 
to ensure quality during downstream analysis. The raw data 
files were quality-trimmed using Trim Galore, scripted to take 
paired-end files as input (32). Trim Galore defaults to cutting 
base pair reads using a base quality requirement of Phred 
score 20, representing a probability of 1 error in 100 reads 
and the autodetected adapter sequences. If sequences were 
determined to be too short after trimming for high-accuracy 
alignment, the entire sequence was discarded by Trim Galore. 
For every pair of input files, an output file containing 75% to 
85% of the original data that passed the quality control filters 
was used for downstream analysis (Table 1). The reads were 
then aligned using Bowtie2 due to its ability to align reads with 
lengths greater than 50 bps (base pairs) to large reference 
genomes (33). The counts per gene were analyzed and 
differential 5hmC-modified genes were identified in tumor 
tissues compared to healthy tissues (Figure 2).

Sequence alignment and read quantification
The processed sequences were aligned to the reference 
genome GRCh37 (hg19), obtained from the National Center for 
Biotechnology Information (NCBI), using Bowtie 2 (33). When 
aligning, one misalignment was allowed for flexibility without 
compromising accuracy. After alignment, the sequences 
were sorted using Samtools based on genome coordinates to 
prepare for read quantification (34). The number of reads that 
map to a gene was counted using the FeatureCounts tool, 
which uses existing annotations from the reference genome 
to assign reads and quantify 5hmC expression levels in gene 
bodies (35). The package DESeq2 was used for differential 
expression analysis to identify the genes showing significantly 
different 5hmC expression levels between each tumor and 
normal tissue sample pair (36). The Wald test was used by 
DESeq2 to calculate raw p-values (36).

Data analysis and visualization
	 To analyze the 5hmC profiling data, the CMS-seq libraries 
were processed by first identifying 14,606 genes with more 
than 50 total reads across all eight samples for downstream 
analysis. This step helped ensure statistical robustness and 
avoided bias toward genes with minimal 5hmC modifications. 
The z-scores were then calculated for the 5hmC levels of 
each gene, normalizing them to the dataset, which allowed 
5hmC concentration levels across samples to be visualized 
in RStudio.
	 For dimensionality reduction and pattern recognition, 
Principal Component Analysis (PCA) was performed, using 
the 339 statistically significant genes with over a two-fold 
change in 5hmC levels between tumor and normal tissues. 
Tumor samples were differentiated from normal tissues using 
PCA by examining their clustering patterns along the principal 
components. Additionally, volcano plots were generated in 
RStudio to highlight genes with the most significant 5hmC 
modifications between tumor and normal tissues, and a 
p-adjusted value threshold of 0.05, calculated using the 
Benjamini-Hochberg procedure in DESeq2, was applied to 
improve statistical confidence (36).

Selected genes validation through public platforms
	 The expression levels of PRKD2, HADHA, and AIPL1 
were investigated using two publicly available datasets. 

Table 1: Overview of the eight NGS libraries after alignment 
using Qualimap. The counts of sequences acquired for each sample, 
alignment percentage to the human reference genome (hg19), and 
average sequence length. Points labeled with the starting character 
“N” are plotted from normal samples and “T” from tumor samples. 
Points labeled with the same ending number are from samples from 
the same individual.
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One was The Cancer Genome Atlas (TCGA), which gives 
gene expression information for different cancer types. The 
other was The Genotype-Tissue Expression (GTEx), which 
gives gene expression information for normal tissues. Gene 
Expression Profiling Interactive Analysis (GEPIA 2) was used 
to assess differential gene expression across sample groups 
from the two datasets.
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