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due to immense strength, high melting points, and inability 
to maintain integrity in contact with carbon, oxygen, and 
nitrogen (4). In 2023, Relativity Space achieved a significant 
milestone with the launch of Terran 1, a small satellite launch 
vehicle that showcased the cutting-edge capabilities of metal 
AM (5). Through 3D printing, Terran 1 dramatically reduced 
manufacturing time from traditional manufacturing, enabling 
faster turnaround and increased production efficiency while 
maintaining the required precision and quality standards 
(5,6). One notable feature of its design was its nine Aeon 
engines, printed from a proprietary copper alloy engineered 
to withstand the extreme heat generated during propellant 
combustion (5). Examples such as Terran 1 demonstrate how 
AM has become prevalent in greater applications due to its 
rapid assembly and broader access to previously exclusive 
technologies such as rocket engines and parts that require 
intricate meshes and geometries (2). Furthermore, industries 
such as medicine, aeronautics, and aerospace have 
recognized the potential of AM to create lightweight, strong, 
and customized parts (2).
 In safety-critical applications, it is crucial that alloys 
maintain their durability even under extreme conditions, such 
as high temperatures and velocities. Several such possible 
applications of AM include nuclear fusion, hypersonic leading 
edges, gas/aircraft turbine engines, and atmospheric re-
entry (4). However, one barrier to using AM over traditional 
manufacturing is the need to meet certain industry standards 
on material performance (3). For example, aerospace 
manufacturers must prove that their AM engine parts have 
a high fatigue resistance for flight suitability to mitigate the 
risk of part failure (3). In the case of laser powder bed fusion 
(7), the alloy composition directly affects printability and the 
presence of defects in the finished part, making research and 
discovery of optimal compositions critically important. An 
example of this can be found in the propensity for cracking 
during solidification, known as the solidification cracking 
susceptibility (SCS) of a printed material (8). These defects 
occur when elements begin to unevenly distribute inside the 
melt pool as the material is solidifying. The change in liquid 
composition from the start to the end of solidification causes a 
difference in local melting point. At the same time, the portion 
of the melt pool that has solidified has contracted. If there is 
a large difference in temperature between the start and end 
of solidification, shrinkage can occur and stop proper liquid 
feeding, causing the formation of a crack. (6,9). Following 
solidification, additional solid-state cracking may occur if 
the materials do not have enough ductility to overcome the 
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SUMMARY
Additive manufacturing (AM) is revolutionizing the 
production of complex metal parts, offering both 
extreme precision and cost reduction. However, 
structural defects such as internal cracking can 
pose serious issues in AM parts, especially in 
safety-critical applications such as aerospace and 
automotive production. Empirically testing or running 
high-throughput simulations on a high volume of alloy 
formulas to quantify these cracking susceptibilities 
is overly costly and time-consuming. Recent 
developments in machine learning (ML) offer a more 
efficient solution to predicting the properties of a high 
volume of materials without the time cost needed 
to run mechanical simulations. In this study, we 
analyzed the solidification cracking susceptibilities 
(SCS) of potential printing alloys in safety-critical, 
additively manufactured parts. Based on the link 
between SCS and secondary alloy properties, we 
hypothesized that a multi-model ML pipeline would 
predict an alloy’s solidification cracking susceptibility 
at a higher accuracy than a model trained on alloy 
composition alone. Since predicting SCS directly 
from alloy composition eliminates the need for 
empirical measurements, our pipeline also predicted 
these secondary attributes directly from the original 
composition. We found that a pipeline using Random 
Forest architecture models performed at the highest 
accuracy and precision, outperforming the precision 
of a random forest model with no secondary 
predictions. Furthermore, the results of this study 
indicated a correlation between SCS and the included 
secondary attributes, which can be investigated in 
further research, as these attributes have not yet been 
factored into current SCS quantification methods.

INTRODUCTION
 Additive manufacturing (AM) uses novel techniques to 
construct 3D objects directly from computer-aided design 
(CAD) models (1). Differing from traditional manufacturing 
techniques such as casting and forging, AM processes 
offer complex geometries and designs, while also reducing 
part count (2,3). AM has allowed for the manufacture of 
metals that have traditionally been extremely challenging 
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stress from rapid shrinking and cooling (10). The propensity 
for cracking during solidification is known as the solidification 
cracking susceptibility (SCS) of a printed material. A higher 
value of SCS indicates higher susceptibility to cracking upon 
solidification which would present potential weaknesses 
in manufactured parts. Currently, the computation of SCS 
involves temperature and mechanical property measurements 
at specific solid fraction values, which require ultrahigh 
temperature capabilities (11). T.W. Clyne’s definition of SCS 
can be calculated using Equation 1, with fs representing the 
solid fraction, T denoting temperature, tv denoting vulnerable 
period, and tr denoting time available for stress release.  (11). 
Traditionally, the temperatures required for this calculation 
are obtained through a series of melting experiments, or 
thermodynamic simulation approaches, such as CALPHAD, 
which is the approach utilized by ThermoCalc (20). While these 
conventional calculation methods yield accurate results, they 
are expensive and time-consuming, as experimental tests 
and simulations can take days or even years to accurately 
estimate an alloy’s SCS and other properties (12). These 
limitations generate the need for techniques capable of 
leveraging data-driven analysis to achieve faster and more 

cost and time-efficient predictions, such as ML (13).
 Within the last decade, there has been an increasing 
interest in employing ML to predict the mechanical properties 
of top-performing additive manufacturing alloys (14). The 
critical nature of safety for these components further motivates 
the need to develop reliable ML predictions for assessing 
structural integrity. Earlier research has focused on aluminum-
based alloys, specifically eutectic Al-Si-based alloys, but due 
to inconsistencies in microstructural characteristics, such as 
grain size and geometry of boundary layers, of aluminum 
under directional solidification, more progress has been 
made with Ti- and Ni-based alloys (15). However, not all of 
these alloys are printable because the interaction of solid and 
liquid during solidification in printing environments can lead to 
extensive cracking. Limited research has been conducted in 
extending ML approaches to consider the defect resistance 
of an alloy during the printing process (15). Previous research 
has proposed the use of shallow neural networks (SNNs), 
deep neural networks (DNNs), and support vector regression 
(SVR) to calculate changes in SCS due to changes in two 
compositions of constituent stainless steels (12). However, 
this study used a smaller dataset of under 500 data points and 
exclusively focused on a specific subset of alloys. Moreover, 
their approach required longitudinal strain test data as input 
for predictions, again requiring manufacturers to obtain and 
experimentally manipulate the metal (12). We extended 
their methodology to encompass a broader range of alloys, 
employed a much larger dataset, and eliminated the need for 
any physical testing data as input.
 We hypothesized that adding feature inputs of ductility, 
solidus, and general stacking fault energy (GSF) would 
result in a more accurate estimate of Clyne SCS than a 
model without these features. In this study, we present 
a novel method capable of predicting SCS solely from a 
given alloy composition. We accomplished this through 
the implementation of secondary models that predicted 

supplemental alloy properties for use as features in the final 
model to predict Clyne SCS. While artificial neural networks 
(ANNs) have historically stood out for their low complexity 
and high accuracy, we additionally evaluated the random 
forest (RF) and support vector regression (SVR) architectures 
with ANNs as alternative architectures to determine which 
model structure had the optimal prediction accuracy (16). 
Finally, we evaluated the accuracy of both models using 
cross-validation techniques with multiple folds of data. We 
demonstrated that while the final RF model with all features 
was less accurate than previous SCS-related research, 
the addition of the secondary predicted features; ductility, 
solidus, and GSF; improved the precision of our optimized 
SCS prediction model. These findings suggest a not-yet-
explored relationship between SCS and these features which 
can be investigated in future research to produce potentially 
more accurate mathematical quantifications of SCS.

RESULTS
 To develop a ML model to predict Clyne SCS values, we 
began with a dataset of alloy compositions, solidus. liquidus, 
freezing range, phases, surface energy, general stacking 
fault energy, ductility parameter, and Clyne SCS. Of these, we 
initially took alloy composition as the input to three models: a 
RF, ANN, and SVR.

Model Results
 Before assessing, the output accuracy of the SCS models, 
hyperparameter tuning was completed to decide optimal 
hyperparameter values. For the RF model, we optimized 
three hyperparameters: number of estimators, maximum 
tree depth, and maximum number of features. We tested ten 
equally-spaced values for the number of estimators ranging 
from 2 to 1000 and found 667 estimators to be optimal. We 
tested six values between 2 and 30 for maximum tree depth 
(optimal value of 30), and nine values between 2 and 10 for 
maximum number of features (optimal value of 10). For the 
ANN model, we optimized the number of epochs and the 
learning rate through tuning. 560 epochs and a learning rate 
of 0.0001 was found to optimize output accuracy. Finally, we 
optimized the SVM’s C value which we found to be 10.0.

Figure 1: Mean Pearson R in 10-fold CV for each model 
architecture. The average Pearson R per fold of the ANN, SVM, 
RF, and combined RF pipeline showed that the RF with all inputs 
has the highest accuracies under the optimal combination of 
hyperparameters (Table 1).
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 Among the three model architectures, the RF model 
demonstrated the best performance, with a mean Pearson 
correlation coefficient-value of 0.73 ± 0.12. The ANN and 
SVR models delivered comparable performance, yielding 
mean Pearson correlation coefficient values of 0.71±0.10 and 
0.65±0.14, respectively (Figure 1). 

Addition of Secondary Attributes
 Once the optimal architecture was determined, the 
additional information in the dataset was analyzed to further 
increase the accuracy our final prediction. To determine what 
attributes should be included in the input vector to our model, 
we generated a correlation matrix of the data to identify the 
relationship strength between the alloy composition and our 
desired output of SCS values. The matrix plotted the R2 value 
between each feature and SCS, which measures the strength 
of a linear relationship between the features. The correlation 
values between Clyne SCS and the alloy composition 
information ranged between <0.01 and 0.17. Furthermore, 
the correlation coefficients between the other input variables, 
such as GSF and Ductility, and SCS were also relatively low, 
with the highest correlation coefficient being 0.22 (Figure 2). 
These low correlation values suggests that achieving high 
prediction accuracies for SCS may be challenging given the 
characteristics of the dataset. Nevertheless, we determined 
that including GSF, Ductility, and Solidus Temperatures as 
additional model parameters would provide the most useful 
information to SCS prediction models, as they exhibited the 
highest correlation coefficient magnitudes of 0.17, -0.15, and 
0.22, respectively.
 Based on the insights gained from the correlation 
matrix, the final model ensemble and training process were 
developed. We still focused using only the alloy composition 
as the initial input to minimize the need for extra alloy property 
simulations or computations. To achieve this, three additional 
ML models were designed to predict ductility, solidus, and 
GSF solely from the alloy compositions. The final SCS model 

incorporated these predicted values along with the original 
alloy compositions when making its predictions (Figure 3). 
The ensemble, with models for the secondary properties 
feeding into our main SCS prediction model, enhanced the 
overall prediction performance and improve the model's 
effectiveness in assessing the printability and structural 
integrity of alloys. 
 Upon adding these model predictions to feed into our 
original random forest model, the primary RF model for 
SCS, predicted SCS values with a Pearson-R of 0.75±0.08. 
Comparing this to our previous structure that only handled 
alloy composition, the secondary property predictions 
decreased standard deviation of SCS value, indicating that 
the pipeline increased model precision on unseen test data.

Secondary Model Accuracy
 Since the secondary RF and ANN models for ductility, 
solidus, and GSF reached extremely high accuracy (Pearson 
correlation coefficient-value of 0.99). Although such a high 
accuracy can indicate overfitting, overfitting did not appear 
to explain our levels of accuracy based on observing testing 
outputs. Firstly, 10-fold cross-validation was performed to 
evaluate the model’s ability to predict unseen data. The mean 
Pearson correlation coefficient remained at 0.99, showing 
that overfitting was not likely in this situation. An example 
of overfitting in models that we compared to is a visible and 
significant decrease in the testing accuracy as the number of 
estimators continues to increase (Figure 4). As we did not see 
evidence of this, we concluded that our models converged at 
the accuracy of a 0.99 Pearson correlation coefficient-value. 

Statistical Testing
 The chosen accuracy metric, Pearson correlation  
coefficient directly compares the model output with 
the expected value and is useful in comparing model 
architectures. However, a statistical significance test is 
needed to assess whether the achieved Pearson correlation 
coefficient represents sufficient accuracy (21). In this work, 
we used t-tests to determine whether our predictions were 
significantly different than the true values for SCS. Given that 

Figure 2: Feature correlation matrix. A correlation matrix for all 
possible additional inputs with highlighted values (in green box) for 
correlations corresponding to SCS. From this, we determined the 
most correlated features to include as additional inputs to the SCS 
model, specifically, solidus, ductility (D Parameter), and GSF.

Figure 3: Final SCS model pipeline. Diagram depicting the training 
pipeline for all four models. We maintained the alloy formulas as the 
only inputs while creating a more informed feature vector for the 
SCS model. First, the formulas were used to train the secondary 
property models, which produced predictions for each property. 
Then the formula was aggregated with these properties to input a 
larger feature vector for the SCS model using the same 90-10 train-
test split.
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the combined RF pipeline was assessed to have the highest 
accuracy, the t-test was performed on its predictions. The 
average p-value for 10 trials of model prediction and t-tests 
was 0.111, which is greater than a standard alpha threshold 
value of 0.05 (21). Thus, we failed to find a significance 
difference between predicted and actual values of SCS for 
our final combined RF pipeline.

DISCUSSION
 Overall, this study aimed to predict the Clyne SCS of 
potential printing alloys based solely off their chemical 
composition. This can help manufacturers determine the 
strength of formulas without the need for empirical testing. In 
addition to this goal, we found introducing secondary feature 
inputs predicted through separated ML models, even those 
beyond the original equation, benefitted the ML predictions.
For our models, we determined an optimal way to quantify 
model error. A common method of quantifying error with 
numerical output is mean absolute error (MAE) which is 
described by the following equation (18) with n denoting the 
total number of data points the model predicts, y being the 
true SCS, and ŷ being the predicted SCS.

 Unfortunately, MAE proved ineffective for our purposes 
because of the spread of our dataset. There does not 
appear to be a set range for SCS. In particular, values that 
differ from the mean by multiple magnitudes of standard 
deviation can bias error calculations, making it appear that 
we had extremely large errors relative to the mean. While 
these cases are important to consider, we opted to use an 
accuracy metric that accounted for their low occurrence rate, 
the Pearson correlation coefficient. Our switch was also 
motivated by other SCS prediction research that had success 
using Pearson correlation coefficient instead of MAE (12). 
Pearson’s correlation coefficient is described by Equation 
3 (12,21). In this equation, ŷ denotes a predicted value, x 
denotes the mean predicted value, in the Pearson correlation 
coefficient, y denotes the expected value, and ȳ denotes the 
mean expected value.

 We found that the random forest model architecture 
performed more accurately than the ANN and SVM. This 
result may be due to the high dimensionality of the data, 
the existence of more outliers, or the low correlation or 
high complexity of relationships between the features and 
the SCS, all of which strengthen random forest models. 
The difference in average Pearson correlation coefficient 
between the random forest with all features and the one with 
only alloy compositions is statistically not significant. This 
lack of significance may be due to the small correlations 
in these added variables, and hence adding them into the 
model may not provide much more information to train the 
model. However, the lower standard deviation of the Random 
Forest with all features indicates that this model is more 
consistent in achieving this average. Moreover, the accuracy 
of the enhanced RF model was further tested by a statistical 
t-test which failed to find a difference between predicted and 
expected outputs by our final model.
 Our model was limited by the information in our dataset. 
The dataset itself, although inclusive of alloys beyond Ti- and 
Ni- based alloys seen in past research, does not contain 
all possible elements that may form printable alloys. Thus, 
our model may not generalize to alloys containing elements 
outside of the simulated dataset. Expanding the included 
element set would further decrease the set of alloys that 
would need to be empirically tested. Furthermore, the data 
were limited by inaccuracies in the simulation software 
ThermoCalc itself, as the values generated may vary slightly 
from experimental reality. However, we note that it would be 
unfeasible to experimentally generate a dataset of this size.
 Additionally, our study focused on Solidus temperature, 
General Stacking Fault Energy, and ductility as secondary 
inputs. Moreover, we further tested the achieved accuracy of 
the final RF model by a statistical t-test which failed to find 
a difference between predicted and expected outputs by our 
final model. In the future, other relevant or highly correlated 
secondary properties could be explored to further increase 
the accuracy of SCS prediction. Nonetheless, we believed 
these findings were still a meaningful to inform manufacturers 
with a final printability decision.
 The final results of this experiment indicated several 
trends. Firstly, predictions were improved under a two-
step pipeline in which other features are predicted and 
subsequently compounded with the initial composition data 
to calculate Clyne SCS. While prediction accuracy did not 
significantly increase, the relative precision of our predictions 
did increase, supporting our initial hypothesis that adding 
these features would aid SCS predictions.
 Secondly, we found additional features used in the pipeline 
included features beyond those used through the preexisting 
Clyne SCS formula. Thus, the relationship between Clyne 
SCS and other physical properties such as GSF and Solidus 
can be further explored to describe the additional nuance 
supported by our findings on which features aid Clyne SCS 
predictions. Though our work displays how ML is poised to 
bypass the need for simulating these mechanical relationships, 

Figure 4: Mean Pearson R in 10-fold CV vs number of RF 
estimators. A graph of the average Pearson R versus the number 
of estimators showed constant accuracy, suggesting that the model 
is not overfitting.
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future work may expand on our attempt to produce a more 
accurate mathematical relationship for SCS that factors 
measurements outside the Clyne SCS formula. For instance, 
the freezing range feature was equally correlated with SCS as 
ductility, although we only included the latter in our secondary 
model due to time constraints.
 Finally, though SCS is usually reserved for cracking 
susceptibility predictions of materials, the methodology 
explored in this study can be extended to other material 
properties. For example, past research explains two other 
criteria for assessing high-temperature alloys interest: solid-
state cracking and partitioning (4). While SCS predicts the 
material’s affinity to develop weaknesses or faults during 
solidification, solid-state cracking determines the material’s 
performance under high-stress loads (4). Partitioning 
describes potential molecular separations with certain alloy 
compositions that would lead to overall structural weakness 
and microstructure development in the final product. Since 
these additional criteria are closely related to the features 
handled in this paper and dataset, we argue that research 
following the same ML pipeline structure can be leveraged to 
develop predictive models for further quantification of these 
other weakness metrics.

MATERIALS AND METHODS
Models
 We chose three models for our prediction of SCS: RF, 
ANN, and SVR. Additionally, all secondary models—ductility, 
solidus, and GSF—utilized an RF architecture. RF and ANN 
in particular are widely used ML algorithms adept at handling 
large datasets with several correlations. We aimed to compare 
the performance of these three models in predicting Clyne 
SCS. 
 The first architecture we implemented in our model was 
a random forest. An RF trains by drawing random bootstrap 
samples of data, which it uses to form an ensemble of decision 
trees based on patterns and relationships within the data. 
Splitting the data into random subsets limits the probability of 
unstable predictors and improves the accuracy of the model 
on previously unseen data (17). In a typical random forest, the 
model excludes unimportant features and selects the most 
important and correlated features. In this study, however, we 
assume that all component elements, relative to each other, 
may contribute substantially to the cracking susceptibility of a 
specific alloy. RFs have been utilized as a ML model for over 
twenty years, and its flexibility concerning input (numerical, 
ordinal, or nominal) and data distribution has encouraged 
frequent usage in many applications (18). RF is adept at 
handling large datasets such as ours efficiently and accurately 
due to its ensemble nature (19). The second architecture we 
chose was an ANN, which applies linear matrix multiplication 
as well as intermediate nonlinear activation functions to the 
input vector for each layer of the network. In this case, the 
rectified linear unit (ReLU) activation function was used for all 
layers, allowing the ANN to be capable of detecting complex 
nonlinear relationships. Although there has been extensive 
research into the advantages of DNNs versus SNNs, for our 
purposes, we have found that DNNs typically perform with 
significantly higher accuracy than SNNs (12). Therefore, we 
designed our Clyne SCS prediction model to use five hidden 
layers (10-30-50-100). Our model used the mean squared 
error loss function and the Adaptive Moment Estimation 

(ADAM) optimizer, which allows for more precise gradient 
descent, set at an initial learning rate of 0.001. Finally, the 
third architecture we chose was SVR, which is commonly 
used to define acceptable errors in our model and determine 
an appropriate line, or the optimal hyperplane, to fit the 
data. The advantages of an SVR include being less prone 
to overfitting and outliers within the dataset (13). The kernel 
function that we used was the radial basis function (RBF), 
which determines non-linear regression and can determine 
multivariable relationships. The arguably most important 
hyperparameter choice for SVR is the value of Cost (C), 
which modifies the model’s tolerance for points outside of 
the acceptable error margin. A greater C value reduces the 
risk of misclassification but also makes the model more likely 
to overfit our dataset. To find an optimal C value, we tested 
multiple candidates through a grid search and found the 
best solution, which gained the greatest Pearson correlation 
coefficient (R)-value.

Data Preparation
 A dataset of compositions and important solidification 
parameters was generated to evaluate the relationship 
between cracking susceptibility and composition-dependent 
parameters. A Python script was used to generate >3,500 
unique compositions in the refractory multi-principal 
element alloy space for thermodynamic evaluation. For 
each composition, a Scheil simulation was performed in 
ThermoCalc using the database TCHEA5 and a TC-Python 
script to automate the calculations (20). The shape of the 
fraction solid-temperature curve was fed into the Clyne 
solidification cracking susceptibility (SCS) predictive criterion, 
which could be compared across alloy compositions (11). 
The range of SCS for the dataset utilized in this study was 
approximately -1.6–22.8. The dataset contains essential 
information about alloy composition, including solidus 
temperature, liquidus temperature, freezing range, phases, 
surface energy, general stacking fault energy, ductility 
parameter, and Clyne SCS. The alloys studied in this dataset 
consist of the following elements: Zr, V, Ti, Nb, Mo, Ta, W, 
Hf, Ru, and Re. Notably, these elements possess relatively 
high melting points, making them valid potential replacements 
for traditionally machined high-temperature parts used in 
aerospace applications. It is important to mention that not all 
of the alloys in the dataset contain all of the aforementioned 
elements, and certain elements are only present in a limited 
number of data points. For this paper, the primary focus lies 
on solid-state and solidification cracking susceptibility as key 
factors in determining an alloy's printability. Consequently, 
the target variables for the predictive model are Clyne SCS 
and ductility parameter, with the latter being directly related to 
solid-state cracking susceptibility (11). 
 Given the objective of eliminating the requirement for 
manufacturers to obtain physical, simulated, or calculated 
data, our features would ideally only consist of the alloy 
composition. To preprocess these compositions, we split the 
data of alloy composition, originally represented as a string 
of elements and their percent mass, into separate input 
variables denoting the numeric percent composition for each 
element. To ensure consistent training, feature values were 
standardized by scaling to unit variance to address potential 
challenges due to differing unit scales.
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Error Quantification
 Pearson correlation coefficient accuracy quantification, 
given by Equation 3, was done through 10-fold cross-
validation (CV). This validation method splits the data into 10 
folds following the usual randomized shuffling. The model is 
trained 10 times with a different fold becoming the test set 
and the remaining data as the training set. The model’s final 
accuracy is then averaged across all folds. Unlike traditional 
holdout techniques, a 10-fold CV overcomes test-train split 
sensitivity by checking that the model is not overfitting to 
certain data splits. Overall, CV provides a more realistic 
measure of accuracy and ensures comprehensive coverage 
of the dataset trends during evaluation.

SCS Model Hyperparameter Tuning
 To calculate the hyperparameters that optimized accuracy, 
a grid search was performed for all suggested model 
architectures using a 10-fold (90-10 train-test split) nested 
k-fold procedure. By iterating through a grid of possible 
combinations of hyperparameters, the optimal combination 
that would provide the highest test accuracy was determined 
and used in final model accuracy assessments (Table 1). 
Pearson correlation coefficient was recorded for each, and 
the best parameters were selected. The model was then 
retrained in a 10-fold cross-validation to record the final 
accuracy.
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