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Article

shown that PD patients suffer from a loss in over 80% of their 
dopamine-producing cells in the substantia nigra (2). 
	 Concerns regarding limitations in the current diagnosis 
process continue as PD numbers rise. At the moment, 
there is no conclusive lab or imaging test for the diagnosis 
of Parkinson’s (3). A neurologist reviews a patient’s medical 
history, current symptoms, and performance on both a 
neurological and physical exam to make a diagnosis (4). A 
dopamine transporter (DaT) scan and other imaging tests 
(MRIs, PET scans, etc.) can be used to validate a diagnosis 
or rule out similar disorders; they cannot, however, be used 
for the direct diagnosis of PD (3, 4). Carbidopa-levodopa, 
generally consumed to mitigate PD symptoms, can be used to 
aid in the diagnosis of Parkinson’s as well (4). Unfortunately, 
a sufficient dose must be given, and a diagnosis can only 
be made if significant improvement in symptoms is seen (4). 
The current clinical PD diagnosis process, therefore, lacks 
objectivity and efficiency (5). In a 2020 poll for the charity 
Parkinson’s UK, for example, consisting of over 2000 
PD patients, 26% of participants reported being initially 
misdiagnosed (~74% accuracy), and a further 21% saw their 
general provider 3 or more times before being referred to a 
specialist, testifying to the inefficiency and general lack of 
accessibility of an accurate PD diagnosis (5). 
	 Common symptoms for those suffering from PD include 
rhythmic shaking, bradykinesia (slowed movement), muscle 
rigidity, and posture impairment (6). We primarily focused 
on rhythmic shaking, commonly referred to as a tremor, and 
the effect it has on a patient’s penmanship as a diagnostic 
marker of PD. Tremors, tending to be the first motor symptom 
of Parkinson’s and commonly occurring in the hands, can 
significantly affect a patient’s ability to draw a spiral (7). 
	 Machine and deep learning employ algorithms for the 
identification of patterns in an often extensive amount of data 
(8). Supervised learning, a subset of machine learning, trains 
algorithms using data and their corresponding labels (9). The 
algorithms form relationships between the data and their 
labels before being tested on unseen data with the goal of 
predicting the correct label (9). Current healthcare applications 
of machine and deep learning include precision medicine and 
radiomics (10). Applications in precision medicine involve 
the use of modeling techniques to predict optimal treatment 
methods for individual patients (10). Radiomics is the general 
extraction of numerical features from medical images, and 
often involves the identification of cancerous lesions in image 
data using features not visibly distinguishable (10). We utilized 
two supervised learning algorithms, support vector machines 
and neural networks, to aid in the early diagnosis of PD.
	 The goal of this study was to create two models that could 
be used to increase accessibility to an accurate and more 
efficient baseline PD diagnosis to alleviate undiagnosed 
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SUMMARY
Parkinson’s disease (PD) is the second most 
widespread neurodegenerative disorder in the United 
States following Alzheimer’s disease. Its inefficient 
and often inaccessible diagnostic process relies 
heavily on a healthcare professional’s analysis of a 
patient’s performance on neurological and physical 
exams. We aim to use machine and deep learning to 
improve the efficiency, accessibility, and accuracy 
of the diagnosis process by utilizing the effect 
that rhythmic shaking in the hand, a common PD 
symptom, has on a patient's ability to draw a spiral. 
We used images of spirals drawn by both PD and 
non-PD individuals to train a deep learning model 
that relied strictly on computer vision and a support 
vector machine (SVM)-based machine learning model 
that utilized histogram of oriented gradients feature 
extraction. We hypothesized that both models would 
outperform the current clinical diagnosis process by 
reducing misdiagnosis rates. This hypothesis was 
unsupported by our study’s findings. The models 
are unable to distinguish between PD and other 
neurocognitive disorders like multiple sclerosis or 
essential tremor. The models, therefore, cannot be 
directly compared to the current clinical diagnosis 
process. Instead, both models, in general, can be 
used as an efficient and highly accessible baseline 
diagnosis tool for neurocognitive disorders, 
complementing, rather than replacing, clinical 
diagnosis methods to improve the accessibility and 
efficiency of an accurate neurocognitive diagnosis.  

INTRODUCTION 
	 Parkinson’s Disease (PD), only following Alzheimer’s 
disease, is the second most widespread neurodegenerative 
disorder in the United States (1). Approximately 500,000 
patients in the US have been diagnosed with PD, but 
accounting for individuals that have either been undiagnosed 
or misdiagnosed, this number is estimated to be over 1 million 
(1). By the year 2040, as the US population ages, the number 
of patients diagnosed with PD is expected to double (1).
	 Parkinson’s is a progressive disorder that weakens the 
nerve cells in a portion of the brain called the substantia 
nigra, limiting its ability to produce the neurotransmitter 
dopamine (2). Dopamine helps transfer messages within the 
brain to ensure muscles produce steady, efficient movements 
(1). Insufficient dopamine results in irregular nerve firing 
which consequently impairs motor skills (1). Studies have 
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and misdiagnosed PD patient rates. We utilized the effect 
a tremor has on a patient’s ability to draw as a means of 
diagnosing Parkinson’s. We hypothesized that both models 
would outperform the current clinical PD diagnosis process by 
reducing the misdiagnosis rate. We used an accuracy of 74% 
for the approximate accuracy of the current clinical diagnosis 
process, as per a 2020 poll conducted by the Parkinson’s UK 
(5). Our hypothesis was unsupported, however, because of 
both models’ inability to distinguish between neurocognitive 
disorders in their diagnosis. Rather than outperform and 
effectively replace the current clinical PD diagnosis process, 
our models can work with the process as a baseline diagnosis 
tool for neurocognitive disorders, thus furthering the efficiency 
and accessibility of an accurate neurocognitive diagnosis. 

RESULTS
	 We posed to investigate deep and machine learning 
alternatives for the current clinical Parkinson’s diagnosis 
process through the analysis of spirals drawn by patients. We 
considered the use of two supervised learning algorithms, 
support vector machines and convolutional neural networks, 
to aid in this analysis. The dataset used to train both models 
contained 102, 256 by 256 pixel images of spirals drawn 
by 51 individuals with PD and 51 without PD (11). The data 
originated from a study that investigated the correlation 
between disease severity and a PD patient’s speed and pen-
pressure while sketching a spiral (12). The dataset was split 
into both training and testing sets. The convolutional neural 
network (CNN)-based model was trained on a 72 image 
training set (36 images from each class, PD and non-PD) and 
a 30 image testing set (15 images from each class). An 80-
20 (80% training, 20% testing) split was used for the SVM 
training and testing sets. 
	 Five different evaluation metrics were used to evaluate 
both models: accuracy, recall, precision, f1-score, and the 
area under the receiver operating characteristics curve 
(AUC). Accuracy is the total number of correct predictions 
(true positives and true negatives) divided by the total number 
of predictions (13). Recall, in the context of this application, is 
the proportion of PD diagnoses our model correctly made of 
the number of PD patients (14). Precision is the proportion of 
Parkinson’s diagnoses made by our model that were correct 
(14). The macro-average of these two values is the average of 
the recall and precision for each class (13). The explanations 
provided above are only for the PD class; a similar process 
would need to be conducted to find the precision and recall 
for the non-PD, or “healthy,” class.  
	 A well-performing model ideally has both a high recall and 
precision. Achieving both can be difficult, however, because 
of the inherent trade-off between the two (14). For example, if 
the classification threshold (divide between the two classes) 
were increased, the number of false positives would decrease 
but the number of false negatives would increase, resulting 
in a decrease in recall met with a corresponding increase in 
precision (14). An f1-score factors in both values in order to 
account for this tradeoff (15).
	 The last metric used to evaluate both models is the area 
under the receiver operating characteristic (ROC) curve. An 
ROC curve plots the true positive rate (TPR), which is simply 
recall, and the false positive rate (FPR), which is a measure 
of how many non-PD patients were incorrectly diagnosed 
with PD, at different classification thresholds (16). As the 

classification threshold gets lower, more patients will be both 
correctly (higher TPR) and incorrectly (higher FPR) diagnosed 
with PD (16). The AUC is the definite integral of the ROC 
curve from 0 to 1 (16). A model merely guessing between 
two options will have an AUC of 0.5; anything higher than this 
value is indicative of the ability to differentiate between the 
two classes (in this case, PD and non-PD) (17). 
	 The CNN deep learning model had an accuracy, f1-score, 
and macro-average recall of 0.80, and a macro-average 
precision of 0.82 (Table 1). Its AUC was 0.83 (Figure 1). The 
HOG feature extraction-based model performed stronger in 
every one of the five metrics. Its macro-average recall, f1-
score, and accuracy were all 0.86, while its macro-average 
precision was 0.85 and its AUC was 0.94 (Figure 1, Table 2).

DISCUSSION
	 We aimed to address the inefficiency, inaccessibility, and 
misdiagnosis rate of the clinical PD diagnosis procedure 
using modeling algorithms for the analysis of hand-drawn 
spirals. The feature extraction-based approach achieved 
an accuracy of 0.86 and an AUC score of 0.94, acting as a 
baseline diagnosis tool for neurocognitive disorders. 
	 At a surface level, the feature extraction-based model 
would improve the 74% clinical misdiagnosis rate by 10-15%. 
The accuracies of our model and the current clinical diagnosis 
process, however, were not directly comparable. The model 
has only been trained to differentiate between drawings made 
by PD and non-PD patients by utilizing the effect a tremor 
has on a patient’s penmanship; therefore, it has no ability 
to differentiate between PD and other disorders that cause 
tremors. Corticobasal syndrome (CBS), for example, is an 
uncommon, progressive neurodegenerative disorder that can 
cause its patients to lose direct control over a limb, making 
tasks that require fine motor skills (e.g. drawing a spiral) more 
difficult (18). Our model has not been trained to differentiate 
between drawings made by individuals with PD and CBS; 
thus, it would likely diagnose a shaky, wavering spiral drawn 
by a CBS patient with Parkinson’s. These misdiagnoses are 
not accounted for in the 86% accuracy stated above.
	 We initially hypothesized that our models would 
outperform, and effectively act as a replacement for the 
current diagnosis process in terms of misdiagnosis rate. This 
hypothesis was unsupported by the study’s findings because 
our models’ inability to distinguish between disorders that 
cause tremors made them incomparable to current clinical 
diagnosis procedures. Instead, the strengths of our models 

Table 1: Confusion matrix for CNN-based model. Visual 
comparison of the predicted vs actual diagnoses for the images in 
the 30 image testing set used to evaluate the CNN-based model. 
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lie in their ability to provide a baseline diagnosis of whether 
the patient has a neurocognitive disorder, many of which 
deteriorate a patient’s ability to perform tasks that require 
fine motor skills. For instance, returning to the example used 
above, our models can be used to identify that the patient 
with CBS has a neurocognitive disorder. However, they are 
not able to pinpoint which specific neurocognitive disorder 
the patient has. Further examples of neurocognitive disorders 
that may cause tremors in the hand are multiple sclerosis 
(MS) and essential tremor (ET) (19). 
	 To improve the models’ ability to distinguish between 
patients with and without a neurocognitive disorder, a 
more common approach would be training the models with 
drawings made by individuals with a variety of neurocognitive 
disorders. This change, however, would likely have a minimal 
effect on the models’ ability to fulfill this goal because the PD, 
MS, ET, CBS, etc. drawings would look very similar because 
of their similar symptoms; thus, using drawings from only one 
disorder (as done in this paper) would not be substantially 
detrimental to model generalization (18).
	 The precision, recall, f1-score, AUC, and accuracy 
characterize both models’ ability to act as a baseline 
diagnosis tool for neurocognitive disorders. The model was 
marginally stronger at identifying the PD patients (recall) 
at the expense of the accuracy of the positive diagnoses 
(precision). The larger emphasis on identifying all PD patients 
at the small cost of the accuracy of the positive diagnoses 
is optimal in this context because a false negative implies 
an undetected disorder, which in its progressive nature, can 
cause PD symptoms to worsen (20). The f1-score of 0.86, 
however, factors in both metrics and indicates that the model 
performed strongly in both categories (15). The metrics, as a 
whole, illustrate the model’s ability to act as a baseline tool 
for the general diagnosis of neurocognitive disorders but its 
inability to directly diagnose PD because of the limitations 

discussed above.
	 Both models proposed in this paper, particularly the 
SVM model, potentially provide an accurate diagnosis of a 
neurocognitive disorder (e.g., PD, MS, ET, CBS) for further 
medical examination. The stronger performance of the 
SVM-based model in comparison to its CNN counterpart 
exemplifies the strengths of using feature extraction over a 
strictly computer vision-based approach to identify the more 
unsteady drawings expected from a PD patient.
	 Our feature extraction-based model, rather than replace 
the current clinical diagnosis process, can complement it to 
enhance the efficiency and accessibility of the process. A 
patient, for example, can use our model to gain an accurate 
understanding of whether they have a neurocognitive 
disorder. They would simply need to draw a spiral, take a 
picture of the spiral, and our model will return its diagnosis 
with an accuracy of 86%. Further medical attention can be 
sought to identify which specific neurocognitive disorder the 
patient has. Future research should focus on creating an 

Figure 1: Receiver operating characteristic (ROC) curve for CNN and feature extraction-based model. (A) ROC curve for CNN-based 
model. (B) ROC curve for feature extraction-based model. ROC curve plots the true positive and false positive rates at different classification 
thresholds. The true positive rate is the rate at which the model correctly diagnoses a PD patient with PD. The false positive rate is the rate at 
which the model incorrectly diagnoses a non-PD patient with PD. The definite integral from 0 to 1 shows the area under the curve (AUC) for 
(A) the CNN-based model (AUC = 0.83) and (B) the feature extraction-based model (AUC=0.94). The dashed line shows the AUC of a model 
with no ability to differentiate between the two classes (AUC = 0.5). 

Table 2: Confusion matrix for HOG feature extraction-based 
model. Visual comparison of the predicted vs actual diagnoses in 
the 21 image testing set used to evaluate the feature extraction-
based model. 
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algorithm that can differentiate between tremors caused by 
different neurocognitive disorders. This would allow for the 
direct, automated diagnosis of PD. 

MATERIALS AND METHODS
	 In the development and application of both models, the 
programming language Python was used along with a variety 
of its libraries: NumPy, Matplotlib, scikit-learn, and scikit-
image. The development of the CNN-based model utilized 
the deep learning framework PyTorch and its corresponding 
package torchvision. The dataset was obtained from Kaggle.
com (11). Five metrics were used to evaluate both models: 
accuracy, precision, recall, f1-score, and AUC. Recall was 
calculated by dividing the number of true positives by the 
number of true positives and false negatives (14). Precision 
was calculated by dividing the number of true positives by the 
number of true positives and false positives (14). F1-score, 
which factors in both precision and recall, was calculated 
using the following equation. 

CNN-Based Model
	 Prior to building the model itself, the data was transformed 
using data augmentation (Figure 2). Data augmentation plays 
a significant role in the improvement of model generalization 
and the prevention of overfitting by artificially increasing data 
variability (21). Data variability is increased by taking existing 
data, in this case images, and altering them (21). Transforms 

were used to rotate the images by 10° in either direction, 
horizontally flip 30% of the images, vertically flip another 30% 
of the images, and convert the images into tensors, which is a 
numerical form of the PIL Image. Transforms improve model 
generalization by training the model on images that haven’t 
been perfectly captured, allowing it to perform stronger on 
real-world data that may not be “perfect” either (21).
	 The model architecture was then built, utilizing one 
convolutional and one classifier block. The convolutional block 
consisted of three sets of 2D convolutional (conv2D), Rectified 
Linear (ReLU), and MaxPool2D layers. The 2D convolutional 
layer iterated over 2D sections of the image data, performing 
element-wise multiplication, and thus transforming the 2D 

Figure 2: Visual representation of original and augmented 
spirals drawn by an individual with PD. (A) Original image. (B) 
Image post data augmentation (10° rotation, vertically flipped) for 
CNN model, using library torchvision’s transforms module. (C) Image 
post feature extraction for SVM model, using library scikit-image’s 
“hog” function.

Figure 3: Graphical representation of k-fold cross-validation accuracy and loss curves. Graphs show loss (left) and accuracy (right) 
curves for k-fold cross-validation (k=3). Black lines represent train loss and accuracy curves; blue lines represent validation loss and accuracy 
curves. There was a general increase in accuracy and decrease in loss across all 3 folds. Graphs were created using Python library Matplotlib.
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matrix while maintaining its size (22). The ReLU activation 
layer iterated over each data point, converting it to 0 if it was 
negative (23). The ReLU activation layer introduced the model 
to non-linearity, allowing the model to get accustomed to the 
naturally non-linear spiral drawings it was tested on (23). The 
max pooling (MaxPool2D) layer reduced the number of image 
data points by selecting the maximum value in every 2 by 2 
subset of data (24). 
	 The classifier block flattened the data into a single 1D 
array and then used 3 sets of alternating linear and ReLU 
layers. Each linear layer along with its corresponding ReLU 
activation function reduced the number of features until only 
2 remained, representing the probability that the image is 
drawn by a PD or non-PD patient. The greater of the two is 
the returned diagnosis.
	 The model was trained using k-fold cross-validation. Three 
folds were used, each iterating over the training and validation 
set 250 times (250 epochs). For each fold, the training set was 
randomly split into a smaller training and validation set. The 
model was trained on the smaller training set and progress 
was tracked using the validation set. Utilizing k-fold cross-
validation prevented overfitting and provided a more robust 
assessment of how the model would perform on unseen 
data (25). The model was trained using the Adam optimizer 
(learning rate of 0.001) and the multiclass cross entropy 
loss function, which are both commonly used for medical 
image classification (26). The accuracies on the validation 
set after each fold were 0.66, 1.0, and 1.0, with a validation 
loss reaching as low as 0.003 (Figure 3). The testing set was 
then passed into the model and the final accuracy, precision, 
recall, f1-score, and AUC were recorded. 

Feature Extraction-Based SVM Model
	 To build the feature extraction-based SVM model, the 
images were taken and passed through scikit-image’s HOG 
function. HOG is a feature extraction method that calculates 
a gradient for every pixel and uses the magnitude and 
orientation of that gradient to compute histograms from 
which features are extracted (27). HOG feature extraction 
works well in the analysis of spiral drawings because of its 
ability to simplify an image, extracting only its most important 
features where changes in gradient are largest (27). This 
simplification process allows it to extract the unsteady parts 
of the drawings, making differentiation between the two 
classes far easier. 11 orientations, 10 pixels per cell, and 3 
cells per block (arguments for scikit-image’s HOG function) 
were found to work well with the 256 by 256 pixel images 
used to test both models and were used to extract 52,371 
numerical features from each image. A visual representation 
of the resultant of this simplification process can be seen 
in Figure 2. 80% of the feature-extracted image data was 
used to create a training set, and the other 20% was used 
for a testing set. The training set was then passed through 
a support vector machine (SVM), which found a hyperplane 
that best separated the data from the two classes (28). An 
SVM was used because of its effectiveness when working 
with a training set that has more features (52,371) than data 
points (102 images) (28). The testing set was then passed into 
the trained SVM, and the final accuracy, precision, recall, and 
AUC were recorded.
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