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considerably to morbidity and mortality (4). Understanding 
and addressing pneumonia is not only a medical challenge 
but also a public health priority, necessitating advancements 
in diagnostic methods to improve patient outcomes (5).
 The detection of pneumonia typically involves the use 
of chest X-rays, which are radiographic images of the chest 
used to visualize the lungs and surrounding tissues (6). Chest 
X-rays are considered a standard diagnostic tool in identifying 
lung infections and inflammations. They work by passing a 
small amount of radiation through the body to produce images 
of the internal structures (7). The varying densities of different 
tissues and organs, including the air in the lungs, absorb this 
radiation differently. This effect results in a picture that can 
reveal abnormalities like the consolidation characteristic of 
pneumonia (7). However, the interpretation of these images 
requires specialized knowledge and experience, as subtle 
differences in shading can indicate the presence or absence 
of disease (8).
 The manual assessment of chest X-rays has limitations 
including the potential for human error and variability in 
interpretation (9). This issue is particularly pronounced in 
areas with a shortage of expert radiologists (10). In recent 
years, machine learning has emerged as a promising tool 
to address these challenges, beginning with multilayer 
perceptrons (MLPs) and evolving into more sophisticated 
models like convolutional neural networks (CNNs) (11, 
12). MLPs, simple forms of artificial neural networks, were 
an initial step in automated image analysis but lacked the 
ability to efficiently process complex image data. CNNs, 
however, with their capacity for feature detection and pattern 
recognition in images, have shown considerable potential 
in enhancing the accuracy and efficiency of medical image 
analysis, including chest X-rays (13). Among the various 
CNN architectures, VGG16 has gained prominence for its 
depth and ability to capture intricate image features, making it 
suitable for complex medical image analysis (13).
 The objective of this study is to evaluate the efficacy of 
an adapted version of the VGG16 model, a specific type 
of CNN, in the diagnosis of pneumonia from chest X-ray 
images. We hypothesized that an adapted VGG16 model 
would demonstrate superior performance compared to both 
the standard VGG16 and conventional MLPs in terms of 
accuracy and efficiency in pneumonia detection. We modified 
the VGG16 model, known for its depth and ability to process 
complex image data, to better suit the specific requirements 
of pneumonia detection in chest X-rays. Our findings indicate 
that the adapted VGG16 model outperformed both the 
standard VGG16 and MLPs, achieving the highest accuracy 
and stability, demonstrating its potential to improve pneumonia 
detection and reduce diagnostic errors, particularly in under-
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SUMMARY
Detection of pneumonia is generally done using 
chest X-ray images, traditionally assessed 
manually by radiologists. However, this method 
has limitations, including the potential for human 
error, variability in interpretation, and a shortage 
of skilled professionals, particularly in resource-
limited settings. Prompted by these challenges 
and the increasing potential of machine learning in 
medical diagnostics, we investigated the efficacy of 
advanced computational models in distinguishing 
between normal and pneumonia-affected lung 
images. We hypothesized that an adapted version 
of the VGG16 model, a convolutional neural network 
(CNN), would outperform the standard VGG16 and 
simpler Multilayer Perceptrons (MLPs) in terms of 
accuracy and reliability. Utilizing a dataset from the 
Guangzhou Women and Children’s Medical Center, 
we evaluated the performance of these three models 
on pediatric chest X-ray images. The MLP showed 
moderate effectiveness with 78.4% accuracy but 
struggled with complex image data. The standard 
VGG16 achieved better results with 90.9% accuracy 
but displayed overfitting tendencies. The adapted 
VGG16 model, with reduced filter sizes and dropout 
layers, demonstrated the highest accuracy at 95.6%, 
indicating superior performance and stability. These 
findings suggest that tailored deep learning models 
like the adapted VGG16 can significantly enhance 
pneumonia diagnosis from chest X-ray images, 
offering a balance of accuracy, efficiency, and 
generalizability. This advancement holds substantial 
implications for improving diagnostic processes in 
pediatric healthcare, particularly in settings with 
limited resources.

INTRODUCTION
 Pneumonia is a prevalent and potentially severe respiratory 
infection that inflames the air sacs in one or both lungs, 
leading to a range of symptoms including coughing, fever, and 
shortness of breath (1). It holds significant importance in global 
health due to its high incidence, especially among vulnerable 
populations like children and the elderly (2). The complexity of 
its symptoms, which can often resemble those of a common 
cold or influenza, makes accurate diagnosis crucial (3). The 
impact of pneumonia is especially pronounced in regions 
with limited healthcare resources, where it contributes 
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resourced healthcare settings.

RESULTS
 To determine if our modified VGG16 model can better 
identify patients suffering from pneumonia (Figure 1A) than 
simpler, less tailored models, we evaluated the accuracy 
of pneumonia diagnoses of three training models: an MLP, 
a standard VGG16, and an adapted VGG16 (Figure 1B-D). 
Each model was trained over 100 epochs, utilizing a dataset 
of pediatric chest X-ray images categorized as ‘Normal’ or 
‘Pneumonia’ (14). This dataset consisted of 5,856 chest X-ray 
images from the Guangzhou Women and Children’s Medical 
Center. The performance of the models was assessed 
using accuracy, which measures the proportion of correct 
diagnoses, and the F1 score, which provides a balanced 
evaluation by considering both the precision (correct 
identification of pneumonia cases) and recall (ability to detect 
all actual pneumonia cases).
 The MLP model, with 4,213,121 parameters, showed a final 
accuracy of 78.4% and an F1 score of 83.6% on the validation 
set. This plateau in performance suggested a limitation in 

handling the complexity of the chest X-ray images. Although 
the MLP model’s accuracy steadily improved when tested on 
the training dataset, its performance was inconsistent and 
failed to stabilize when evaluated on the validation dataset 
(Figure 2A).
 In comparison, the standard VGG16 model, with 
65,057,473 parameters, demonstrated an improved 
performance, reaching an accuracy of 90.9% and an F1 score 
of 93.7% on the validation set. Despite better results than the 
MLP, the standard VGG16 model began showing overfitting 
tendencies post the 70th epoch. Overfitting occurs when a 
model learns patterns specific to the training data, causing 
a decline in its ability to generalize to new, unseen data. 
This was evident from the divergence observed between the 
training and validation accuracy curves. While the training and 
validation curves of the standard VGG16 indicated a more 
stable convergence than the MLP, we also observed some 
slight fluctuations in validation accuracy, reflecting variability 
in performance due to model sensitivity to specific data points 
(Figure 2B). We further noted that these fluctuations, along 
with the eventual overfitting, suggest that the model became 
too tailored to the training data, reducing its effectiveness on 
new cases. 
 The adapted VGG16 model, which involved modifying 
the standard VGG16 architecture to better suit the task of 
pneumonia detection, displayed a higher level of efficacy than 
either the MLP or original VGG16 model. This adaptation 
included reducing the filter sizes in the convolutional layers 
to balance feature extraction and computational efficiency 
and incorporating dropout layers to prevent overfitting by 
randomly omitting certain neurons during training. With 
4,212,321 parameters, the adapted model achieved an 
accuracy of 95.6% and an F1 score of 97.1% on the validation 
set and maintained consistent performance throughout the 
training process. The training and validation accuracy curves 
for the adapted VGG16 remained closely aligned, suggesting 
minimized overfitting and enhanced capability in generalizing 
to new data (Figure 2C).
 Statistical analysis using McNemar’s test revealed 
significant differences in the classification performance 
among the three models. This test compared the performance 
of each pair of models—MLP versus standard VGG16, 
standard VGG16 versus adapted VGG16, and MLP versus 
adapted VGG16—by evaluating the discrepancies in their 
misclassifications on the same dataset. The highly significant 
differences (p < 0.001) indicated by chi-squared values of 
631,362.6, 955,599.2, and 489,878.99, respectively, show 
that each model’s accuracy in diagnosing pneumonia from 
chest X-rays was distinct, with the adapted VGG16 model 
demonstrating a clear advantage over both the standard 
VGG16 and MLP models.

DISCUSSION
 The results of this study offer valuable insights into the 
application of machine learning models in medical image 
analysis, specifically in the diagnosis of pneumonia from 
chest X-ray images. The MLP demonstrated an accuracy 
of 78.4% and F1 score of 83.6% on the validation set. This 
outcome indicates a moderate level of effectiveness but also 
highlights the model’s limitations in processing the complexity 
inherent in medical imaging, in line with previous findings 
(15). The inconsistency and failure of the validation curve to 

Figure 1: Classification model architectures for pneumonia 
detection. (A) Input chest X-ray image labeled for 'normal' (labelled 
as 0) or 'pneumonia' (labelled as 1), reproduced from Kermany et 
al. (14) under Creative Commons license CC BY 4.0, with written 
permission from the authors. Each image was resized to fixed width 
and height of 128 with one grayscale channel (128 x 128 x 1). (B) 
Multilayer perceptron (MLP) structure with neuron counts per layer. 
(C) Standard VGG16 layer configuration. (D) Adapted VGG16 model 
with adjusted filters, neurons and dropout layers.
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converge further underscore the challenges faced by simpler 
neural network architectures in tasks requiring nuanced 
interpretation of medical data.
 In contrast, the standard VGG16 model achieved a higher 
accuracy of 90.9% and F1 score of 93.7% on the validation 
set. This marked improvement over the MLP corroborates the 
advantages of deep convolutional neural networks in image 
recognition tasks (16). However, the onset of overfitting 
beyond the 70th epoch, as indicated by the divergence in 
training and validation accuracy, suggests a limitation in the 
model’s ability to generalize beyond the training data without 
adjustments. This aspect is crucial in medical applications 
where models must reliably interpret diverse and unseen 
datasets.
 The adapted VGG16 model, with its reduced parameter 
count, not only achieved the highest accuracy (95.6%) and 
F1 score (97.1%) but also maintained consistent performance 
throughout the training. The stability of the training and 
validation accuracy curves reflects the effectiveness of the 
architectural modifications, such as reduced filter sizes 
and the addition of dropout layers (17). These adjustments 
appear to have mitigated the issue of overfitting, enhancing 
the model’s ability to generalize to new data. This finding is 
particularly relevant in the field of medical diagnostics, where 
the robustness and accuracy of models can directly impact 
patient outcomes (18).
 Data augmentation plays a critical role in improving the 
generalization of machine learning models, especially in 
medical image analysis where the variation in patient images 
can be significant (19). In this study, we employed several 

augmentation techniques, applied in the three models, 
including rescaling, random zoom, rotation, brightness 
adjustment, and contrast modification. These methods were 
selected to mimic the variability that can occur in clinical 
settings due to differences in imaging equipment, patient 
positioning, and environmental lighting conditions. By 
incorporating these variations during training, the models 
are better equipped to handle diverse real-world data, thus 
enhancing their diagnostic robustness and accuracy in 
identifying pneumonia from chest X-ray images.
 Our study’s findings have broader implications for the 
implementation of machine learning in healthcare. The 
adapted VGG16 model, balancing complexity with efficiency, 
presents a promising approach for medical image analysis. It 
demonstrates the potential of tailored deep learning models 
to not only achieve high accuracy but also to maintain 
stability and generalizability in diverse clinical environments. 
This balance is essential for practical applications where 
computational resources and the need for reliable diagnoses 
converge (18). Furthermore, the approach used in this study 
extends beyond the diagnosis of pneumonia in pediatric 
chest X-ray images. The high-resolution and detailed 
imaging capabilities of MRI make it a suitable candidate for 
applying this deep learning approach, potentially enhancing 
the detection of diseases that require detailed soft tissue 
contrast. Such adaptations could improve the diagnosis of 
lung-related diseases, including various forms of cancer such 
as lung cancer and osteosarcoma (19). The success of the 
adapted VGG16 model in accurately diagnosing pneumonia 
underscores the importance of optimizing models for specific 

Figure 2: Performance evaluation of pneumonia detection models using a dataset of 5,856 pediatric chest X-ray images, with 80% 
used for training and 20% for validation. The top row shows the loss curves, and the bottom row displays the accuracy curves over 100 
epochs for (A) the multilayer perceptron (MLP) model, (B) the standard VGG16 model, and (C) the adapted VGG16 model. The blue lines 
represent the training performance, while the orange lines indicate validation performance.
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use cases and suggests its potential applicability to a broader 
range of diagnostic challenges in pulmonary medicine. This 
versatility could extend to different imaging modalities and 
settings, affirming the transformative potential of machine 
learning in enhancing diagnostic processes for critical health 
conditions.
 The study has several limitations that warrant 
consideration. Firstly, the dataset utilized was sourced from 
a single center, which may limit the generalizability of the 
findings across different populations and medical settings; 
however, we attempted to mitigate this limitation through 
data augmentation techniques to enhance model robustness. 
Additionally, the models’ scope of detection was restricted to 
differentiating between normal and pneumonia-affected X-ray 
images, omitting other potential pathologies that could be 
present. Although the dataset size is substantial for a medical 
imaging study, with thousands of images, it remains small 
compared to other deep learning projects that often utilize 
millions of images, which may affect the robustness and 
learning capacity of the models used. Moreover, while the 
VGG16 model is advanced for convolutional neural network 
applications, the emergence of vision transformers —models 
that leverage self-attention mechanisms to capture long-
range dependencies in image data—presents a potentially 
more effective alternative that was not explored in this study 
(21).
 The application of these machine learning models in 
diagnosing pneumonia is an evolving field, demonstrating 
potential in academic settings (22). However, their transition 
into clinical practice has been limited by challenges such 
as model overfitting, generalizability across diverse patient 
populations, and computational demands (23). The adapted 
VGG16 model developed in this study is a step forward to 
address these issues. While the model shows promising 
results, indicating readiness for further clinical validation, it 
might require additional refinements for robustness across 
broader diagnostic settings. Further research should explore 
these optimizations to ensure the model’s efficacy and 
reliability in real-world healthcare environments.

METHODS
Imaging dataset
 The study utilized a publicly available and ethically 
approved dataset from the Guangzhou Women and Children’s 
Medical Center (14). It consisted of 5,856 anterior-posterior 
chest X-ray images of pediatric patients aged between one 
and five years old. The images were classified into two 
categories: 1,583 images labeled as ‘Normal’, and 4,273 
images labeled as ‘Pneumonia’. 

Data pre-processing
 To enhance the model’s processing speed while retaining 
essential details, each image was resized to 256x256 pixels. 
A binary system was employed for classification, where 
‘0’ would represent a healthy case and ‘1’ would indicate 
pneumonia (Figure 1A). The dataset was split, with 80% 
used for training the model and the remaining 20% for testing 
its accuracy.

MLP architecture
 The MLP model in our study was a type of feedforward 
artificial neural network known for its simplicity and 

effectiveness in classification tasks (Figure 1B) (11). It was 
structured to include a flatten layer that converts 2D image 
data into a 1D array, suitable for input into the subsequent 
layers. Following this, the model comprised three fully 
connected dense layers containing 256, 64, and 32 neurons, 
respectively. Each neuron in these layers was connected to 
every neuron in the subsequent layer, i.e., fully connected. 
The ‘Rectified Linear Unit’ (ReLU) activation function was 
utilized in these layers to introduce non-linearity, enabling 
the model to learn more complex patterns. The architecture 
was completed with an output layer, which was a dense layer 
equipped with one single neuron that employed a ‘sigmoid’ 
activation function. This design was particularly suited for 
binary classification, as it produces a value between 0 and 1, 
effectively distinguishing between the two classes.

Standard VGG16 architecture
 The standard VGG16 model was a deep convolutional 
neural network known for its depth and use in complex image 
classification tasks (Figure 1C) (24). Its architecture was 
characterized by multiple sets of convolutional 2D layers, 
each comprising an increasing number of filters ranging 
from 64 to 512. These layers were instrumental in extracting 
features from the input images by applying various filters that 
capture different aspects of the image. Following each set of 
convolutional layers, max pooling 2D layers were employed 
to reduce the spatial dimensions of the input volume, thus 
focusing on the most significant elements in each feature map. 
The architecture also included a flatten layer that transforms 
the 2D feature maps into a 1D vector, preparing the data for 
the subsequent dense layers. There were two dense layers 
within the model, each containing 4096 neurons, a design 
that enabled the network to learn complex patterns from the 
extensive feature maps generated by the preceding layers. 
The model culminated in an output layer that, akin to the MLP 
model, utilized a sigmoid activation function to facilitate binary 
classification.

Adapted VGG16 architecture
 The adapted VGG16 model, a variation of the standard 
VGG16, was tailored to optimize performance for the specific 
task of analyzing chest X-ray images (Figure 1D). This 
model distinguished itself by adjusting the number of filters 
in its convolutional 2D layers to 32, 64, 128, and 256, a 
modification aimed at achieving a balance between feature 
extraction capability and computational efficiency. In addition, 
dropout layers were incorporated after selected convolutional 
2D layers and dense layers, where a 30% of neurons were 
randomly omitted during training. This approach effectively 
reduced overfitting by preventing the model from becoming 
overly dependent on any single feature (25). Furthermore, 
the adapted VGG16 model simplified its dense layers by 
reducing the number of neurons to 128 and 64, contrasting 
with the standard VGG16. This adjustment helped to prevent 
overfitting and reduces computational load.

Data augmentation
 For all three models, data augmentation techniques 
were applied to the input images to improve the model’s 
generalization capabilities. By implementing these data 
augmentation methods, the models were trained on a more 
diverse set of data, helping to improve their robustness and 
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ability to generalize to new, unseen data (20). The techniques 
utilized include rescaling, random zoom, random rotation, 
random brightness, and random contrast adjustments. 
Rescaling normalized the pixel values to a range between 
0 and 1 to ensure consistency in image representation. 
Random zoom applied varying degrees of zoom to simulate 
different image distances. Random rotation involved rotating 
the images by arbitrary angles to mimic changes in patient 
positioning. Random brightness and contrast adjustments 
modified the brightness and contrast levels to reflect different 
imaging conditions.

Model hyperparameters and optimization
 All models were compiled using the Adam optimizer with 
a learning rate of 0.0001 and a binary cross-entropy loss 
function (26). The training process involved 100 epochs 
with a batch size of 32. The training and validation datasets 
were fed into the models for the fitting process. The intention 
behind these specific architectures and hyperparameter 
settings was to optimize each model for the best possible 
performance in accurately classifying the chest X-ray images. 
All preprocessing, development and evaluation were done 
using Python 3.10.12 with Tensorflow 2.15.0 (27). The code 
for data preprocessing, training the model, and evaluation 
is accessible on GitHub in the following repository: https://
github.com/nancyma07z/pneumonia-detection-project.

Performance evaluation
 The effectiveness of the baseline MLP, standard VGG16, 
and adapted VGG16 models is assessed based on their 
accuracy, F1 score, and the analysis of their training and 
validation curves. Overfitting is particularly monitored through 
discrepancies between training and validation performance. To 
assess the statistical significance of performance differences 
between the baseline MLP, standard VGG16, and adapted 
VGG16 models, McNemar’s test was applied. This test, 
appropriate for paired nominal data, used a 2x2 contingency 
table for each pair of classifiers to analyze discrepancies in 
predictions against the ground truth and to highlight significant 
differences in their performance. 
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