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Article

3.4 million people have epilepsy, but it is estimated that one in 
five of these people are misdiagnosed, meaning that they do 
not have epilepsy but are diagnosed epileptic (3). Additionally, 
even with a diagnosis provided by a panel of experts, the false 
positive rate remains around five percent (4). Furthermore, 
epilepsy and seizures can result in comorbidities such as 
anxiety and depression (5). The dangers of epilepsy make it 
important to diagnose quickly and accurately so that patients 
can get the seizure prevention medication that they need. 
	 The diagnosis of epilepsy is challenging because epileptic 
seizures are transient and may be mistaken for other 
conditions. In contrast to other seizures, epileptic seizures 
occur without obvious external cause, making them especially 
difficult to identify. Electroencephalogram (EEG) signals can 
be used to measure the abnormal electrical activity of the 
brain of an individual with epilepsy. Epileptic brain activity can 
include patterns, such as repetitive spikes or sharp waves. 
These patterns can also be present in between seizures. 
Though EEG and magnetic resonance imaging (MRI) are the 
two most important diagnostic techniques in epileptology, 
they can be easily misinterpreted (3). There is potential 
for these misinterpretations to be mitigated with the use of 
artificial intelligence (AI) (6, 7). 
	 The most common method of detecting seizures is to 
analyze EEG signals from the brain. EEG is a neuroimaging 
technique used to record the spontaneous electrical activity 
of the brain. Even though EEG data is very commonly used, 
these signals are very long and complicated. Therefore, the 
process of understanding and finding patterns in EEG data 
can be very time-consuming and difficult. The longer that a 
diagnosis takes, the more emotional and physical burden 
patients and their families have (3). Machine learning, 
otherwise known as artificial intelligence, can be used to 
make this diagnosis process more efficient and aid doctors in 
diagnosing epilepsy more accurately.
	 Machine learning techniques are increasingly being used 
in epilepsy research, with applications in automated seizure 
detection, analysis of imaging and clinical data, epilepsy 
localization, and prediction of medical and surgical outcomes 
(6). Machine learning is being harnessed to automate 
seizure detection. For instance, Biswal et al. successfully 
trained a Naïve Bayes classifier using 3,277 EEG reports 
that were categorized as either having seizures or not, and 
containing epileptiform discharges or not (6). This classifier 
achieved exceptional performance, with an area under the 
curve performance index, which quantifies the ability of a 
binary classification model to discriminate between positive 
and negative classes, of 99.05% for identifying reports with 
seizures and 96.15% for recognizing reports with epileptiform 
discharges when tested on a set of 39,695 reports (6).
	 Nahzat and Yağanoğlu conducted a study applying 
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SUMMARY
It is estimated that more than 1% of people in the US 
have epilepsy, a life-threatening neurological disease 
characterized by recurrent, unprovoked seizures, 
due to abnormal electrical activity in the brain. The 
diagnostic process for epilepsy is very extensive 
and results in many misdiagnoses. We hypothesized 
that the implementation of machine learning, 
specifically utilizing Support Vector Machine (SVM), 
on preprocessed electroencephalogram (EEG) 
data would lead to improved accuracy in detecting 
epileptic seizures. Our study explored the application 
of machine learning in epileptic seizure detection 
using EEG data and aimed to improve the accuracy 
while limiting false positives. The study utilized a 
preprocessed EEG dataset and evaluated five machine 
learning models—Logistic Regression, K Nearest 
Neighbors (kNN), Random Forest, Neural Network, 
and SVM. We optimized model performance using 
hyperparameter tuning, the process of optimizing the 
parameters of a machine learning model to improve 
its performance, with a particular emphasis on recall. 
Results reveal that the SVM model outperforms others, 
achieving an accuracy of 96.77%, precision of 94.27%, 
and recall of 88.87%. We concluded by underscoring 
the need for further research to enhance model 
metrics, encompassing diverse datasets, alternative 
preprocessing techniques, and addressing privacy 
issues. This work contributes to advancing epilepsy 
diagnosis through machine learning applications, with 
implications for future developments in healthcare.

INTRODUCTION
	 Epilepsy, a neurological disorder marked by frequent 
seizures caused by irregular electrical activity in the brain, 
can be life-threatening since seizures are so unpredictable 
and can occur in dangerous situations. The timing of a seizure 
could result in a car accident, dangerous fall, or drowning. 
Specifically, people with epilepsy are 15-19 times more likely 
to drown than the average person (1). There are many types 
of seizures that can result in dangerous situations such as 
absence seizures, which can cause staring into space and 
rapid blinking; tonic seizures, which can cause muscles in 
the body to become stiff; atonic seizures, which can cause 
muscles in the body to relax; and clonic seizures, which can 
cause periods of jerking and shaking (2). Seizure detection is 
a very difficult and extensive process in which many people 
are misdiagnosed with epilepsy. In the United States alone, 

Ayda Gokturk1, Jacklyn Luu2

1 Castilleja School, Palo Alto, California
2 Stanford University, Palo Alto, California



24 SEPTEMBER 2024  |  VOL 7  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/24-028

the same data that will be used in this study with different 
methods (7). The authors used the Bonn University epileptic 
seizure dataset to train and test a variety of machine learning 
algorithms (7). They used Principal Components Analysis 
(PCA) feature reduction technique to improve the accuracy 
of machine learning algorithms for predicting epilepsy (7). 
PCA is a statistical technique that can be used to reduce 
the dimensionality of a dataset while preserving the most 
important information (7). This can be beneficial for machine 
learning algorithms, as they can often be more accurate 
when they are trained on less noisy data. The study found 
that the Random Forest algorithm with PCA feature reduction 
produced the best results, with an accuracy of 97% (7). 
	 Machine learning can be used for epileptic seizure 
detection. For seizure detection, EEG data is commonly 
analyzed using one of the following classifiers: kNN, Random 
Forest, SVM, or Neural Network. We focused primarily on 
machine learning applications to automate seizure detection 
(6, 7). We are tackling a supervised classification problem 
that deals with numerical and categorical data. Our primary 
objective was to develop a classification model that can 
accurately assign labels to the data points based on this data. 
By leveraging this model, we aimed to provide actionable 
insights and predictions for real-world applications, 
ultimately enhancing decision-making processes in the field 
of epileptic seizure detection. Based on our research, we 
hypothesized that the implementation of machine learning, 
specifically utilizing SVM in comparison to our four other 
machine learning models, on preprocessed EEG data would 
lead to improved accuracy in detecting epileptic seizures. 
We hypothesized that SVM would be the most successful 
model in classifying EEG signals because of its strength in 
classifying non-linear data allowing it to be very applicable 
to EEG data classification. The integration of machine 
learning into epileptic seizure detection represents a pivotal 
advancement in the accuracy and efficiency of diagnosis. Our 
hypothesis that implementing machine learning, particularly 
SVM models, on preprocessed EEG data would improve 
detection accuracy, which underscores the potential of these 
technologies. While challenges such as dataset diversity and 
privacy concerns remain, the significant benefits for patient 
outcomes and diagnostic speed are undeniable. Continued 
investment in research and validation studies will be crucial 
in realizing the full potential of machine learning applications 
in clinical practice, ultimately advancing the management and 
treatment of epilepsy.

RESULTS
	 Machine learning techniques have the possibility to 
revolutionize the future of epileptic seizure detection by 
making the diagnosis process more efficient and accessible. 
In our experiment, each machine learning model was tested 
on the same epileptic seizure and non-seizure EEG data. 
Our dataset had 11500 samples of short EEG data with 2300 
seizure cases and 9200 non-seizure cases split 75:25 training 
to testing data (8). We tested five machine learning models: 
Logistic Regression, kNN, Random Forest, SVM, or Neural 
Network. Logistic Regression is a statistical model used for 
binary classification that estimates the probability of a binary 
outcome based on one or more predictor variables using a 
logistic function (7). kNN is an algorithm that classifies a data 
point based on the majority class of its k nearest neighbors 

in the feature space (7). Random Forest is an algorithm 
that constructs multiple decision trees during training and 
outputs the mode of the classes or mean prediction of the 
individual trees for classification or regression tasks (7). 
SVM is a supervised machine learning model that finds 
the optimal hyperplane to separate classes in the feature 
space, maximizing the margin between different classes (7). 
Finally, a Neural Network is a computational model inspired 
by biological neural networks, consisting of interconnected 
nodes organized in layers, which learns to map input 
features to outputs through iterative training (7). Through our 
experiment, we were able to determine the best and worst 
machine learning models for this case of epileptic seizure 
detection. 
	 First, each model was evaluated by comparing accuracy, 
precision, and recall (Table 1). The Random Forest model 
and the SVM model performed similarly. Since we are dealing 
with medical data, it was important that we detect all seizure 
data (true positives), so the recall performance matrix is 
especially important. Therefore, we deduced that the SVM 
model performed the best as it had the highest recall of 
88.87%. The SVM model had an even higher accuracy of 
96.77% and precision of 94.27% compared to the Random 
Forest model. Since we are dealing with medical data false 
negatives are of higher concern than false positives because 
this could put the patient’s life in danger. Therefore, the recall 
percentage is more important than the precision metric. 
Though the precision percentage of SVM is not the highest 
in comparison to kNN with 99.71% or Random Forest with 
95.40%, since the recall percentage is of higher concern 
than precision and there is a negligible difference in precision 
percentage, overall SVM model is the best for this use of 
seizure detection. On the other hand, the machine learning 
model that performed the worst was the Logistic Regression 
model. This model had the lowest accuracy of 64.83%, the 
lowest precision of 25.54%, and the lowest recall of 42.55% 
(Table 1). 
	 Next, we evaluated the false positives and false negatives 
identified by each model with confusion matrices (Figure 1). 
A confusion matrix is a table that displays the counts of true 
positives, true negatives, false positives, and false negatives 
to summarize the performance of a classification model. The 
Logistic Regression model had the weakest performance 
(Figure 1). It resulted in 691 false positives and 320 false 
negatives (Figure 1). The false negatives are especially 
concerning because in real-life applications the machine 
learning model would not detect that there was seizure 
activity present in the EEG sample for 320 samples, which 

Table 1: Trained machine learning model performance metrics. 
This table contains accuracy, precision, and recall metrics 
percentage results for each of the machine learning models trained 
in this experiment: those machine learning models being Logistic 
Regression, K Nearest Neighbors, Random Forest, Neural Network, 
and Support Vector Machine.
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could endanger 320 lives. 
	 We also used a confusion matrix to depict the performance 
of our kNN machine learning model (Figure 2). This model 
performed significantly better in comparison to the Logistic 
Regression model. The kNN model resulted in only one false 
positive. However, it identified 214 false negatives (Figure 2). 
We can speculate that this is because we had overall more 
data samples of non-seizure activity than seizure activity, so 
when comparing to the two closest neighbors, the neighbor 
is more likely to be labeled as non-seizure data than seizure 
data. 
	 Although the Random Forest model performed well in 
precision and accuracy as depicted through the 456 true 
positives and 2296 true negatives and only 22 false positives, 
the model still struggled in recall highlighted by the 101 false 
negative cases (Figure 3). 
	 The confusion matrix of the Neural Network machine 
learning model helped us assess and visualize the overall 
performance of the model (Figure 4). The Neural Network 
performed substandard in comparison to the Random Forest 
and even kNN models. This model resulted in 260 false 
positives and 111 false negatives (Figure 4). 
	 Based on our conclusions, the SVM learning model 
performed the best out of the five models we trained and 
tested (Table 1, Figure 5). The SVM model had 78 false 
negatives, which is the lowest number of false negatives out 
of all the five models. Moreover, this model performed the 
best in recall and performed well in accuracy and precision 
as well.

DISCUSSION
	 In summary, our study delved into employing machine 
learning for detecting epileptic seizures using EEG data, 

aiming to enhance the extensive and often misdiagnosed 
diagnostic process for epilepsy. We assessed five machine 
learning models—Logistic Regression, kNN, Random 
Forest, Neural Network, and SVM—utilizing a preprocessed 
EEG dataset. We optimized model performance through 
hyperparameter tuning, focusing particularly on improving 
recall.
	 These five machine learning models were chosen because 
previous studies showed their success in detecting epileptic 
seizures from EEG data and because these models were 
widely known to be useful in similar classification problems. 
For example, Nahzat and Yağanoğlu used the same dataset 
combined with different preprocessing techniques and found 
96% accuracy with their kNN model, 97% accuracy with 
their Random Forest model, 90% accuracy with their SVM 
model, and 91% with their Artificial Neural Network model. In 
comparison to this study, our study had similar but different 
results. For example, our experiment achieved a 95.72% 
accuracy with the Random Forest classifier, which was in line 
with the 97% accuracy achieved by the study conducted by 
Nahzat and Yağanoğlu. However, their study achieved a 90% 
accuracy with SVM while ours achieved 96.77% accuracy. 
This difference was attributed to the use of PCA feature 
reduction in their preprocessing procedure and the selection 
of different hyperparameters. For example, we chose 2 for 
our k neighbors while they chose 1. Furthermore, we decided 
not to use PCA feature reduction because this technique 
assumes that the data was linear, and EEG data was non-
linear; therefore, the use of this technique could result in the 
loss of important information in the data.
	 Each of the models used in this study had strengths in 
classification problems similar to the classification problem 
of seizure detection. For example, Logistic Regression was a 

Figure 2: Confusion matrix of k nearest neighbor model. 
Confusion Matrix depicting false positives (top right quadrant), 
false negatives (bottom left quadrant), true positives (bottom right 
quadrant), and true negatives (top left quadrant) of K Nearest 
Neighbor Model trained on EEG signal data. Confusion matrix 
imported from scikit-learn Python library applied to trained and 
tested K Nearest Neighbor Model. Note that 1 represents seizure 
data and 0 represents non-seizure data. The gradient from yellow 
to purple indicates the number of samples that fall into each of the 
four categories, purple being the lowest and yellow being the highest 
number of samples.

Figure 1: Confusion matrix of logistic regression model. 
Confusion Matrix depicting false positives (top right quadrant), 
false negatives (bottom left quadrant), true positives (bottom 
right quadrant), and true negatives (top left quadrant) of Logistic 
Regression Model trained on EEG signal data. Confusion matrix 
imported from scikit-learn Python library applied to trained and 
tested Logistic Regression Model. Note that 1 represents seizure 
data and 0 represents non-seizure data. The gradient from yellow 
to purple indicates the number of samples that fall into each of the 
four categories, purple being the lowest and yellow being the highest 
number of samples.
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very efficient machine learning model, and this speed could 
be invaluable in medical situations. Additionally, Logistic 
Regression could use many factors and vectors to classify 
data, making it very adaptable. kNN was also very adaptable 
in that the k neighbors parameter could be tuned, as done 
in this study, to get more specialized results. The Random 
Forest model’s hyperparameters could also be tuned to 
achieve more accurate results. An advantage of the Random 
Forest model was that it built on the decision tree classifying 
model, so increasing the number of trees (in turn increasing 
the number of features observed) significantly increased the 
accuracy of the model. However, increasing the number of 
trees also increased the training time of the model and slowed 
the model down. Thus, Random Forest was the model that 
took the longest time to train. Neural Network was another 
model that could be less efficient as more hidden layers were 
added; however, it had a strength in classifying complex 
nonlinear relationships like fluctuating EEG data. Finally, SVM 
was also known to perform well in classifying non-linear data, 
allowing it to be very applicable to EEG data classification. 
Thus, each of these models was carefully chosen based on 
their advantages and past successes in classifying EEG data.
	 The results demonstrated that the SVM model surpassed 
other models, achieving an accuracy of 96.77%, a precision 
of 94.27%, and a recall of 88.69%. However, due to 
potential dataset-specific overfitting and concerns regarding 
generalizability and privacy, further research was warranted 
to properly address these concerns. Future investigations 
should involve diverse datasets, alternative preprocessing 
techniques, and address privacy issues. Nonetheless, our 
study contributed to the advancement of epilepsy diagnosis 
through machine learning applications, holding promise for 
future healthcare developments.
	 On the other hand, our results demonstrated that the 

Logistic Regression model performed worse than the 
other four models, with the lowest accuracy of 64.83%, the 
lowest precision of 25.54%, and the lowest recall of 42.55%. 
This model did not perform well probably because little 
optimization and hyperparameter tuning could be applied 
to it. Additionally, Logistic Regression, being a linear model, 
may have struggled with the non-linear and fluctuating nature 
of EEG data, which could contain complex patterns that were 
not easily separable in a linear fashion. Furthermore, this 
model might have performed better with scaled data rather 
than the unscaled EEG data with which it was trained and 
tested.
	 Though we were able to find success with the SVM 
machine learning model, there were still a lot of limitations to 
this method and this study. One limitation was that we were 
only able to train our machine learning models on one single 
dataset. Our single dataset was rather large, consisting of 
11,500 samples, considering medical data was often smaller 
and difficult to acquire; however, it still raised questions 
of generalizability (8). Since we were only able to test one 
dataset, we could not be sure that the model did not overfit to 
the data. We also did not know if we would get similar accuracy, 
precision, and recall with another set of data. Additionally, 
when considering real-life applications, there were a lot of 
concerns that people and patients had about privacy and 
AI. Patients might not trust an AI the way they would trust a 
doctor (even though a doctor would still supervise the AI), and 
patients might not want their data to be used to make the AI 
more accurate. Another concern with AI in the medical field 
was that most of the models we had tested, and essentially 
all machine learning models, had a “black box” quality to 
them, meaning that scientists were unsure about what really 
happens within the model and how the AI makes decisions. 

Figure 4: Confusion matrix of neural network model. Confusion 
Matrix depicting false positives (top right quadrant), false negatives 
(bottom left quadrant), true positives (bottom right quadrant), and 
true negatives (top left quadrant) of Neural Network Model trained on 
EEG signal data. Confusion matrix imported from scikit-learn Python 
library applied to trained and tested Neural Network Model. Note 
that 1 represents seizure data and 0 represents non-seizure data. 
The gradient from yellow to purple indicates the number of samples 
that fall into each of the four categories, purple being the lowest and 
yellow being the highest number of samples.

Figure 3: Confusion matrix of random forest model. Confusion 
Matrix depicting false positives (top right quadrant), false negatives 
(bottom left quadrant), true positives (bottom right quadrant), and 
true negatives (top left quadrant) of Random Forest Model trained on 
EEG signal data. Confusion matrix imported from scikit-learn Python 
library applied to trained and tested Random Forest Model. Note 
that 1 represents seizure data and 0 represents non-seizure data. 
The gradient from yellow to purple indicates the number of samples 
that fall into each of the four categories, purple being the lowest and 
yellow being the highest number of samples.
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Because of this, it was difficult and sometimes impossible for 
the outcome to be traced out.
	 Though we went through a thorough process to ensure 
that no errors occurred throughout the experiment, there 
were still areas where data leakage might have occurred. We 
took specific precautions to avoid any methods that might 
inadvertently expose the models to the test dataset during 
training, which would compromise the integrity of our study. 
For example, we ensured that all data preprocessing was 
performed after separating the data into training and testing 
data. The main processes that might have caused data 
leakage were the data preprocessing and the hyperparameter 
tuning. To mitigate this, we carefully ensured that the test 
data was not used during any part of the training process, 
thus maintaining the separation between training and test 
datasets. Additionally, we chose not to scale the data to 
preserve the natural characteristics of the EEG signals, as 
we were concerned that scaling might alter the original signal 
patterns. However, we acknowledged that some machine 
learning models performed better with scaled data. If we had 
scaled the ‘x’ train and ‘x’ test data (not necessary for the 
‘y’ data as it only contained binary values of 0s and 1s), we 
might have observed different results. The consequences of 
this unscaled data might mean that one dimension dominated 
the other dimensions causing the machine learning model to 
unfairly weigh the larger dimension more. Therefore, unscaled 
data may have resulted in data that did not fully reflect the 
models’ capabilities in classifying EEG data.
	 We observed that seizure datasets had more spikes and 
variations in the signals. In the future, we recommended 
generating features that would capture these spikes either 
through outlier detection techniques or through calculations of 
standard deviations of various window sizes. We also aimed 

to extend this study with more datasets. Additionally, in this 
paper, we used the most common machine learning models 
that were applied to this area of seizure detection, and in the 
future, a larger variety of machine learning models should 
be explored. Furthermore, multiple datasets could be used 
and preprocessed to fit the format of this dataset so that our 
machine learning models would have a larger scope of data 
and become more generalizable. Finally, we suggested that 
this methodology be tested again with the addition of scaling 
the “x” train data and the “x” test data, as results will likely 
be different. Our work still contributed to epileptic seizure 
detection with machine learning because we were able to 
achieve high performance with multiple machine learning 
models, especially SVM.

MATERIALS AND METHODS
	 A preprocessed and reshaped version of a dataset widely 
used in detecting epileptic seizures was utilized in this study 
(7). This dataset was collected by the University of Bonn, and it 
is available for public use on Kaggle (8). The data is numerical 
EEG data signals that contains EEG data in a .csv file (6, 8). 
The original dataset (before it was preprocessed) consisted 
of 500 individuals’ EEG signals for 23.5 seconds, each with 
4097 data points. The data was divided into 23 chunks, each 
containing 178 data points for 1 second of EEG signal by 
the author of the dataset (7). Overall, this dataset has 11500 
samples in total. This preprocessing allowed us to have more 
data points that are each shorter, which is a tradeoff that 
makes the machine learning models more generalizable. This 
version of the dataset was created to simplify access to the 
commonly used EEG dataset (8). Each data sample is labeled 
with five possible values: 1 = Recording of seizure activity, 2 
= EEG from the area where the tumor was located, 3 = EEG 
activity from the healthy brain area, 4 = Eyes closed, 5 = Eyes 
open (8).
	 First, the data was preprocessed to make it more 
applicable to our purpose of seizure detection. To start 
with, we checked if there were any null values in the dataset 
using the isnull function from the pandas data frame. After 
determining that there are no null values within our data, we 
removed the column of string IDs for individual samples as 
they were unused and only hindered the process of training 
the ML models. We dropped this column using the pandas 
drop function. Then, we separated the “y” data (categorical 
data) from the “x” data (numerical data EEG signal data). 
After this separation, the “x” data contained the numerical 
EEG signal data while the “y” data contained the categories 
of 1, 2, 3, 4, and 5 corresponding to each sample. The “y” 
data was further modified so that the categories of 2, 3, 4, 
and 5 all correlate to zero (are replaced with “0”) because 
these are all non-seizure classifications and did not serve our 
purpose of differentiating between seizure and non-seizure 
data (not the specifics of the non-seizure data). As a result of 
this preprocessing our final “y” dataset contained all seizure 
data classified as “1” and all non-seizure data classified as 
“0”. The data was not scaled. 
	 Then, using scikit-learn’s train_test_split function, we 
divided the “x” and “y” data into a training dataset and a testing 
dataset (9). The data was made up of 75% training data and 
25% testing data. This dataset division yielded 8,625 samples 
in the training data and 2,875 samples in the testing data. 
Moreover, the completely preprocessed data was used to 

Figure 5: Confusion Matrix of Support Vector Machine Model. 
Confusion Matrix depicting false positives (top right quadrant), 
false negatives (bottom left quadrant), true positives (bottom right 
quadrant), and true negatives (top left quadrant) of Support Vector 
Machine Model trained on EEG signal data. Confusion matrix 
imported from scikit-learn Python library applied to trained and 
tested Support Vector Machine Model. Note that 1 represents 
seizure data and 0 represents non-seizure data. The gradient from 
yellow to purple indicates the number of samples that fall into each 
of the four categories, purple being the lowest and yellow being the 
highest number of samples.
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train and test the machine learning models. The train section 
of the “x” and “y” data was used to train the models. After 
the models were trained, they were used to classify the test 
section of the “x” data as seizure data (1) or non-seizure data 
(0). The accuracy of the classifications was then checked by 
the corresponding “y” test data. Our data was trained on the 
following machine learning models: Logistic Regression, K 
Nearest Neighbors, Random Forest, Neural Network, and 
Support Vector Machine. These specific machine learning 
models were chosen based on what previous studies, such as 
the one conducted by Shamriz Nahzat and Mete Yağanoğlu, 
had the most success with.
	 For each of the models, we went through the same 
following steps to test and train the models. First, the model 
was imported from the scikit-learn library (9). Then we trained 
the model by fitting the “x” train and “y” train data. Then, we 
tested the model by predicting classifications for the “x” test 
portion of the dataset. Finally, we evaluated the performance 
of these models using accuracy, recall, and precision, and 
compared the predicted classification to the “y” test data 
(actual classification). The following formulas were used to 
calculate accuracy, recall, and precision where TP stands for 
true positive, TN stands for true negative, FP stands for false 
positive, and FN stands for false negative.

After creating our models and testing the original/basic 
models, the hyperparameters were tuned to control and adjust 
the behavior of our models to obtain an improvised model 
with optimal performance. The results were obtained with 
the optimized parameters resulting from our hyperparameter 
search. In order to tune these hyperparameters, we used 
the Gridsearchcv function from the scikit-learn libraries (9). 
This function not only helped us find the best parameters for 
our models, but also cross validated them. Gridsearchcv is 
a cross-validation technique that uses K fold to increase the 
likelihood that there will be a good amount of seizure data 
samples and non-seizure data samples in the testing dataset. 
We also used Gridsearchcv to search the hyperparameter 
space for two of our models: Random Forest model and kNN 
model. For the Random Forest model, we explored the depth 
of the model which means the number of decision trees that 
the model will generate. Two to ten trees were experimented 
with to determine that ten was the optimal hyperparameter 
for the number of trees. For the kNN, model we explore the 
number of neighbors (K-neighbors) that the algorithm should 
take into consideration. We tested between two and ten 
neighbors and got the best results with two neighbors. The 
results of our final models with ideal hyperparameters and 
Gridsearchcv are displayed (Table 1).
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