
24 JANUARY 2025 | VOL 7 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

Article

recorded neural signals into a generated output, such as
text. ML models learn how to translate these signals based
on a correlated set of inputs and outputs that are provided in
training. These models identify patterns and recognize what
types of signals represent certain parts of an output. As it is
trained, the model tests its own knowledge using a validation
dataset consisting of data it has not yet encountered. The
model then checks its predictions of the translation against
the real answers and readjusts its weights on different
features, which allows the model to decide which features are
most important.
There are many types of ML models, and each performs best
in certain situations, one of which is recurrent neural networks
(RNNs). An RNN feeds its results back into itself, making this
model best at working with temporal or sequential data such
as stock prices or weather data (3). For example, an RNN
model can predict that it is more likely to be raining the day
after it rains than after a sunny day.
 Another ML model is the transformer. The transformer
model is a newer neural network that was proposed in 2017
by Vaswani et al. for sequential data (4). Unlike RNN, the
transformer model has no recurrence as it is based on an
encoder-decoder configuration connected by an attention
mechanism to draw global dependencies between the input and
output. Positional encoders are used to tag the data elements
that are moving through the network (4). The attention units,
located throughout the encoder and decoder layers, compare
these tags and use mathematical functions to create a map
of the relationships between elements (4). In the decoder,
there is a multi-head attention layer that consists of several of
these attention layers running in parallel (Figure 1a) (4). The
inputs to each attention layer are queries, keys, and values
(4). The dot product of the query with all keys is computed and
scaled before a softmax function (which converts vectors to a
probability distribution) is applied to obtain the weights for the
values (4). This is essentially a compatibility function between
the query and the corresponding key. The output of the layer
is the weighted sum of the values (4).
 A key difference between transformers and RNNs is their
ability to parallelize (4). Parallelization refers to the technique
of dividing a task into smaller sub-tasks that can be executed
concurrently. In an RNN, parallelization is prevented because
of the limitations of sequential computation (4). The RNN
passes the time-series data into its layers step-by-step. Since
layers remember previous inputs and use them in future
predictions, there is a considerable training dependency: the
state sequences at position t are a function of the earlier states
at the previous position, t-1, as well as the input for position
t (Figure 2). While including some attention mechanisms
in an RNN (akin to those that exist in a transformer) can
reduce this dependency, the majority of computing would

Comparing transformer and RNN models in BCIs for
handwritten text decoding via neural signals

SUMMARY
A Brain-Computer Interface (BCI) is a technology that
enables the user to operate devices or manipulate
objects solely through their brain activity, which
is especially useful for paralyzed individuals in
regaining communication. The purpose of this study
is to explore the use of a custom transformer model in
BCIs that translates the neural activity present when
an individual with limited verbal and fine-motor skills
attempts to handwrite. Previous studies have found
that transformers performed better than recurrent
neural networks (RNNs) in translation tasks similar
to decoding neural signals into intended handwritten
text. Due to this known benefit, we hypothesized that
the transformer BCI would show promise through the
recorded metrics. The neural signals of a tetraplegic
individual attempting to handwrite were provided by
existing research. We conducted four trials using
training data with or without augmentation, as well
as training the model to separately minimize training
and validation loss. Compared with the original RNN
BCI, the transformer model performed less favorably
across all trials. Although the results do not indicate
that the transformer currently outperforms an
RNN BCI, it is important to note that further testing
of the model’s capabilities is necessary before
determining whether transformers can enhance
BCI communication. Future testing could include
training the model with a larger and more preferable
dataset, training for a longer duration, comparing
training times between the RNN and transformer,
or assessing how the transformer improves with an
offline autocorrect feature.

INTRODUCTION
 A brain-computer interface, or BCI, is a system that allows
the user to control devices or objects using only their brain
signals (1). A BCI is especially useful for those with paralysis
or limited motor skills, as it can help them regain the ability
to communicate. However, these systems can also be used
non-medically, such as in gaming (2). Neural signals are
generated when a person moves or thinks and can be directly
detected and recorded from the brain. BCIs were originally
dependent on recorded electroencephalogram (EEG) activity
but have since expanded to varying degrees of invasiveness
up to the use of an intracranial implant, which provides the
best quality of signal recording (1).
 BCIs use machine learning (ML) models to translate the

Aashna Hari1, Joseph Isaacs2

1Horace Mann School, New York, New York
2 Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom

24 JANUARY 2025 | VOL 7 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

Figure 1: Graphical summary of overall transformer architecture. a) Flowchart representing the sequence of data processing in a multi-
head attention layer, including the interior architecture of a scaled dot-product attention layer. The scaled dot-product attention layer included
sublayers of matrix multiplication (MatMul), softmax function, and an attention mask in addition to the scaling layer. The key, value, and query
tensors were all identical tensors that represented targets. b) Flowchart representing the sequence of data processing in the full transformer
model. There are four identical encoder layers with one decoder layer. c) Flowchart representing the sequence of data processing in the
speech feature embedding. Made up of three convolutional layers that feed into each other.

24 JANUARY 2025 | VOL 7 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

remain sequential (4). By contrast, the attention layers of a
transformer can compute the attention function for a set of
queries simultaneously, which increases the efficiency when
training (4).
 The transformer has also been shown to train faster than
an RNN while still achieving the same or better accuracy (5).
In an English-to-German translation task, the transformer
produced the highest BLEU score when compared to the
existing best results from other models, such as Convolutional
Sequence to Sequence Learning, ByteNet, and Mixture-of-
Experts (4). In another comparative study on interpreting
EEG data as movements, the transformer also had the
highest accuracy compared to other classifiers (EEGNet,
DeepConvNet, and Support Vector Machines) (6).
 Previous research in the field of intracortical BCIs showed
that the current lowest error rate for characters from user-
generated sentences in real-time was 8.54%, determined
using softmax cross-entropy loss, which calculates how well
the model’s predictions matched the true characters (7). The
participant in that study was a tetraplegic due to a high-level
spinal cord injury (7). He was instructed to attempt to write
as if his hand were not paralyzed, and the resulting neural
activity was recorded by two previously implanted intracortical
microelectrode arrays (Figure 3) (7). These signals were then
fed into an RNN, which converted the neural population time
series into a real-time output by thresholding the probabilities
of each character at each time step (7). Afterward, the output
was combined with a vast vocabulary language model, which
reduced the error rate to 2.25% (7).
 As earlier reviewed, transformers have demonstrated
superior accuracies compared to other classifiers, ML
models which categorize data points, which implies that
a transformer may be able to improve on the error rates of
RNN in handwritten text decoding (4, 5). However, there are
no existing studies that compare RNNs and transformers for
this task. Knowledge of this could result in improved devices
for paralyzed individuals to communicate with. Therefore,
this current study aimed to determine how a transformer
model, when used in a BCI, compared to the RNN BCI. We
hypothesized that there would be an improvement in the
accuracy and loss metrics when using transformer models

over RNNs. It is important to test the hypothesis in this context
to determine this. However, the hypothesis was refuted by the
results.

RESULTS
 To test the model’s accuracy and loss with increasing
variability, four trials were performed with different goals
during the training: minimizing training loss without
data augmentation, minimizing validation loss without
augmentation, minimizing training loss with augmentation,
and minimizing validation loss with augmentation. The data
augmentation consisted of minor transformations applied to
the recorded neural signals for each intended handwritten
sentence to increase variability. The training loss represents
how well the model is able to memorize the provided training
data and match neural signals to text, while the validation loss
tests its ability to generalize its learning by predicting the text
for a given set of neural signals.
 The epochs for each trial were run with a training batch
size (how many pieces of training data were looked at during
one iteration) of 3 and a validation batch size of 2 due to limits
on how much data could be stored in memory concurrently.
During each epoch, the model iterated through all of the
training data and tested itself on the validation data. After
each epoch, the model automatically changed the weights
and its settings based on the results from the epoch. Since
Adam, an adaptive optimizer, was used, the model makes
fewer adjustments when the results are better (lower loss
and higher accuracy (8). When we told the model to minimize
training loss, the model only looked at the results from the
training portion of the epoch when updating itself. Similarly,
when we trained it to minimize validation loss, the model only
looked at how it performed on the validation data. The same
built-in TensorFlow model checkpoint callback was used in
each trial to monitor whichever loss (training or accuracy) was
being minimized in that trial and save checkpoints when that
loss decreased. The subsections that follow will show the loss
and accuracy (both training and validation) per epoch of the
model (a custom transformer model as described in Methods)
in each of the four trials performed.

Figure 2: Graphical summary of overall recurrent neural network (RNN) architecture. Flowchart representing the sequence of data
processing in an RNN for three arbitrary time (t) steps.

24 JANUARY 2025 | VOL 7 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

Trial 1: Minimizing training loss without data
augmentation
 The data used in this trial was the initial data with only
a few basic preprocessing steps (no noise or translations
added). The goal of this trial was to show the model’s ability
to connect the input data with the output data and find
relationships/patterns in the neural signals, which the model
was successfully able to do. The trend found demonstrates
the model’s ability to overfit as the loss was minimized to
0.247, and the training accuracy, the percentage of correct
predictions made by the model on the training dataset, reached
96.11% (Figure 4). The validation loss, which evaluates how
incorrectly the model performed on the validation data, was

1.5358, and the validation accuracy was 19.33% (Figure 4).

Trial 2: Minimizing validation loss without data
augmentation
 With the same initial data as Trial 1, this trial aimed to see
if the same model could generalize the identified patterns to
new data, the validation data. As shown in the identified trend,
the model was unable to fully generalize, as the validation
loss was 0.35, while the validation accuracy was 32.51%
(Figure 5).

Trial 3: Minimizing training loss with noise and
transformations

Figure 3: Samples of neural signals (inputs) and targets. a) Columns represent different electrodes, while rows represent time steps; each
cell represents the signal sent by that electrode for the time step. b) Each column represents a different character (ex. 2 = “a”, 29 = “>“). Each
row represents a different time step. When a cell is red (value of 1.0), the respective character was being written during that time step. A value
of 0.5 represents transitions between characters.

24 JANUARY 2025 | VOL 7 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

 The data in this trial had white noise added to the neural
signals. Similarly, these signals also had a random normal
mean drift noise, random walk noise, and cumulative random
walk added to them, which slightly offset the data. These
augmentations mirror those made in the data when the original
RNN BCI was being tested. The results show a final training
loss of 0.427 and a training accuracy of 62.81% (Figure 6).
The validation loss was 0.4071, while the validation accuracy
reached 24.60% at the end of the last epoch (Figure 6).

Trial 4: Minimizing validation loss with noise and
transformations
 For the last trial, the (same) model checkpoint callback
was used to minimize validation loss. In the trial, the model
was trained using the same data as in Trial 3. This trial showed
the least favorable results, with a training loss of 0.3869 and
an accuracy of 69.06% (Figure 7). The validation loss ended
at 0.388, and the validation accuracy at 31.58% (Figure 7).

DISCUSSION
 This study looked at the ability of a transformer model
version of a BCI to translate the neural signals of a paralyzed
individual. We conducted four separate trials to assess the

model’s proficiency in discerning patterns in input and output
data, as well as its capacity to translate the previously unseen
data into output sentences during validation. The first two
trials were carried out with minimal preprocessing of the input
signals, which aimed to evaluate the model’s ability to identify
the simplest relationships between inputs and outputs.
In contrast, the latter two trials used data augmentation
techniques such as introducing noise and translational offsets.
These augmentations were introduced to gauge whether
the model could still identify these connections despite the
additional variability introduced by these processing steps.
 Overall, Trials 1 and 2, which were trained using the
original data, showed more favorable results when compared
to Trials 3 and 4, which used data augmented with noise.
The addition of the random shifts and white noise allowed
the data to differ from the target by a small amount, which
would theoretically help the model generalize across slight
inconsistencies in the neural signals. However, this addition
to the input data did not help the model generalize and even
hindered its ability to learn patterns from the training stage,
specifically in Trial 3.
 While the model produced favorable results for the training
data in Trial 1, it was unable to generalize the patterns it found

Figure 4: Trial 1 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 1 as the transformer model
trained for 291 epochs to minimize training loss. The train-validation dataset split was 90%-10% with a training batch size of 3 and a validation
batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy (pink) and epoch validation accuracy
(blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the graphs are discontinuous at the
epochs from which the program restarted.

Figure 5: Trial 2 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 2 as the transformer
model trained for 53 epochs to minimize validation loss. The train-validation dataset split was 90%-10% with a training batch size of 3
and a validation batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy (pink) and epoch
validation accuracy (blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the graphs are
discontinuous at the epochs from which the program restarted.

24 JANUARY 2025 | VOL 7 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

to the new data the model was presented with, resulting in
undesirable metrics for validation data. The final training
loss was 0.247, with a training accuracy of 96.11%, while
the validation loss was 1.5358, and the validation accuracy
was 19.33%. This was, however, the expected outcome for
the trial as the model was set to only minimize the training
loss. This results in an overfit model that had learned the
training examples but not attempted to determine the more
generalizable patterns that could apply to the validation
data. Since the model had overfit, it was capable of learning
patterns in the data, albeit only for the training data in this
case.
 In Trial 2, the validation loss was noticeably greater than the
training loss from the overfitting trial (Trial 1), 0.35 compared
to 0.247, while the training accuracy in the overfitting trial was
96.11% compared to the validation accuracy of 32.51% in this
trial. The model was unsuccessful at minimizing the validation
loss in this trial as the model was unable to generalize its
knowledge to the validation data. Unlike in Trial 1, the model
was set to minimize validation loss, so we expected the
model to have learned patterns instead of specific examples.
However, these more unfavorable results in this trial indicate
the model’s relative inability to find generalizable patterns
between the neural signals and the characters in the intended
sentence text.
 In comparison to Trial 1 (overfitting with unprocessed
data), Trial 3 had a significantly greater training loss (0.4273
vs. 0.2467) and a significantly lower training accuracy (62.81%
vs. 96.11%). While the model was able to learn the correlation
between the inputs and outputs in the training dataset in Trial
1, the model was unable to do the same thing this time when
variability was included with noise and transformations to the
dataset in Trial 3. This is further evidence of the model’s poor
ability to generalize.
 In Trial 4, the model performed the worst when compared
to all previous trials, specifically Trial 2 (minimizing validation
loss without noise or transformations. In this trial, the model
was not able to recognize patterns in the augmented data
to minimize validation loss. As the variability of the data
increased from Trial 2 to Trial 4 through the additions of
transformations, the model performed poorly (high validation
loss and low validation accuracy). This trial most closely

reproduced the research that used an RNN for their BCI (7).
The original RNN BCI developed by Willet et al. calculated
the loss of the character probabilities and the start signal
(when a new character began) separately (7). The character
probability loss was calculated using softmax cross-entropy
and was then summed with the start signal loss (a sigmoid
computation) to produce the total loss (7). The reported
character loss was 0.0854, with an accuracy of 94.1% when
a k-nearest-neighbor classifier was applied to the character
probabilities outputted by the model (7). In our transformer
model, we calculated character probability loss by comparing
the predicted characters to the correct characters; no starting
character loss was implemented. The character validation
loss in the trial that most closely reproduced the RNN BCI,
Trial 4, was 0.3881, with a validation accuracy of 31.58%. The
lower error and higher accuracy of the RNN BCI suggest that
the model was more favorable than this transformer BCI for
the given translation task.
 A benefit of the transformer model over an RNN is its
ability to translate more accurately (4, 5). When compared
to the results of the RNN BCI, however, this transformer
model performed less favorably in all trials. A reason for
this seemingly contradictory result could be the usage of
synthetic data for training in the previous study (7). Synthetic
data consisted of a compilation of random combinations of
collected neural signals and the corresponding intended
handwritten text (7). While there was a limited amount of
data collected from the actual participants, the inclusion of
synthetic data increased the amount of training and validation
data significantly, which allows for the model to allow for some
variability when categorizing into letters. Using a greater
amount of data may improve the model’s ability to generalize,
as the model would receive multiple examples to expose it
to more potential variation that is allowed for each character
(9). However, the significantly reduced amount of data used
to train this model could have led to this transformer model
being unable to generalize despite the data augmentation
and predicted, from previous studies, superior architecture
(10).
 Due to the device we used for training this transformer
model having limited graphics processing unit (GPU) storage,
we were unable to add synthetic data to the dataset due to

Figure 6: Trial 3 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 3 as the transformer model
trained for 632 epochs to minimize training loss using the augmented data. The train-validation dataset split was 90%-10% with a training
batch size of 3 and a validation batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy
(pink) and epoch validation accuracy (blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the
graphs are discontinuous at the epochs from which the program restarted.

24 JANUARY 2025 | VOL 7 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

its load on the GPU. Due to time constraints, we were unable
to find and implement another solution. Using a GPU is a
critical part of model training, and the size of its storage has
a crucial impact on the model’s performance as it allows for
more training data, which we had to reduce, and complex
model architecture (11-13). Another potential explanation for
our unexpected unfavorable results may be that we stopped
the training too early, as the model may have reached a more
favorable outcome had it been allowed to continue training for
longer, especially in Trials 2 and 4, which did not produce an
overfit model.
 The current scope of the project did not explore the
difference in training speed between the RNN BCI and this
transformer BCI, which would be an interesting topic for
further investigation. A transformer is generally able to be
trained more efficiently due to its increased parallelization
than an RNN, and this difference could allow a transformer
BCI to offer a noteworthy improvement over its RNN
predecessor (4, 6). This could be achieved by recording the
training time for multiple batches of data per model, finding the
median, and dividing by the number of examples in a batch.
This value could then be compared for the RNN and the
transformer models. Another potential extension is including
synthetic data in the transformer model and assessing
how that affects the results. An improvement in the metrics
would then be expected, specifically in the validation ones.
This would require a GPU with a greater storage capacity
or multiple GPUs, or alternatively, the code could be set to
load in individual batches one at a time. The RNN BCI also
implemented an offline autocorrect process by sending the
outputs from the RNN through a large-vocabulary language
model. Comparing the results of the autocorrection on the
transformer output versus the RNN output could determine
the benefit provided by an offline autocorrection.
 The aim of this study was to understand how a transformer
BCI compared to a similar RNN BCI when decoding the
intended handwritten text of a paralyzed individual from their
neural signals in the motor cortex region of the brain. We
found that this specific implementation of a transformer BCI
did not perform as well as the RNN BCI when comparing the
training and validation metrics. Since this outcome may have
been impacted by time constraints and device limitations,
further exploration is needed to see if a transformer model
can play a role in BCIs in the future.

MATERIALS AND METHODS
Dataset
 Electrode data was collected from a previously compiled
dataset (7). The dataset included 10 sessions over 28 days,
during which data was recorded using two microelectrode
arrays (with 96 electrodes each) implanted in the premotor
area of the brain of a single participant (7). This participant
had a complex spinal cord injury and was paralyzed from the
neck down, with hand movements limited to twitching and
micromotion (7). The participant was tasked with writing as
if his hand were not paralyzed and as if he were holding a
pen on a piece of ruled paper (7). The dataset included all
recorded neural activity (1,000 sentences over 10.7 hours) (7).
The data was in the form of binned spike counts, which are
integer values corresponding to how many times the voltage
on a given electrode crossed a specified threshold during that
time bin of 10 milliseconds (7). In a portion of the data, the
participant attempted to write full sentences, and in another
portion, he attempted single letters (7). Preprocessing of the
data included normalizing the data, separating the data into
training and validation sets, and further splitting the data into
batches (7). The training batch size was 3, and the validation
batch size was 2. Since the greater the batch size, the
quicker the model was trained, the highest batch size without
overloading the GPU was used.

Model
 The transformer had a custom architecture but still had
the same key layers typical of a transformer model (Figure
1b) (4). Its encoder was composed of a stack of four identical
layers. Each had a multi-head self-attention mechanism,
two dropout sub-layers, a feed-forward network, and two
normalization sub-layers (Figure 1a).
 The decoder was composed of six sub-layers: a masked
(casual attention mask) multi-head attention over the output
of the encoder stack and the targets, three normalization
layers, another multi-head self-attention mechanism that was
modified to prevent positions from attending to subsequent
positions, and a position-wise fully connected feed-forward
network. The output embeddings were offset by one position,
which ensured that the predictions for each position only
depended on the known outputs at prior positions. Before
the data was passed to the decoder layers, the data was

Figure 7: Trial 4 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 4 as the transformer model
trained for 529 epochs to minimize validation loss using the augmented data. The train-validation dataset split was 90%-10% with a training
batch size of 3 and a validation batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy
(pink) and epoch validation accuracy (blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the
graphs are discontinuous at the epochs from which the program restarted.

24 JANUARY 2025 | VOL 7 | 8Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

embedded. This is where the transformer differed from
the one proposed in the original transformer architecture
paper (4). The transformer in this paper was modeled after
Apoorv Nandan’s transformer and, as such, contained two
embedding classes: one for tokens (before the encoder) and
one for speech features (before the decoder) (14).
 The token embedding class contained the token and
positional embedding. The token embedding mapped each
individual character to a representative vector of its meaning.
The positional embedding was then added to the tokenization,
which described information about the location of the
character in the sentence as each position was assigned a
unique representation. This allowed the model to know which
letters were further from or closer to others and determine
relationships based on this.
 The speech feature embedding class was made up of
three one-dimensional convolutional layers (Figure 1c). The
output of each was then fed into the next, and the output of
the last was returned as the result. The window size (how
many time steps were looked at each time) was more than
the average number of time steps per letter with the goal of
fitting a letter into each window. The stride (how many time
steps the window shifted by) was less than that same average
number of time steps to limit shifting by more than a letter
each time.

Training
 The model was trained to reduce the loss calculated
during the testing stage (when the model attempted to
translate neural data it had not seen before based on trends
noticed during the training phase). The loss function was
Categorical Crossentropy, and it was calculated between the
one hot encodings of the target sentences and the prediction
sentences made by the transformer. The accuracy was
calculated between the predictions and the target sentences
using the Categorical Accuracy metric. The learning rate was
a custom learning rate schedule that increased for the first
initial epochs before slowly decreasing. During the training
phase, the optimizer (Adam) applied gradients, computed by
GradientTape, of the loss and the trainable variables of the
transformer. Checkpoints were used to save the weights of
the model when the testing loss had improved. The number
of epochs used was not intentionally chosen, as the training
was stopped after the results seemed to plateau. Trial 1 used
291 epochs, Trial 2 used 53 epochs, Trial 3 used 632 epochs,
and Trial 4 used 529 epochs.

Trials
 Four trials were run in total. All trials followed a 90/10
training/validation split. The first two trials were done without
augmentation of the input signals in an attempt to test the
model’s ability to find the least complex relationships. The last
two trials included data augmentation in the preprocessing to
see if the model would still be able to find connections, even
with the variability introduced by these processing steps. The
purpose of these trials was to test the transformer model’s
ability to generalize with increasing variability.
The augmentations of the data in trials 3 and 4 included white
noise that was added to the neural signals, which was created
using a map to a TensorFlow random normal function.
Similarly, the input signals were mapped again to a function
that applied a random normal mean drift noise, random walk

noise, and cumulative random walk, which offset the data by
a few time steps. These augmentations were chosen to allow
for a more direct comparison to the RNN BCI by Willet et al.,
which added these same augmentations to the data (7).

ACKNOWLEDGMENTS
I would like to express my deepest gratitude to Lumiere
Education for giving me the opportunity to perform this
research. I would also like to acknowledge McKinsey &
Company’s Partner for their sponsorship, without which this
research would not have been possible.

Received: April 29, 2023
Accepted: August 23, 2023
Published: January 24, 2025

REFERENCES
1. Kumar, M. Keerthi, et al. “Comparative analysis to

identify efficient technique for interfacing BCI system.”
IOP Conference Series: Materials Science and
Engineering, vol. 925, no. 1, 2020, p. 012062. https://doi.
org/10.1088/1757-899X/925/1/012062.

2. Coin, Allen, et al. “Ethical aspects of BCI technology: what
is the state of the art?.” Philosophies, vol.5, no. 4, Oct.
2020, p. 31. https://doi.org/10.3390/philosophies5040031.

3. Keren, Gil, and Björn Schuller. “Convolutional RNN: an
enhanced model for extracting features from sequential
data.” 2016 International Joint Conference on Neural
Networks (IJCNN), IEEE, Nov. 2016, pp. 3412-3419.
https://doi.org/10.1109/IJCNN.2016.7727636.

4. Vaswani, Ashish, et al. “Attention is all you need.” Advances
in Neural Information Processing Systems, June 2017, p.
30. https://doi.org/10.48550/arXiv.1706.03762.

5. Karita, Shigeki, et al. “A comparative study on transformer
vs rnn in speech applications.” 2019 IEEE Automatic
Speech Recognition and Understanding Workshop
(ASRU), Dec. 2019, pp. 449-456. https://doi.org/10.1109/
ASRU46091.2019.9003750.

6. Lee, Po-Lei, et al. “Continual learning of a transformer-
based deep learning classifier using an initial model from
action observation EEG data to online motor imagery
classification.” Bioengineering, vol.10, no.2, Feb. 2023,
p. 186. https://doi.org/10.3390/bioengineering10020186.

7. Willett, Francis R., et al. “High-performance brain-to-text
communication via handwriting.” Nature, vol. 593, May
2021, pp. 249-254. https://doi.org/10.1038/s41586-021-
03506-2.

8. Kingma, Diederik P., and Jimmy Ba. “Adam: A method
for stochastic optimization.” arXiv preprint, Dec. 2014.
https://doi.org/10.48550/arXiv.1412.6980.

9. Cai, Wenjie, and Danqin Hu. “QRS complex detection
using novel deep learning neural networks.” IEEE
Access, vol. 8, May 2020, pp. 97082-97089. https://doi.
org/10.1109/ACCESS.2020.2997473.

10. Wang, H., et al. “Machine learning basics.” Weihong
Deng, 05 Jan. 2015, www.whdeng.cn/Teaching/PPT_01_
Machine%20learninTg%20Basics.pdf. Accessed 02 Dec.
2023.

11. Baji, Toru. “GPU: the biggest key processor for AI and
parallel processing.” Photomask Japan 2017: XXIV
Symposium on Photomask and Next-Generation
Lithography Mask Technology, vol. 10454, July 2017, pp.

24 JANUARY 2025 | VOL 7 | 9Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/24-027

24-29. https://doi.org/10.1117/12.2279088.
12. Jeon, Won, et al. “Deep learning with GPUs.” Advances

in Computers, vol. 122, 2021, pp. 167-215. https://doi.
org/10.1016/bs.adcom.2020.11.003.

13. Li, Youjie, et al. “Harmony: Overcoming the hurdles of
GPU memory capacity to train massive DNN models on
commodity servers.” arXiv preprint, Feb. 2022. https://doi.
org/10.14778/3551793.3551828.

14. “Keras Documentation: Automatic Speech Recognition
with Transformer.” Keras. www.keras.io/examples/audio/
transformer_asr/. Accessed 02 Dec. 2023.

Copyright: © 2024 Hari and Isaacs. All JEI articles are
distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/4.0/). This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

