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recorded neural signals into a generated output, such as 
text. ML models learn how to translate these signals based 
on a correlated set of inputs and outputs that are provided in 
training. These models identify patterns and recognize what 
types of signals represent certain parts of an output. As it is 
trained, the model tests its own knowledge using a validation 
dataset consisting of data it has not yet encountered. The 
model then checks its predictions of the translation against 
the real answers and readjusts its weights on different 
features, which allows the model to decide which features are 
most important.
There are many types of ML models, and each performs best 
in certain situations, one of which is recurrent neural networks 
(RNNs). An RNN feeds its results back into itself, making this 
model best at working with temporal or sequential data such 
as stock prices or weather data (3). For example, an RNN 
model can predict that it is more likely to be raining the day 
after it rains than after a sunny day. 
	 Another ML model is the transformer. The transformer 
model is a newer neural network that was proposed in 2017 
by Vaswani et al. for sequential data (4). Unlike RNN, the 
transformer model has no recurrence as it is based on an 
encoder-decoder configuration connected by an attention 
mechanism to draw global dependencies between the input and 
output. Positional encoders are used to tag the data elements 
that are moving through the network (4). The attention units, 
located throughout the encoder and decoder layers, compare 
these tags and use mathematical functions to create a map 
of the relationships between elements (4). In the decoder, 
there is a multi-head attention layer that consists of several of 
these attention layers running in parallel (Figure 1a) (4). The 
inputs to each attention layer are queries, keys, and values 
(4). The dot product of the query with all keys is computed and 
scaled before a softmax function (which converts vectors to a 
probability distribution) is applied to obtain the weights for the 
values (4). This is essentially a compatibility function between 
the query and the corresponding key. The output of the layer 
is the weighted sum of the values (4). 
	 A key difference between transformers and RNNs is their 
ability to parallelize (4). Parallelization refers to the technique 
of dividing a task into smaller sub-tasks that can be executed 
concurrently. In an RNN, parallelization is prevented because 
of the limitations of sequential computation (4). The RNN 
passes the time-series data into its layers step-by-step. Since 
layers remember previous inputs and use them in future 
predictions, there is a considerable training dependency: the 
state sequences at position t are a function of the earlier states 
at the previous position, t-1, as well as the input for position 
t (Figure 2). While including some attention mechanisms 
in an RNN (akin to those that exist in a transformer) can 
reduce this dependency, the majority of computing would 
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SUMMARY
A Brain-Computer Interface (BCI) is a technology that 
enables the user to operate devices or manipulate 
objects solely through their brain activity, which 
is especially useful for paralyzed individuals in 
regaining communication. The purpose of this study 
is to explore the use of a custom transformer model in 
BCIs that translates the neural activity present when 
an individual with limited verbal and fine-motor skills 
attempts to handwrite. Previous studies have found 
that transformers performed better than recurrent 
neural networks (RNNs) in translation tasks similar 
to decoding neural signals into intended handwritten 
text. Due to this known benefit, we hypothesized that 
the transformer BCI would show promise through the 
recorded metrics. The neural signals of a tetraplegic 
individual attempting to handwrite were provided by 
existing research. We conducted four trials using 
training data with or without augmentation, as well 
as training the model to separately minimize training 
and validation loss. Compared with the original RNN 
BCI, the transformer model performed less favorably 
across all trials. Although the results do not indicate 
that the transformer currently outperforms an 
RNN BCI, it is important to note that further testing 
of the model’s capabilities is necessary before 
determining whether transformers can enhance 
BCI communication. Future testing could include 
training the model with a larger and more preferable 
dataset, training for a longer duration, comparing 
training times between the RNN and transformer, 
or assessing how the transformer improves with an 
offline autocorrect feature.

INTRODUCTION 
	 A brain-computer interface, or BCI, is a system that allows 
the user to control devices or objects using only their brain 
signals (1). A BCI is especially useful for those with paralysis 
or limited motor skills, as it can help them regain the ability 
to communicate. However, these systems can also be used 
non-medically, such as in gaming (2). Neural signals are 
generated when a person moves or thinks and can be directly 
detected and recorded from the brain. BCIs were originally 
dependent on recorded electroencephalogram (EEG) activity 
but have since expanded to varying degrees of invasiveness 
up to the use of an intracranial implant, which provides the 
best quality of signal recording (1). 
	 BCIs use machine learning (ML) models to translate the 
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Figure 1: Graphical summary of overall transformer architecture. a) Flowchart representing the sequence of data processing in a multi-
head attention layer, including the interior architecture of a scaled dot-product attention layer. The scaled dot-product attention layer included 
sublayers of matrix multiplication (MatMul), softmax function, and an attention mask in addition to the scaling layer. The key, value, and query 
tensors were all identical tensors that represented targets. b) Flowchart representing the sequence of data processing in the full transformer 
model. There are four identical encoder layers with one decoder layer. c) Flowchart representing the sequence of data processing in the 
speech feature embedding. Made up of three convolutional layers that feed into each other.
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remain sequential (4). By contrast, the attention layers of a 
transformer can compute the attention function for a set of 
queries simultaneously, which increases the efficiency when 
training (4). 
	 The transformer has also been shown to train faster than 
an RNN while still achieving the same or better accuracy (5). 
In an English-to-German translation task, the transformer 
produced the highest BLEU score when compared to the 
existing best results from other models, such as Convolutional 
Sequence to Sequence Learning, ByteNet, and Mixture-of-
Experts (4). In another comparative study on interpreting 
EEG data as movements, the transformer also had the 
highest accuracy compared to other classifiers (EEGNet, 
DeepConvNet, and Support Vector Machines) (6).
	 Previous research in the field of intracortical BCIs showed 
that the current lowest error rate for characters from user-
generated sentences in real-time was 8.54%, determined 
using softmax cross-entropy loss, which calculates how well 
the model’s predictions matched the true characters (7). The 
participant in that study was a tetraplegic due to a high-level 
spinal cord injury (7). He was instructed to attempt to write 
as if his hand were not paralyzed, and the resulting neural 
activity was recorded by two previously implanted intracortical 
microelectrode arrays (Figure 3) (7). These signals were then 
fed into an RNN, which converted the neural population time 
series into a real-time output by thresholding the probabilities 
of each character at each time step (7). Afterward, the output 
was combined with a vast vocabulary language model, which 
reduced the error rate to 2.25% (7).
	 As earlier reviewed, transformers have demonstrated 
superior accuracies compared to other classifiers, ML 
models which categorize data points, which implies that 
a transformer may be able to improve on the error rates of 
RNN in handwritten text decoding (4, 5). However, there are 
no existing studies that compare RNNs and transformers for 
this task. Knowledge of this could result in improved devices 
for paralyzed individuals to communicate with. Therefore, 
this current study aimed to determine how a transformer 
model, when used in a BCI, compared to the RNN BCI. We 
hypothesized that there would be an improvement in the 
accuracy and loss metrics when using transformer models 

over RNNs. It is important to test the hypothesis in this context 
to determine this. However, the hypothesis was refuted by the 
results. 

RESULTS	
	 To test the model’s accuracy and loss with increasing 
variability, four trials were performed with different goals 
during the training: minimizing training loss without 
data augmentation, minimizing validation loss without 
augmentation, minimizing training loss with augmentation, 
and minimizing validation loss with augmentation. The data 
augmentation consisted of minor transformations applied to 
the recorded neural signals for each intended handwritten 
sentence to increase variability. The training loss represents 
how well the model is able to memorize the provided training 
data and match neural signals to text, while the validation loss 
tests its ability to generalize its learning by predicting the text 
for a given set of neural signals.
	 The epochs for each trial were run with a training batch 
size (how many pieces of training data were looked at during 
one iteration) of 3 and a validation batch size of 2 due to limits 
on how much data could be stored in memory concurrently. 
During each epoch, the model iterated through all of the 
training data and tested itself on the validation data. After 
each epoch, the model automatically changed the weights 
and its settings based on the results from the epoch. Since 
Adam, an adaptive optimizer, was used, the model makes 
fewer adjustments when the results are better (lower loss 
and higher accuracy (8). When we told the model to minimize 
training loss, the model only looked at the results from the 
training portion of the epoch when updating itself. Similarly, 
when we trained it to minimize validation loss, the model only 
looked at how it performed on the validation data. The same 
built-in TensorFlow model checkpoint callback was used in 
each trial to monitor whichever loss (training or accuracy) was 
being minimized in that trial and save checkpoints when that 
loss decreased. The subsections that follow will show the loss 
and accuracy (both training and validation) per epoch of the 
model (a custom transformer model as described in Methods) 
in each of the four trials performed. 

Figure 2: Graphical summary of overall recurrent neural network (RNN) architecture. Flowchart representing the sequence of data 
processing in an RNN for three arbitrary time (t) steps. 
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Trial 1: Minimizing training loss without data 
augmentation
	 The data used in this trial was the initial data with only 
a few basic preprocessing steps (no noise or translations 
added). The goal of this trial was to show the model’s ability 
to connect the input data with the output data and find 
relationships/patterns in the neural signals, which the model 
was successfully able to do. The trend found demonstrates 
the model’s ability to overfit as the loss was minimized to 
0.247, and the training accuracy, the percentage of correct 
predictions made by the model on the training dataset, reached 
96.11% (Figure 4). The validation loss, which evaluates how 
incorrectly the model performed on the validation data, was 

1.5358, and the validation accuracy was 19.33% (Figure 4). 

Trial 2: Minimizing validation loss without data 
augmentation
	 With the same initial data as Trial 1, this trial aimed to see 
if the same model could generalize the identified patterns to 
new data, the validation data. As shown in the identified trend, 
the model was unable to fully generalize, as the validation 
loss was 0.35, while the validation accuracy was 32.51% 
(Figure 5). 

Trial 3: Minimizing training loss with noise and 
transformations

Figure 3: Samples of neural signals (inputs) and targets. a) Columns represent different electrodes, while rows represent time steps; each 
cell represents the signal sent by that electrode for the time step. b) Each column represents a different character (ex. 2 = “a”, 29 = “>“). Each 
row represents a different time step. When a cell is red (value of 1.0), the respective character was being written during that time step. A value 
of 0.5 represents transitions between characters. 
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	 The data in this trial had white noise added to the neural 
signals. Similarly, these signals also had a random normal 
mean drift noise, random walk noise, and cumulative random 
walk added to them, which slightly offset the data. These 
augmentations mirror those made in the data when the original 
RNN BCI was being tested. The results show a final training 
loss of 0.427 and a training accuracy of 62.81% (Figure 6). 
The validation loss was 0.4071, while the validation accuracy 
reached 24.60% at the end of the last epoch (Figure 6).

Trial 4: Minimizing validation loss with noise and 
transformations
	 For the last trial, the (same) model checkpoint callback 
was used to minimize validation loss. In the trial, the model 
was trained using the same data as in Trial 3. This trial showed 
the least favorable results, with a training loss of 0.3869 and 
an accuracy of 69.06% (Figure 7). The validation loss ended 
at 0.388, and the validation accuracy at 31.58% (Figure 7).

DISCUSSION
	 This study looked at the ability of a transformer model 
version of a BCI to translate the neural signals of a paralyzed 
individual. We conducted four separate trials to assess the 

model’s proficiency in discerning patterns in input and output 
data, as well as its capacity to translate the previously unseen 
data into output sentences during validation. The first two 
trials were carried out with minimal preprocessing of the input 
signals, which aimed to evaluate the model’s ability to identify 
the simplest relationships between inputs and outputs. 
In contrast, the latter two trials used data augmentation 
techniques such as introducing noise and translational offsets. 
These augmentations were introduced to gauge whether 
the model could still identify these connections despite the 
additional variability introduced by these processing steps.
	 Overall, Trials 1 and 2, which were trained using the 
original data, showed more favorable results when compared 
to Trials 3 and 4, which used data augmented with noise. 
The addition of the random shifts and white noise allowed 
the data to differ from the target by a small amount, which 
would theoretically help the model generalize across slight 
inconsistencies in the neural signals. However, this addition 
to the input data did not help the model generalize and even 
hindered its ability to learn patterns from the training stage, 
specifically in Trial 3.
	 While the model produced favorable results for the training 
data in Trial 1, it was unable to generalize the patterns it found 

Figure 4: Trial 1 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 1 as the transformer model 
trained for 291 epochs to minimize training loss. The train-validation dataset split was 90%-10% with a training batch size of 3 and a validation 
batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy (pink) and epoch validation accuracy 
(blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the graphs are discontinuous at the 
epochs from which the program restarted.

Figure 5: Trial 2 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 2 as the transformer 
model trained for 53 epochs to minimize validation loss. The train-validation dataset split was 90%-10% with a training batch size of 3 
and a validation batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy (pink) and epoch 
validation accuracy (blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the graphs are 
discontinuous at the epochs from which the program restarted.
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to the new data the model was presented with, resulting in 
undesirable metrics for validation data. The final training 
loss was 0.247, with a training accuracy of 96.11%, while 
the validation loss was 1.5358, and the validation accuracy 
was 19.33%. This was, however, the expected outcome for 
the trial as the model was set to only minimize the training 
loss. This results in an overfit model that had learned the 
training examples but not attempted to determine the more 
generalizable patterns that could apply to the validation 
data. Since the model had overfit, it was capable of learning 
patterns in the data, albeit only for the training data in this 
case.
	 In Trial 2, the validation loss was noticeably greater than the 
training loss from the overfitting trial (Trial 1), 0.35 compared 
to 0.247, while the training accuracy in the overfitting trial was 
96.11% compared to the validation accuracy of 32.51% in this 
trial. The model was unsuccessful at minimizing the validation 
loss in this trial as the model was unable to generalize its 
knowledge to the validation data. Unlike in Trial 1, the model 
was set to minimize validation loss, so we expected the 
model to have learned patterns instead of specific examples. 
However, these more unfavorable results in this trial indicate 
the model’s relative inability to find generalizable patterns 
between the neural signals and the characters in the intended 
sentence text. 
	 In comparison to Trial 1 (overfitting with unprocessed 
data), Trial 3 had a significantly greater training loss (0.4273 
vs. 0.2467) and a significantly lower training accuracy (62.81% 
vs. 96.11%). While the model was able to learn the correlation 
between the inputs and outputs in the training dataset in Trial 
1, the model was unable to do the same thing this time when 
variability was included with noise and transformations to the 
dataset in Trial 3. This is further evidence of the model’s poor 
ability to generalize.
	 In Trial 4, the model performed the worst when compared 
to all previous trials, specifically Trial 2 (minimizing validation 
loss without noise or transformations. In this trial, the model 
was not able to recognize patterns in the augmented data 
to minimize validation loss. As the variability of the data 
increased from Trial 2 to Trial 4 through the additions of 
transformations, the model performed poorly (high validation 
loss and low validation accuracy). This trial most closely 

reproduced the research that used an RNN for their BCI (7).
The original RNN BCI developed by Willet et al. calculated 
the loss of the character probabilities and the start signal 
(when a new character began) separately (7). The character 
probability loss was calculated using softmax cross-entropy 
and was then summed with the start signal loss (a sigmoid 
computation) to produce the total loss (7). The reported 
character loss was 0.0854, with an accuracy of 94.1% when 
a k-nearest-neighbor classifier was applied to the character 
probabilities outputted by the model (7). In our transformer 
model, we calculated character probability loss by comparing 
the predicted characters to the correct characters; no starting 
character loss was implemented. The character validation 
loss in the trial that most closely reproduced the RNN BCI, 
Trial 4, was 0.3881, with a validation accuracy of 31.58%. The 
lower error and higher accuracy of the RNN BCI suggest that 
the model was more favorable than this transformer BCI for 
the given translation task.
	 A benefit of the transformer model over an RNN is its 
ability to translate more accurately (4, 5). When compared 
to the results of the RNN BCI, however, this transformer 
model performed less favorably in all trials. A reason for 
this seemingly contradictory result could be the usage of 
synthetic data for training in the previous study (7). Synthetic 
data consisted of a compilation of random combinations of 
collected neural signals and the corresponding intended 
handwritten text (7). While there was a limited amount of 
data collected from the actual participants, the inclusion of 
synthetic data increased the amount of training and validation 
data significantly, which allows for the model to allow for some 
variability when categorizing into letters. Using a greater 
amount of data may improve the model’s ability to generalize, 
as the model would receive multiple examples to expose it 
to more potential variation that is allowed for each character 
(9). However, the significantly reduced amount of data used 
to train this model could have led to this transformer model 
being unable to generalize despite the data augmentation 
and predicted, from previous studies, superior architecture 
(10).
	 Due to the device we used for training this transformer 
model having limited graphics processing unit (GPU) storage, 
we were unable to add synthetic data to the dataset due to 

Figure 6: Trial 3 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 3 as the transformer model 
trained for 632 epochs to minimize training loss using the augmented data. The train-validation dataset split was 90%-10% with a training 
batch size of 3 and a validation batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy 
(pink) and epoch validation accuracy (blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the 
graphs are discontinuous at the epochs from which the program restarted.
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its load on the GPU. Due to time constraints, we were unable 
to find and implement another solution. Using a GPU is a 
critical part of model training, and the size of its storage has 
a crucial impact on the model’s performance as it allows for 
more training data, which we had to reduce, and complex 
model architecture (11-13). Another potential explanation for 
our unexpected unfavorable results may be that we stopped 
the training too early, as the model may have reached a more 
favorable outcome had it been allowed to continue training for 
longer, especially in Trials 2 and 4, which did not produce an 
overfit model.
	 The current scope of the project did not explore the 
difference in training speed between the RNN BCI and this 
transformer BCI, which would be an interesting topic for 
further investigation. A transformer is generally able to be 
trained more efficiently due to its increased parallelization 
than an RNN, and this difference could allow a transformer 
BCI to offer a noteworthy improvement over its RNN 
predecessor (4, 6). This could be achieved by recording the 
training time for multiple batches of data per model, finding the 
median, and dividing by the number of examples in a batch. 
This value could then be compared for the RNN and the 
transformer models. Another potential extension is including 
synthetic data in the transformer model and assessing 
how that affects the results. An improvement in the metrics 
would then be expected, specifically in the validation ones. 
This would require a GPU with a greater storage capacity 
or multiple GPUs, or alternatively, the code could be set to 
load in individual batches one at a time. The RNN BCI also 
implemented an offline autocorrect process by sending the 
outputs from the RNN through a large-vocabulary language 
model. Comparing the results of the autocorrection on the 
transformer output versus the RNN output could determine 
the benefit provided by an offline autocorrection.
	 The aim of this study was to understand how a transformer 
BCI compared to a similar RNN BCI when decoding the 
intended handwritten text of a paralyzed individual from their 
neural signals in the motor cortex region of the brain. We 
found that this specific implementation of a transformer BCI 
did not perform as well as the RNN BCI when comparing the 
training and validation metrics. Since this outcome may have 
been impacted by time constraints and device limitations, 
further exploration is needed to see if a transformer model 
can play a role in BCIs in the future.

MATERIALS AND METHODS
Dataset
	 Electrode data was collected from a previously compiled 
dataset (7). The dataset included 10 sessions over 28 days, 
during which data was recorded using two microelectrode 
arrays (with 96 electrodes each) implanted in the premotor 
area of the brain of a single participant (7). This participant 
had a complex spinal cord injury and was paralyzed from the 
neck down, with hand movements limited to twitching and 
micromotion (7). The participant was tasked with writing as 
if his hand were not paralyzed and as if he were holding a 
pen on a piece of ruled paper (7). The dataset included all 
recorded neural activity (1,000 sentences over 10.7 hours) (7). 
The data was in the form of binned spike counts, which are 
integer values corresponding to how many times the voltage 
on a given electrode crossed a specified threshold during that 
time bin of 10 milliseconds (7). In a portion of the data, the 
participant attempted to write full sentences, and in another 
portion, he attempted single letters (7). Preprocessing of the 
data included normalizing the data, separating the data into 
training and validation sets, and further splitting the data into 
batches (7). The training batch size was 3, and the validation 
batch size was 2. Since the greater the batch size, the 
quicker the model was trained, the highest batch size without 
overloading the GPU was used.

Model
	 The transformer had a custom architecture but still had 
the same key layers typical of a transformer model (Figure 
1b) (4). Its encoder was composed of a stack of four identical 
layers. Each had a multi-head self-attention mechanism, 
two dropout sub-layers, a feed-forward network, and two 
normalization sub-layers (Figure 1a). 
	 The decoder was composed of six sub-layers: a masked 
(casual attention mask) multi-head attention over the output 
of the encoder stack and the targets, three normalization 
layers, another multi-head self-attention mechanism that was 
modified to prevent positions from attending to subsequent 
positions, and a  position-wise fully connected feed-forward 
network. The output embeddings were offset by one position, 
which ensured that the predictions for each position only 
depended on the known outputs at prior positions. Before 
the data was passed to the decoder layers, the data was 

Figure 7: Trial 4 loss and accuracy by epoch. The loss and accuracy metrics were determined during Trial 4 as the transformer model 
trained for 529 epochs to minimize validation loss using the augmented data. The train-validation dataset split was 90%-10% with a training 
batch size of 3 and a validation batch size of 2. a) Epoch training loss (pink) and epoch validation loss (blue). b) Epoch training accuracy 
(pink) and epoch validation accuracy (blue). As the program had to be rerun from checkpoints (as there was a software runtime limitation), the 
graphs are discontinuous at the epochs from which the program restarted.
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embedded. This is where the transformer differed from 
the one proposed in the original transformer architecture 
paper (4). The transformer in this paper was modeled after 
Apoorv Nandan’s transformer and, as such, contained two 
embedding classes: one for tokens (before the encoder) and 
one for speech features (before the decoder) (14). 
	 The token embedding class contained the token and 
positional embedding. The token embedding mapped each 
individual character to a representative vector of its meaning. 
The positional embedding was then added to the tokenization, 
which described information about the location of the 
character in the sentence as each position was assigned a 
unique representation. This allowed the model to know which 
letters were further from or closer to others and determine 
relationships based on this.
	 The speech feature embedding class was made up of 
three one-dimensional convolutional layers (Figure 1c). The 
output of each was then fed into the next, and the output of 
the last was returned as the result. The window size (how 
many time steps were looked at each time) was more than 
the average number of time steps per letter with the goal of 
fitting a letter into each window. The stride (how many time 
steps the window shifted by) was less than that same average 
number of time steps to limit shifting by more than a letter 
each time.

Training
	 The model was trained to reduce the loss calculated 
during the testing stage (when the model attempted to 
translate neural data it had not seen before based on trends 
noticed during the training phase). The loss function was 
Categorical Crossentropy, and it was calculated between the 
one hot encodings of the target sentences and the prediction 
sentences made by the transformer. The accuracy was 
calculated between the predictions and the target sentences 
using the Categorical Accuracy metric. The learning rate was 
a custom learning rate schedule that increased for the first 
initial epochs before slowly decreasing. During the training 
phase, the optimizer (Adam) applied gradients, computed by 
GradientTape, of the loss and the trainable variables of the 
transformer. Checkpoints were used to save the weights of 
the model when the testing loss had improved. The number 
of epochs used was not intentionally chosen, as the training 
was stopped after the results seemed to plateau. Trial 1 used 
291 epochs, Trial 2 used 53 epochs, Trial 3 used 632 epochs, 
and Trial 4 used 529 epochs.

Trials
	 Four trials were run in total. All trials followed a 90/10 
training/validation split. The first two trials were done without 
augmentation of the input signals in an attempt to test the 
model’s ability to find the least complex relationships. The last 
two trials included data augmentation in the preprocessing to 
see if the model would still be able to find connections, even 
with the variability introduced by these processing steps. The 
purpose of these trials was to test the transformer model’s 
ability to generalize with increasing variability.
The augmentations of the data in trials 3 and 4 included white 
noise that was added to the neural signals, which was created 
using a map to a TensorFlow random normal function. 
Similarly, the input signals were mapped again to a function 
that applied a random normal mean drift noise, random walk 

noise, and cumulative random walk, which offset the data by 
a few time steps. These augmentations were chosen to allow 
for a more direct comparison to the RNN BCI by Willet et al., 
which added these same augmentations to the data (7).
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