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satellite tags or acoustic telemetry, which can be expensive 
and logistically challenging to deploy and maintain (3). Sharks 
may reside in deep-sea regions which poses challenges for 
data collection, limiting opportunities for observation and 
research on their behavior, physiology, and ecology (3).
 Computer vision algorithms like convolutional neural 
networks (CNNs) hold great potential for marine biologists and 
conservationists. Automating this process through computer 
vision algorithms reduces reliance on manual identification, 
saving valuable time and resources (2). Additionally, deep 
learning models can help uncover subtle and unique visual 
features distinguishing different shark species, contributing to 
a deeper understanding of their morphological variations and 
evolutionary adaptations (2).
 Recent research demonstrated the efficacy of machine 
learning-driven object detection models in distinguishing 
between shark species, specifically the use of CNN-
based models (4). Leveraging accurately labeled, diverse, 
and well-normalized datasets, these CNN models exhibit 
excellent performance in identifying sharks from aerial 
imagery captured by drones (4). Likewise, this same prior 
study highlights the importance of carefully curated training 
data and appropriate network architectures in achieving 
robust detection and classification results (4). For instance, 
not all shark species are equally distinguishable, mirroring 
challenges faced by human observers in discerning subtle 
differences between similar species. Factors such as 
image resolution, environmental conditions, and object size 
significantly influence the performance of CNN-based models 
(4). 
 Specifically, transfer learning algorithms have emerged as 
a promising solution (2). CNNs effectively minimize the number 
of learnable factors (such as weights and biases) by utilizing 
weight sharing, pooling layers, and local connection (2). This 
allows for the accurate processing of little data (2).  AlexNet, a 
CNN introduced in 2012, advanced the field of deep learning 
and computer vision (4). One of the primary advantages of 
AlexNet over previous models is its depth and complexity: it 
can extract a variety of information from images thanks to its 
three 56 linked layers and five convolutional layers. In order 
to address the vanishing gradient problem, AlexNet uses 
the Rectified Linear Unit (ReLU) activation function, which 
enables faster training and improved performance even on 
smaller datasets (4). Additionally, its use of dropout layers 
helped mitigate overfitting, making it more robust for complex 
tasks (4). In the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC), AlexNet outperformed earlier state-
of-the-art models, obtaining a top-5 error rate that was 
notably lower (4). The capacity of AlexNet to automatically 
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SUMMARY
Identifying marine life is vital for maintaining 
biodiversity and environmental health, but current 
methods are hindered by the need for time-consuming, 
labor-intensive manual observations. This research 
introduces a convolutional neural network (CNN) 
model designed to accurately identify shark species. 
Our primary goal was to overcome challenges posed 
by limited datasets through transfer learning and pre-
trained models. We hypothesized that an AlexNet CNN 
model would achieve superior accuracy in classifying 
shark species, compared to other CNN architectures, 
conventional algorithms, and custom neural networks, 
especially within the constraints of a limited dataset. 
AlexNet’s deep convolutional layers and hierarchical 
learning capabilities were expected to enable effective 
feature extraction and learning from the limited data. 
Despite the challenge of working with a smaller 
dataset—only 100 images per species versus the 
recommended 5,000 samples per class—AlexNet’s 
ability to capture spatial hierarchies and patterns led 
to enhanced performance. Our investigation involved 
comprehensive experimentation and comparative 
analysis to validate this hypothesis, offering insights 
into optimal shark species classification in resource-
constrained scenarios. The model was trained on a 
Kaggle dataset containing 1,400 images across 14 
shark species. We employed AlexNet as a feature 
extractor, with fine-tuning steps to adapt the network 
to this dataset. Experimental results showed that our 
model, termed "SharkNet," achieved a 93% accuracy 
on the test set, surpassing conventional methods. 
This promising performance in distinguishing shark 
species could significantly aid marine biologists and 
ocean conservationists in monitoring and protecting 
these species.

INTRODUCTION
 To keep marine ecosystems in balance, sharks, as apex 
predators, are essential (1). Accurate identification and 
classification of shark species are essential for understanding 
their ecological roles, population dynamics, and the success 
of conservation efforts (2). However, manual identification of 
sharks based on visual characteristics can be time-consuming, 
subjective, and error prone. Due to their highly mobile nature 
and diverse habitats, sharks can be challenging to study. As 
such, tracking them requires sophisticated technology like 
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and adaptively learn spatial hierarchies of features makes it 
especially useful for jobs involving the interpretation of images 
and videos (4). 
 We aimed to address the challenge of identifying shark 
species using a limited dataset, a common issue in marine 
biology due to the difficulty in obtaining extensive data on 
sharks. We hypothesized that AlexNet's inherent ability to 
capture spatial hierarchies and patterns in image data would 
enhance its performance in shark species classification and 
help overcome the limitations posed by smaller datasets, 
unlike conventional CNNs. To test this hypothesis, we 
conducted a comparative analysis with other CNN models 
using a dataset obtained from Kaggle.com, consisting of 1400 
images representing 14 different shark species (5). Kaggle is 
a website with many open-source datasets on various topics 
and is paired with downloadable csv files for the datasets (5). 
Leveraging the pre-trained weights of the AlexNet model, 
extensively trained on large-scale image datasets, we aimed 
to determine its efficacy in this context. Our results showed 
that AlexNet achieved a 93% accuracy on the test set for 
shark identification, demonstrating its potential for automated 
species identification in resource-constrained scenarios. 
These findings contribute to the growing field of computer 
vision applications in marine biology and suggest that deep 
learning models like AlexNet can significantly aid marine 
biologists in accurately identifying shark species with limited 
data availability.

RESULTS
Dataset Preparation and Initial Attempts 
 The dataset from Kaggle.com, consisting of 1,400 images 
of 14 shark species, was standardized to 150 x 150 pixels 
(5). Next, the dataset was split into training and testing sets 
with a split ratio of 66% for training and 33% for testing. We 
used a stratified shuffle split on the dataset to ensure an even 
distribution of images from each category (6).  A stratified 
shuffle split is a data splitting technique that ensures each 
subset of data maintains the same proportion of classes 
as the original dataset, while randomly shuffling the data 
to create training and testing sets (Figure 1). This method 

increased the diversity of the test and training sets, which 
is especially crucial for small datasets where data may be 
easily skewed. Initially, we employed logistic regression but 
achieved only 23% accuracy. Subsequently, a custom neural 
network was developed, achieving a 9% accuracy.
 Given the challenges with logistic regression and custom 
neural networks, we implemented the AlexNet CNN model. 
Several convolutional layers for feature extraction and fully 
linked layers for classification are included in AlexNet's 
design. During initial training stages, a notable decrease in 
accuracy was observed due to the difference in image sizes 
between the original ImageNet training (230x230 pixels) and 
our standardized size (150x150 pixels). To address this, we 
made several adjustments: changing the filter size in the first 
convolutional layer, modifying the kernel size, adjusting the 
MaxPooling pool size, removing the last convolutional layer, 
and adding l2 regularizers in the fully connected layers, 
which  improved accuracy. After training for 23 epochs, the 
model achieved an accuracy of 93% on the test set and a 
mean squared error loss of around 11.61 (Figure 2). The 
AlexNet model achieved a consistent accuracy around 90% 
for each species. The highest accuracy was 97.8% for the 
basking shark, likely due to its high contrast in colors and 
abstract edges, while the lowest was 81.5% for the white 
shark. We generated a confusion matrix to better illustrate the 
AlexNet models true accuracy when identifying a number of 
different species (Figure 3). Further, a pie chart of prediction 
confidence provided deeper insights into model performance 
and misclassification patterns by showing the top 3 predictions 
for a random test case. This displayed high confidence in 
the models predictions as it shows as large difference in the 
most likely prediction probability and the others (tiger shark 
and whale shark probabilities) (Figure 4). Finally, a matrix 
was made where each cell displays the average confidence 
percentage, indicating how often the model assigns a 
particular confidence to each shark type relative to others. 
The most confident prediction was the whitetip shark and the 
least confident prediction was the bull shark (Figure 5).  Most 
of the time the model defaulted to guessing the white shark. 
This could be because the model overfits to the noise and 

Figure 1: Documented model of a stratified shuffle split to 
diversify data. Stratified Shuffle Split is a cross-validation technique 
that ensures the distribution of class labels in the training and testing 
sets maintains the same proportion as the original dataset. It involves 
randomly shuffling and splitting the data while preserving the relative 
class frequencies. 

Figure 2: Plot of loss and accuracy graph after using AlexNet 
CNN model. The accuracy reached 93% after 23 epochs on 
the validation set. The loss reached 9.98 after 23 epochs on the 
validation set.
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color patterns of the white shark so it may default to predicting 
a white shark. 

Generalization to Unseen Data
 To evaluate the AlexNet model's robustness, we tested its 
performance on images sourced from the internet, achieving 
a 90.6% accuracy. These images were retrieved from google 
and adobe stock. These images displayed a variety of 
different species such as a white shark, nurse shark, and tiger 
shark. The same preprocessing was done as with the Kaggle 
images (resizing them to 150x150 pixels).

DISCUSSION
 Using a dataset from Kaggle.com  consisting of 1,400 
images across 14 shark species, our AlexNet CNN model 
achieved a high accuracy of 93% after 23 epochs of training 
(5). Further, when tested on new, unseen images sourced 
from Adobe Stock, the model maintained a similar accuracy 
of 90.6%, confirming its ability to generalize well to new data 
and its practical applicability in marine biology. The success 
of our model in identifying shark species marks a step forward 
in the application of deep learning to this field.
 Other studies have also explored the use of deep learning 
for species identification. For example, studies like Mohanty et 
al. applied conventional CNNs for identifying various marine 
species, achieving comparable accuracy rates (8). This study 
reached an accuracy of 83% on the validation set after training 
for 12 epochs with the Adam optimizer and categorical cross 
entropy loss function (7). However, the Mohanty study had 
access to larger and more varied datasets (14,346 training 
images compared to our 1400 images). Our study aligned with 

their findings in demonstrating the effectiveness of CNNs, but 
specifically the scope of the AlexNet CNN for shark species 
classification.
 The implications of our findings extend beyond shark 
species identification. The demonstrated effectiveness of the 
AlexNet model in this domain highlights the potential for similar 
deep learning approaches to be applied in other areas of 
marine biology, such as identifying different marine organisms 
like dolphins or other fish species. In conclusion, this study 
highlights the value of deep learning approaches in marine 
biology research and conservation. The AlexNet model’s high 
accuracy in identifying shark species from images not only 
aids in ecological monitoring but also exemplifies the broader 
applicability of CNNs in image classification problems (8). 
As automated species identification methods continue 
to develop, they will significantly enhance our ability to 
preserve and understand marine ecosystems. This emerging 
methodology of utilizing transfer learning techniques for 
animal classification holds great promise for improving 
marine conservation efforts and advancing our knowledge in 
the field.
 Despite these promising results, our study had several 
limitations. One major constraint was the relatively small size 
of the dataset, which includes only 100 images per shark 
species. The model's capacity to generalize to novel, unseen 
images may be hampered by this restriction. However, when 
the model was tested on new images from the internet, the 
accuracy was maintained which demonstrates that the limited 
dataset was not a crucial limitation. Additionally, the diversity 
of the dataset in terms of environmental conditions and shark 
poses is limited and may not have fully capture the variability 
encountered in real-world scenarios. Improving the model 
may involve fine-tuning its architecture and parameters. For 
instance, modifications such as changing the kernel sizes and 

Figure 3: Confusion matrix of AlexNet CNN model. The x-axis 
represents the predicted species, while the y-axis shows the actual 
species. The heatmap displa`ys the count of predictions, with lighter 
colors indicating higher numbers. Diagonal cells represent true 
positives (TP), where predictions match the actual species, while off-
diagonal cells show misclassifications, including false positives (FP) 
and false negatives (FN). The matrix reveals strong model accuracy, 
particularly along the diagonal, with some misclassifications such 
as "whitetip" being confused with "hammerhead" and "lemon" with 
"blacktip”.

Figure 4. Confidence distribution of top three predictions 
for each shark species. Each pie chart represents a test image, 
showing the proportion of confidence attributed to the top three 
predicted species, with the remaining confidence aggregated into 
an "Other" category. The charts highlight the model's certainty in its 
classifications and indicate which species are often confused with 
others, providing insights into the model's performance and areas 
for improvement.
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pooling layers were implemented (e.g., adjusting the input 
shape to 150x150 pixels and the MaxPooling pool size to 
(2,2)). However, these optimizations were constrained by the 
scope of this study and the computational resources available 
(9). Exploring ensemble methods or combining multiple pre-
trained models could also potentially improve classification 
performance. Implementing a validation set in the training-
test split was one step taken to prevent overfitting and aid in 
hyperparameter tuning, but more sophisticated approaches 
like cross-validation could be employed for better model 
validation (10). 
 Future work could expand the scope of this study by 
incorporating larger and more diverse datasets. Collaborating 
with marine biologists to gather more comprehensive shark 
image data, including rare species and various environmental 
conditions, would be beneficial. Additionally, applying 
advanced augmentation techniques to artificially increase 
the diversity of the training data could help in making the 
model more robust. Further research could also explore the 
integration of multi-modal data, such as combining visual 
data with acoustic or environmental data, to enhance species 
identification. Incorporating temporal data to track shark 
movements and behaviors over time might also provide 
deeper insights and improve model accuracy.

MATERIALS AND METHODS
Dataset
 The image dataset used in this research consisted of 
shark images obtained from Kaggle.com (5). The dataset 
contains a total of 1,400 images, with 100 images for each of 
14 different shark species. The shark species are: basking, 
blacktip, blue, bull, hammerhead, lemon, mako, nurse, sand 
tiger, thresher, tiger, whale, white, and whitetip. The photos 

were taken in a variety of environmental settings, including 
different lighting, water clarity, and viewing angles, aiming to 
capture the natural variations in shark appearances (Figure 
6).
 To prepare the dataset for training the AlexNet CNN 
model, several preprocessing steps were applied. The dataset 
from Kaggle.com, consisting of 1,400 images of 14 shark 
species, was standardized to 150 x 150 pixels. Originally, 
the images ranged from 500 x 347 pixels to 1200x758 pixels 
large. Next, the dataset was split into training and testing 
sets with a split ratio of 66% for training and 33% for testing. 
We used the NumPy random.permutation function to create 
new randomly generated lists of the dataset and sklearn's 
StratifiedShuffleSplit function to evenly distribute the data for 
the training, validation, and test sets.
 The training set, consisting of 923 images (66%), was used 
to optimize the model's parameters and learn the underlying 
representations. The testing set, comprising of 476 images 
(33%), served as an independent dataset for evaluating the 
model's performance in generalizing to unseen shark images.
To visually represent the performance of the AlexNet CNN 
model, I utilized Python libraries Matplotlib and Seaborn to 
generate the necessary figures. After training and saving 
the compiled model, I used these libraries to create detailed 
graphs, including the confusion matrix and loss/accuracy 
curves. The confusion matrix was plotted to show the model's 
classification accuracy across different shark species, while 
the loss and accuracy graphs were generated to illustrate 
the model's performance over the training epochs. These 
visualizations were crucial in understanding and interpreting 
the model's effectiveness and areas for improvement.

Classification Models
 We first implemented a logistic regression model using 
the LogisticRegression class from the sklearn.linear_model 

Figure 5. Average confidence of predictions by shark type. The 
x-axis represents the predicted species, while the y-axis shows the 
actual species. Each box represents the average % confidence that 
the algorithm had in its prediction. A darker color signifies a more 
confident predictions whilst a lighter color means a less confident 
one. Lemon sharks are the most confused to be a white tip shark, 
and the mako shark is most confused to be a sand tiger shark. The 
most confident predictions come from the whitetip shark.

Figure 6: Sample from the nurse shark image dataset. Using 
matplotlib, we resized each image to a uniform 150x150 pixel size so 
the inputs of the neural network would be consistently sized for each 
image and faster to process (7).
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module. The model was trained on the training dataset (X_
train and y_train) with random_state set to 0 for reproducibility. 
After fitting the model, we predicted the shark species on the 
test dataset (X_test). To evaluate the model's performance, 
we calculated the accuracy using sklearn.metrics and 
generated a confusion matrix using a seaborn heatmap with 
matplotlib to visualize the distribution of predictions (Figure 
7).
 After testing a logistic regression, a CNN was implemented 
using the sequential model from the Keras library (11). The 
model architecture consisted of several layers designed to 
utilize filters to extract distinctive features from the image. 
It began with three convolutional layers that progressively 
extract features. The first convolutional layer used 150 filters 
with a kernel size of 3x3 and applies 'same' padding. The 
second convolutional layer had 100 filters, also with a 3x3 
kernel size and 'same' padding. The third convolutional layer 
included 50 filters with the same kernel size and padding 
configuration. 
 After feature extraction, the output from the convolutional 
layers was flattened into a single-dimensional array to prepare 
it for the fully connected layers. The input layer was defined 
with an input shape of (150, 150, 3) to match the dimensions 
of the input images. A dense layer with 5 neurons and a ReLU 
activation function was added to the model, enabling it to 
learn complex patterns from the flattened feature map. The 
final output layer contains 14 neurons and uses a softmax 
activation function to classify the input images into one of the 
14 shark species.
 The model was constructed with the Adam optimizer for 
training, categorical cross-entropy as the loss function, and 

accuracy as the evaluation metric. The model architecture and 
hyperparameters were chosen based on initial experimentation 
and fine-tuning to achieve the best performance for the shark 
species classification task. Similar to the logistic regression 
model, to evaluate the model's performance, we calculated 
the accuracy using sklearn.metrics, and generated a 
confusion matrix using a seaborn heatmap with matplotlib to 
visualize the distribution of predictions (Figure 8). 
 Finally, the AlexNet CNN model was implemented using 
the Keras library (11). The model architecture started with a 
series of convolutional layers designed for feature extraction. 
The first convolutional layer employed 96 filters of size 
5x5, with a stride of 2 and ReLU activation. This layer was 
followed by Batch Normalization and MaxPooling to reduce 
dimensionality and improve stability. The second and third 
convolutional layers each utilized 236 filters of size 5x5 with 
'same' padding, also followed by Batch Normalization and 
MaxPooling.
 After the convolutional layers, the output was flattened 
to serve as input for the fully connected layers. The model 
includes two dense layers, each with 1023 units and 
ReLU activation. These layers were regularized using L2 
regularization and incorporate Dropout layers with a rate 
of 0.5 to prevent overfitting. The final output layer was a 
dense layer with 14 units and softmax activation, providing a 
probability distribution across the 14 shark species classes.
 The Adam optimizer and the categorical cross-entropy 
loss function were used to compile the model, ensuring 
efficient training and accurate classification. For more details 
on the code behind the models, see the git repository made 
for this project (12).

Figure 7: Confusion matrix of logistic regression model. The 
x-axis represents the predicted species, while the y-axis shows the 
actual species. The heatmap displays the count of predictions, with 
lighter colors indicating higher numbers. Diagonal cells represent 
true positives (TP), where predictions match the actual species, 
while off-diagonal cells show misclassifications, including false 
positives (FP) and false negatives (FN). The matrix reveals weak 
model accuracy with some misclassifications such as “nurse” being 
confused for “mako”.

Figure 8: Confusion matrix of custom neural network model. The 
x-axis represents the predicted species, while the y-axis shows the 
actual species. The heatmap displays the count of predictions, with 
lighter colors indicating higher numbers. Diagonal cells represent 
true positives (TP), where predictions match the actual species, 
while off-diagonal cells show misclassifications, including false 
positives (FP) and false negatives (FN). The matrix reveals weak 
model accuracy with some misclassifications such as “hammerhead” 
being confused for “whale”.
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