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makers (2). Their study used two measurement components 
to collect electricity consumption data from a 50-unit 
apartment with 100 residents. The first component collected 
electricity use data of appliances at a 15-minute interval 
over 24 hours. The second component is a data logger that 
measured ambient light levels to determine whether kitchen 
appliances were in normal use by obtaining when the kitchen 
light was turned on or off. They found that the phantom loads 
of different appliances account for 4% to 44% of total energy 
consumption. Laptops have the lowest phantom load, which 
accounts for 4% of total power consumption. Large televisions 
have the highest phantom load, which accounts for 44% of the 
total power consumption. The phantom loads of microwaves 
account for 18% of total power consumption (2). 
 In this paper, we hypothesized that the phantom loads of 
kitchen appliances (e.g., dishwashers, ovens, microwaves) 
account for more than 10% of total electric power consumption 
(2). We used a mathematical method to estimate the phantom 
loads of kitchen appliances from the power consumption data 
of these appliances that do not contain information regarding 
the state of the appliance. The household electric power 
consumption dataset from UCI Machine Learning Repository 
is suitable for our study because it contains electric power 
usages of kitchen equipment per minute over a long period 
(3). This dataset was also used in a study of hybrid voltage 
control in distribution networks (4). We created a simple 
statistical model and used the method of moments to estimate 
the model parameters. The method of moments is a method 
used to estimate parameters of a probability distribution by 
equating sample moments with theoretical moments. Our 
results indicated that the phantom loads of kitchen appliances 
account for 10.9% of the total energy consumption.
 Our results are comparable to the results obtained 
by Dawson et al. (2). However, we did not use special 
measurement equipment to collect data. Instead, we used a 
simple statistical model to estimate the phantom loads from 
data without state information. The results show that our 
model works well and can produce accurate estimations.

RESULTS
 Here we present the results of applying the method of 
moments to the electric power consumption data to estimate 
the phantom loads of kitchen appliances. The kitchen 
appliances include a dishwasher, an oven, and a microwave, 
which are assumed to not run continuously.
 The statistical model proposed in this study is a shifted 
gamma distribution with three parameters: the phantom load, 
the shape parameter, and the scale parameter. We assumed 
that the total energy consumption Y of the kitchen appliances 
is the sum of phantom load p and the energy consumption X 

Quantifying kitchen appliances' phantom loads using 
shifted gamma distribution model

SUMMARY
Global energy consumption has gone up and will 
continue to increase into the future as the population 
increases and more energy is required to provide 
resources for the growing population. One way to 
reduce electric power consumption is to reduce 
phantom loads, which occur when electronic devices 
draw energy, even when not in use. This seemingly 
innocuous source of energy consumption has gained 
attention for its impact on residential bills and the 
environment. We hypothesize that kitchen appliances' 
phantom loads, based on online statistics, account 
for more than 10% of their total electric power 
consumption. To test this hypothesis, we propose 
a shifted gamma distribution model to estimate the 
phantom loads and apply the model to a public dataset 
of household electric power consumption. Our results 
showed 10.9% phantom loads for kitchen appliances 
supporting our hypothesis. Our findings suggest that 
implementing strategies to mitigate phantom loads 
becomes imperative to reduce electricity bills and 
save energy.

INTRODUCTION 
 Phantom loads refer to the electric power consumption 
of electronic devices when they are turned off (1). While 
phantom loads may seem insignificant, according to the 
National Resources Defense Council more than $19 billion 
in energy is wasted annually by phantom loads in the United 
States alone (1). To put this colossal waste into perspective, 
consider the financial burden placed upon the average 
North American household: $200 annually, representing at 
least 10% of the household’s electrical bill (2). This often-
needless energy waste not only drains financial resources 
but also exacerbates the environmental crisis–further adding 
carbon emissions into the atmosphere that are released by 
mainstream energy generation methods such as burning 
fossil fuels or natural gases (2). Although transitioning to 
renewable energy sources has the potential to reduce carbon 
emissions stemming from energy wasted through phantom 
loads, it does not address the root of the issue, which is 
the inherently wasteful nature of phantom loads. Ultimately, 
unless phantom loads are addressed directly, electronics will 
continue to draw energy even when not in use.
 Dawson et al. studied the phantom loads of common 
appliances such as televisions, microwaves, printers, laptops, 
speakers, desktop computers, gaming consoles, and coffee 
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of the appliances when they are used to perform their primary 
functions:

 In addition, we assumed that X is a random variable that 
follows the gamma distribution with two parameters α and 
θ because the histogram of the daily data is right-skewed 
(Figure 1). The probability density function of the gamma 
distribution we used is:

 Applying the method of moments to the daily data 
produced the following estimates of the model parameters:

Where the cap notation above the symbol indicates that the 
parameter is estimated from the data. Since the method of 
moments is sensitive to outliers, we removed the top 0.5% 
of data points before applying the estimation method. Our 
results show that the phantom load of kitchen appliances is 
219.9 watts per day. The shifted gamma distribution model 
fits the data well (Figure 2). The daily phantom loads over the 
47 months (from December 2006 to November 2010) are near 
the bottom of the daily power consumption (Figure 3).
 The average daily electric power consumed by kitchen 
appliances to perform their primary functions is denoted as:

 The percentage of phantom loads of the kitchen appliances 
is:

 The result support our hypothesis that the phantom loads 
of kitchen appliances account for more than 10% of the total 
energy consumption of kitchen equipment. Since the estimates 
of the parameters contain errors, we applied the bootstrap to 
estimate the standard error and the confidence interval of the 
percentage of phantom loads R (5). The standard error of R 
produced by the bootstrap with 10,000 resamples is 4.24% 
and the 90% confidence interval is (3.87%, 17.67%). The 
percentage of phantom loads estimated from the whole data 
is in the middle of the bootstrap distribution (Figure 4).

DISCUSSION
 In this study, we measured the phantom loads of 
appliances in the kitchen. The dataset we used for this study 
contained measurements for household appliances such as 
refrigerators, water heaters, and air conditioners. However, it 
is difficult to measure phantom loads of refrigerators, water 
heaters, and air conditioners as these devices run continuously. 
Compared to those appliances, kitchen appliances do not 
run continuously. The mathematical model we proposed to 
measure the phantom loads is a shifted gamma distribution 
model. The gamma distribution assigns different probabilities 
to a variable (e.g., daily electric consumption) taking values 
from zero to infinity. If the appliances have phantom loads, 
then the daily electric consumption will be, at the least, the 

phantom loads. In the shifted gamma distribution model, the 
shift corresponds to the phantom loads.
 Our results showed that the simple statistical model 
produces results that are consistent with prior work. The 
method of moments worked well to obtain meaningful 
estimates of the model parameters. According to the model, 
the percentage of phantom loads of kitchen appliances is 
around 10.9%. This number is close to that found by Dawson 
et al. (2), who found that microwaves have a phantom 
load percentage of 18%. However, they employed special 
measurement equipment to collect the data while we did 
not use this special equipment. Instead, we used the total 
electric power consumption data of the kitchen appliances. 
We derived the phantom loads from the total electric power 
consumption data by a statistical model.
 Our study has some limitations. An implicit assumption of 
our model is that kitchen appliances are not in use every day. 
If the kitchen appliances are used every day for a minimum 
amount of time, then the electric power consumption for the 
minimum amount of time will be added to the phantom loads. 
In this case, our model will overestimate the phantom loads. 
This is a limitation of the data as we cannot tell from the data 
whether the people are using kitchen appliances. Another 
limitation of our study is related to the limitation of the method 
of moments. The method of moments is sensitive to outliers 
because outliers will lead to overestimated parameters.
 Our results show that phantom loads of kitchen appliances 
account for a significant percentage of daily electric 
consumption. Understanding the impact of phantom loads is 

Figure 1: Daily household electric consumption data from 
December 2006 to November 2010. 100 bins containing the 
frequency of daily energy consumption. The width of each bin is 
111.77 watts. 

Figure 2: Daily household electric consumption data with the 
shifted gamma distribution fitted to the data. The red curve 
shows the shifted gamma distribution fitted to the data. The fitted 
parameters are α=1.64, θ=1097.52, p=219.9.
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crucial in our efforts to optimize energy usage and reduce 
electricity bills. With this knowledge in mind, implementing 
strategies to mitigate phantom loads becomes imperative. 
One effective method is encouraging the habit of unplugging 
kitchen appliances when they’re not actively in use. This 
simple practice prevents phantom loads as appliances do not 
have access to power. Additionally, technologies that adapt 
to power usage to automate the plugging and unplugging 
of appliances can also help, especially at scale. Ultimately, 
devices that use energy in more efficient ways will mitigate 
the effects of phantom load.

MATERIALS AND METHODS
 We used the household electric power consumption 
dataset from UCI Machine Learning Repository (3) to perform 
the study. The data set contains 2,075,259 measurements 
collected in a house over 47 months between December 
2006 and November 2010. Measurements were taken 
every minute in watt-hours. The dataset contains three sub-
metering measures, measuring the respective energy drawn 
corresponding to the kitchen, laundry room, and climate 
control appliances. The kitchen measurement contains three 
main appliances: a dishwasher, an oven, and a microwave. 
In the kitchen where the data was collected, the stove (hot-
plates) was gas not electric and therefore the oven data does 

not include stovetop use. The raw dataset contains the per-
minute power consumption of the kitchen appliances (Table 
1).

 The electric consumption in the kitchen was measured in 
watts and rounded to integers. As a result, the measurements 
contain zeros and have rounding errors. Since the 
measurements were collected every minute, they are not 
independent as the appliances can run for several minutes 
continuously. To quantify the phantom loads of the kitchen 
appliances, we aggregated the raw data into a low-frequency 
interval so that the aggregate data are approximately 
independent and contain a small number of zeros. The 
minute data was aggregated into daily data to achieve this 
goal (Table 2). We removed the first day and the last day of 
the raw data because the two days do not contain full 24-hour 
measurements. We also removed the zeros when the electric 
power consumption on these days was not collected.

 To quantify the phantom loads of the kitchen appliances, 
we propose to use the following statistical model: Y=p+X, 
where Y denotes the total electric power consumption by the 
kitchen appliances in a day, p denotes the phantom loads 
of the kitchen appliances in a day, and X denotes the daily 
electric power used by the appliances when they are switched 
on to perform their primary functions. The histogram of Y 
shows that the observations are skewed to the right (Figure 
1). By looking at the histogram, we can assume that X follows 
a gamma distribution with parameters (6). In this case, Y 
follows a shifted gamma distribution with three parameters: 
p, α, and θ. Since we have the observations of Y, we can use 
the method of moments to estimate the three parameters by 
matching the first three raw moments (5). Since the method of 
moments is sensitive to outliers, we need to remove outliers 
before applying the estimation method (7). Let y1, y2, …, 
yn be n observations after the outliers are removed. Then, 
we estimated the parameters by solving the following three 
equations:

Figure 3: Daily household kitchen electric power consumption 
with the estimated phantom loads. The red line shows the 
estimated phantom loads of each day.

Figure 4: Bootstrap distribution. The distribution of the estimates 
of the percentage of the phantom loads from 10,000 resamples of 
the data.

Table 1: A subset of the household electric power consumption 
dataset. Sub_metering_1 is the watt-hour of electricity consumed 
in the kitchen, which contains mainly a dishwasher, an oven, and a 
microwave.

Table 2: A subset of the aggregated household electric 
consumption dataset. Sub_metering_1 shows the electric 
consumption in watts of a day.
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where E[Y] and E[X] denote the expected values of Y and 
X, respectively (8). The above equations can be solved 
numerically by using fsolve in the Python package SciPy.
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APPENDIX

The Python code used to solve the equations is as follows:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.optimize import fsolve
from scipy.stats import gamma
import seaborn as sns
from scipy.stats import bootstrap

data = pd.read_csv(household_power_consumption.txt', sep=";") #Loading data
dat1 = data[['Date', 'Time', 'Sub_metering_1']].replace('?', '0.0')
dat1 = dat1[~dat1['Date'].isin(['16/12/2006', '26/11/2010'])].reset_index()
dat1['Date'] = pd.to_datetime( dat1['Date'], dayfirst=True)
dat1['Sub_metering_1'] = pd.to_numeric( dat1['Sub_metering_1'] )
datd = dat1[['Date', 'Sub_metering_1']].groupby('Date').agg('sum').reset_index()
datd = datd[datd['Sub_metering_1'] > 0].reset_index()

def equations(vars, m1, m2, m3):
 alpha, theta, p = vars
 eq1 = alpha*theta + p - m1
 eq2 = p**2 + 2*p*alpha*theta + alpha*(alpha+1)*theta**2 - m2
 eq3 = p**3 + 3 * p**2*alpha*theta + 3*p*alpha*(alpha+1)*theta**2 + alpha*(alpha+1)*(alpha+2)*theta**3-m3
 return [eq1, eq2, eq3]

def getR(y):
 m1, m2, m3 = np.mean(y), np.square(y).mean(), np.power(y, 3).mean()
 alpha, theta, p = fsolve(equations, (2, 1, 0.1), args=(m1, m2, m3), maxfev=5000)
 return p/(p + alpha * theta)

yd = datd.loc[:,'Sub_metering_1']/1000
p99 = np.percentile(yd, 99.5) #Filtering data
yd = yd[yd < p99]
m1, m2, m3 = np.mean(yd), np.square(yd).mean(), np.power(yd, 3).mean()
alpha, theta, p = fsolve(equations, (2, 1, 0.1), args=(m1, m2, m3), maxfev=5000)

data = (yd,)
res = bootstrap(data, getR, confidence_level=0.9, n_resamples=10000)

sns.set_theme()
fig, axs = plt.subplots()

def plotBootstrapDist():
 axs.hist(res.bootstrap_distribution, bins=50)
 axs.set_title('Bootstrap Distribution')
 axs.set_xlabel('Percentage of Phantom Loads')
 axs.set_ylabel('frequency')

def plotHistogram():
 axs.hist(datd.loc[:,'Sub_metering_1'], bins=100, label='Data')
 axs.set_xlabel('Daily Electricity Consumption (Watts)')
 axs.set_ylabel('Frequency')

def plotHistogramGamma():
 axs.hist(datd.loc[:,'Sub_metering_1'], bins=100, density=True, label='Data') 
 x = np.linspace(0, 10000, 200)
 pdf = gamma.pdf(x, alpha, scale=(theta*1000))
 plt.plot(x+p*1000, pdf, linewidth=2, label='Shifted Gamma Distribution', color='r')
 axs.set_xlabel('Daily Electricity Consumption (Watts)')
 axs.set_ylabel('Density')
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APPENDIX Cont'd

def plotScatter():
 ax = datd['Sub_metering_1'].plot(label='Electricity Consumption (Watts)')
 ax.hlines(y=p*1000, xmin=1, xmax=datd.shape[0], linewidth=2, color='r', label='Phantom Load')
 ax.set_xlim([0, datd.shape[0]])
 ax.set_xlabel('Day')
 ax.set_ylabel('Daily Electricity Consumption (Watts)')

#plotBootstrapDist(); plotHistogram(); plotHistogramGamma()
plotScatter()
fig.tight_layout(); plt.legend(); plt.show()


