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(3). However, an important characteristic of CHD is its tenden-
cy to develop silently, showing few to no symptoms prior to 
inducing a potentially fatal myocardial infarction, also known 
as a heart attack (4–5). The often-silent nature of CHD makes 
it especially challenging to diagnose and treat; while various 
routine lab tests such as those for blood cholesterol levels are 
often used to gauge CHD risk, they do not provide an actual 
diagnosis of CHD and can require stressful procedures such 
as a blood draw. As a result, both doctors and patients are of-
ten left with very few warning signs or potential indicators that 
can help them diagnose CHD (4). CHD is also not yet curable, 
and once a person has been diagnosed with CHD, additional 
intervention is needed to manage the risk of a potentially fatal 
heart attack (6). As a result, while it is possible to manage 
progressed CHD, preferable approaches would emphasize 
combating CHD with earlier, less-invasive, preventative mea-
sures (6).  	
	 One way to prevent the development of CHD is by identify-
ing high risk individuals and alerting them. This intervention 
can allow for an earlier diagnosis of CHD and earlier adoption 
of lifestyle changes that may reduce the risk of life-threaten-
ing complications. Predicting and diagnosing heart disease 
may be sensitive to many types of variables, including de-
mographic, clinical, and behavioral ones. For example, re-
searchers have known for years that black adults are more 
likely to get diagnosed with heart disease due to socioeco-
nomic disadvantages that lead to a worse standard of living 
and decreased access to sufficient healthcare (7). While this 
is an example of an informative demographic variable, demo-
graphics alone do not provide enough information to make 
accurate predictions on an individual level. These variables 
are often combined with clinical variables, such as other 
health conditions, as well as behavioral ones in order to suf-
ficiently gauge a patient’s risk of CHD. Past researchers have 
often attempted to utilize these demographic, behavioral, and 
clinical features along with informative laboratory data as well 
as machine learning and artificial intelligence in an attempt 
to predict heart disease on an individual level. This approach 
has been seen in many recent studies which have used labo-
ratory tests such as data from CT scans and blood tests to 
create highly accurate models for diagnosing CHD (8–10). 
	 While past projects using machine learning have been 
successful in predicting and diagnosing CHD, they have often 
relied on laboratory tests ranging from the simple yet often 
stressful blood draw to more expensive examinations such 
as CT scans, to obtain the necessary data, causing signifi-
cant inconveniences for both researchers and patients (8). 
Despite these limitations, machine learning can nevertheless 
be utilized along with the vast amount of available health data 
to train models as tools for cardiologists to accurately assess 
CHD risk (9). Many of the previous studies in this field, un-
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SUMMARY
Coronary heart disease (CHD) is the leading cause of 
death in the United States and was responsible for 
the deaths of almost 700,000 people in 2021. CHD is 
influenced by a variety of factors, including genetics 
and behavioral patterns. It is a dangerous disease 
characterized by a clogging of the arteries, which can 
cause myocardial infarction if left unchecked. CHD 
can develop without showing any symptoms, making 
its prediction all the more important. However, current 
methods can only predict CHD accurately using 
expensive clinical equipment and tests. Past machine 
learning projects aimed at predicting and preventing 
CHD typically depended on these inconvenient clinical 
procedures. This study tests the hypothesis that CHD 
can be predicted by applying machine learning to 
demographic, clinical, and behavioral data provided 
by survey responses. Trained on over 300,000 
samples from the CDC’s 2022 Behavioral Risk Factor 
Surveillance System, binary classification models 
predicting CHD and myocardial infarction history 
achieved Matthews correlation coefficients (MCCs) 
ranging from 0.299 to 0.313 and accuracies ranging 
from 0.716 to 0.726 during 5-fold cross validation. 
Individual demographic-specific models were also 
trained and could achieve MCCs of up to 0.504. Lastly, 
interpretation of these models using coefficient 
weights recovered associations between CHD and 
behavioral, clinical, and demographic variables that 
were consistent with previous studies. This study 
demonstrates a proof of concept for predicting the 
presence of CHD by looking solely at data provided by 
responses to broad health-related survey questions.

INTRODUCTION
	 The most common cause of death in the United States is 
heart disease, responsible for the deaths of almost 700,000 
people per year (1). Coronary heart disease (CHD) is a type 
of heart disease that arises when the arteries of the heart be-
come restricted and fail to supply sufficient oxygen-rich blood 
to the heart itself (2). CHD has a variety of causes and current 
prevention techniques include living a heart-healthy lifestyle 
involving dietary guidelines and regular exercise along with 
cholesterol, blood pressure, or blood-thinning medication, all 
intended to reduce the risk of clotting. However, these pre-
vention methods are not guaranteed to succeed in stopping 
the development of CHD (2). CHD may present with a variety 
of symptoms, including shortness of breath and chest pain 
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der the restriction of requiring laboratory data stemming from 
clinical tests, have not taken advantage of the volume of other 
patient data types that have recently become available to the 
public. Some of the most recent studies applying machine 
learning to the diagnosis of heart disease have used datasets 
with less than one thousand samples (10–13). While these 
studies included additional features such as laboratory data, 
they are limited by their scale, as models trained on fewer 
samples are often less accurate while also representing a 
smaller and potentially more biased portion of the popula-
tion. Instead of using data with more informative features at 
a smaller-scale, we instead chose to utilize a larger, publicly 
available dataset containing a variety of demographic, clini-
cal, and behavioral data in an attempt to address sample-size 
issues which have affected some of these previous studies. 
	 This study uses the Center for Disease Control’s (CDC) 
Behavioral Risk Factor Surveillance System (BRFSS) 2022 
phone survey as a large source of data for future machine 
learning projects (14). The advantages of this dataset are that 
it is easily accessible to the public and contains many sam-
ples covering many different demographics, including patient 
age, sex, and race. Conclusions drawn from this data could 
be applied to new patients with relative ease, as they would 
only have to answer a couple of questions to use the model. 
This is in contrast to existing models, which, along with data 
which can be easily obtained such as blood pressure, also 
subject the patient to the burden of various laboratory tests. 
In this study, we tested the hypothesis that coronary heart 

disease could be predicted by applying machine learning to 
broad, health-related survey data. We developed a workflow 
for training and interpreting models to predict CHD from sur-
vey responses at a scale of over 300,000 samples. These 
models were moderately accurate and, after demonstrating 
more promise than previous survey-based studies at smaller 
scales, can be seen as evidence demonstrating the feasibility 
of predicting a diagnosis of CHD using only behavioral, clini-
cal, and demographic data derived from survey responses. 
Additionally, the models suggested associations between 
several behavioral patterns and the presence of CHD. These 
associations could become the subject of future experiments 
and, if proven true, could help contribute to prevention pro-
cesses such as preventative screening.

RESULTS
Dataset
	 A preprocessed dataframe of 340,200 samples and 32 
features, including behavioral, clinical, and demographic data, 
was built from the CDC’s 2022 BRFSS survey (14). The da-
taset was balanced when it came to sex (48.3% male, 51.7% 
female) but was highly skewed towards white (76.5% white, 
23.5% nonwhite) and elderly (64.9% above age 50) popula-
tions and lacked data in some of the younger and nonwhite 
demographics (Appendix, Figure 1A–C). For example, in-
dividuals of Pacific Islander descent were very rare, repre-
senting 0.54% of all samples. In addition, many nonwhite 
demographics had decreasing sample count with respect to 

Figure 1: Summary of BRFSS 2022 participants by demographic. a) Proportion of male and female respondents for ‘white’ and ‘nonwhite’ 
categories. b) Proportion of male and female respondents for all ‘nonwhite’ race categories. c) Proportion of male and female respondents 
for different age groups. d) Proportion of ‘white’ and ‘nonwhite’ respondents for different age groups. e) Proportion of each ‘nonwhite’ race 
category for different age groups. 
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age, especially for groups above the age of 65 (Figure 1D,E). 
However, despite these limitations, there were at least 1000 
samples for every race group, which we deemed to be suf-
ficient for training and interpreting models.
	 The target variable was built from the same dataset by 
identifying any individuals who had self-reported as previ-
ously diagnosed with CHD or suffered from a myocardial 
infarction. A holdout dataset consisting of 10% of randomly 
selected samples (34,020 samples) was set aside, and the 
remaining samples were used to train and test Random For-
est, Naive Bayes, Support Vector Machine, and Logistic Re-
gression binary classifiers. The best binary classifier was de-
fined as the model achieving the highest test set Matthews 
correlation coefficient (MCC) over 5-fold cross validation. 
The performance of global models was evaluated using both 
accuracy and MCC across all binary classifiers. MCC is an 
evaluation metric that ranges from -1 to 1, with -1 representing 
a model that is always wrong, 0 representing a model that is 
randomly guessing, and 1 representing a model that is always 
correct. MCC differs from accuracy in that it considers all four 
possible binary classification outcomes evenly (true posi-
tives, true negatives, false positives, false negatives), instead 
of focusing on the total number of correct predictions, like 
accuracy does. An alternative metric is necessary for unbal-
anced datasets such as this one, as only around 10% of the 
samples were positive for CHD, meaning a model would have 

an accuracy of 90% if it predicted no CHD for every sample. 
This metric was useful when evaluating methods with decep-
tive results, such as Naive Bayes, which had a much higher 
accuracy than the other models, yet a much lower MCC, 
demonstrating how accuracy was often not representative of 
a model’s true performance (Figure 2A,B). The best model 
type was identified and used to train both global models (us-
ing all samples) as well as demographic-specific models (us-
ing samples from specific race and/or sex cohorts). Models 
were interpreted by identifying the features with the highest 
and lowest weights (Figure 3). 

Global Model
	 By looking at the accuracy and MCC for each classifier, 
Logistic Regression was identified as the top model choice, 
with mean values of 0.725 and 0.305 for the accuracy and 
MCC, respectively (Figure 2A,B). This model’s performance 
was evaluated on the previously unseen holdout test set and 
achieved an accuracy of 0.724 and MCC of 0.307 (Figure 
2A,B). These values suggested a moderate correlation be-
tween the model’s prediction and whether or not the patient 
self-reported as having CHD. The four highest weighted vari-
ables of the final, global model were the person’s age, aver-
age sleeping time, height, and sex (Figure 2C). Interpretation 
of these variables suggests that people who slept more, were 
older, were taller, or were male were more likely to be diag-

Figure 2: Performance and interpretation of global CHD models. a-b) Performance of each model type from 5-fold cross validation. Train 
and test sets were obtained using a stratified K-fold approach. MCC is the Matthews correlation coefficient. Holdout accuracy and MCC were 
calculated by evaluating the final model on 10% of the data which was withheld from cross validation. c) Highest weighted variables from a 
logistic regression model connecting features to a diagnosis of CHD. Absolute weight was determined by taking the absolute value of each 
variable’s feature weight for each of 5 folds. Bars represent means, and error bars represent standard deviations. d-g) Distributions for CHD 
positive vs. negative participants for the top four most highly weighted variables. Log odds ratio (LOR) was determined by taking the log base 
10 of the odds ratio. P-values, means, and LORs are displayed on the graphs. Two-sided Mann-Whitney U-tests (n=340,200) were applied 
for continuous variables Sleeping Time and Age, while two-sided Fisher’s exact test was used for binary variable Sex. Dotted lines represent 
means for each dataset (black: No CHD, red: Yes CHD).
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nosed with CHD (Figure 2D,G). Both age (p<2.22e-308, two-
sided Mann-Whitney U-test) and sex (p<2.22e-308, two-sid-
ed Fisher’s exact test) were significantly associated with CHD 
to family-wise error rate (FWER) < 0.05 (two-sided Fisher’s 
exact test, 55 tests, Bonferroni correction, threshold=0.0009) 
and had large effect sizes. Being male over female had a 
LOR (log10 odds ratio) of 0.221 for CHD, and there was an 
approximate 15-year difference in mean age between CHD 
and no CHD samples (means of 51.9 years with no CHD vs. 
66.8 years with CHD). While sleeping time (p=1.20e-7, two-
sided Mann-Whitney U-test) and height (p=1.00e-31, two-sid-
ed Mann-Whitney U-test) were also found to be statistically 
significant to FWER < 0.05 (two-sided Fisher’s exact test, 
55 tests, Bonferroni correction, threshold=0.0009) and had 
large model weights, the effect sizes were only a difference 
of 0.05 hours (3 minutes) in mean sleep per night (means of 
7.07 hours CHD vs. 7.02 hours no CHD) and 0.6 centimeters 
in mean height (means of 171.1 centimeters CHD vs. 170.5 
centimeters no CHD) between CHD and no CHD samples. 

Individual Demographics
	 The dataset was then further split based on both race and 
sex and the resulting datasets were used to train additional 
demographic-specific models and similarly evaluated through 
5-fold cross validation. As expected, model performance var-
ied by demographic. For example, our models had higher 
MCCs when predicting CHD in male-only datasets com-
pared to female-only datasets across every race. In addition, 
models for Native (individuals of Native American descent), 
Pacific Islander, and multiracial samples saw higher MCCs 
of around 0.30, while those for Black, Hispanic, and Asian 
samples reported relatively low MCCs around 0.25 (Figure 
4A,B). Further examination of the precision and recall of each 
model showed the effects of this 0.05 MCC difference. The 
mean precision, a measure of the fraction of predicted posi-
tive diagnoses that were correct, of the Black, Hispanic, and 
Asian samples ranged from 0.037 to 0.1 lower than those 
of the global model (Black - 0.180; Asian - 0.117; Hispanic 
- 0.165 vs. Global - 0.217), indicating that its predicted posi-
tive CHD diagnoses were wrong 3-10% more often than the 
global model. While lower precision is sometimes associated 
with higher recall, a measure of the fraction of true CHD posi-
tive samples which were accurately predicted, in this case 
the Asian, Black, and Hispanic demographics did not display 
higher recall than the global model (Black - 0.741; Asian - 
0.776; Hispanic - 0.754 vs. Global - 0.774). Overall, the impact 
of the lower MCC of these models can be seen in the higher 
rate of false positive predictions without a higher rate of true 
positive CHD cases diagnosed.
	 Throughout the demographic-specific models, interpre-
tation of model weights indicated that the variables with the 
strongest positive correlations with the presence of CHD 
were demographic and clinical ones. Age remained the most 
informative, with the highest mean weight and mean abso-
lute value of weight throughout all of the individual models 
(Figure 4C). However, these models also suggested that 
the presence of either COPD (chronic obstructive pulmo-
nary disease) or kidney disease were both major correlates 
with CHD. These variables had LORs ranging from 0.6 to 
0.8, p-values ranging from less than 2.22e-308 to 3.20e-07, 
and were significantly associated with CHD to FWER < 0.05 
(two-sided Fisher’s exact test, 55 tests, Bonferroni correction, 

threshold=0.0009) throughout every demographic, suggest-
ing a consistently large and significant effect (Figure 4D,E). 
Other variables such as sex (for race-specific models which 
included both sexes) and sleeping time remained consistently 
highly weighted in most models. 
	 Upon further examination of the individual demographic 
weights, some variables had differing effects across demo-
graphics. For example, variables indicating the number of 
days one had consumed alcohol in the last month (30 days), 
the average amount of alcohol consumed each time, and the 
number of years smoked had differing associations across 
demographics (Figure 5A–C). While the number of days an 
individual drank in the last 30 days usually had a small nega-
tive correlation with CHD, this negative correlation increased 
noticeably in the Asian demographic. In this demographic, 
individuals without CHD drank, on average, over half a day 
more in the last month than those with CHD (means of 2.79 
days CHD vs. 3.35 days no CHD) (Figure 5D). An analogous 
phenomenon occurred with the average amount of alcohol 
drank variable in the Pacific Islander demographic, in which 
patients diagnosed with CHD drank on average about a third 
of a glass less per occasion than those without CHD (means 
of 1.22 drinks CHD vs. 1.64 drinks no CHD) (Figure 5E). 
Lastly, while years smoked had a small positive correlation 
with the diagnosis of CHD in most of the demographics, that 
positive correlation with CHD diagnosis saw an increase in 
the Native demographic. Individuals with CHD reported 11 
more years smoked on average than those without CHD in 
this specific demographic (means of 23.5 years CHD vs. 12.1 

Figure 3: Machine learning workflow. Data splitting was done 
based on race and sex. Top features were identified by looking at the 
average absolute value of each feature’s weight. Cross validation is 
abbreviated as “CV”.
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years no CHD), explaining its high variable weight (Figure 
5F). While the effect sizes of these variables were large, it is 
important to note that, possibly because of sample size, the 
association between the average number of drinks variable 
and CHD in the Pacific demographic was given a p-value of 
0.00362 by the two-sided Mann-Whitney U-test and found 
not statistically significant after the Bonferroni correction (55 
tests, FWER < 0.05). However, both days drank in the last 30 
days (p=7.99e-07, two-sided Mann-Whitney U-test) and aver-
age years smoked (p=6.35e-36, two-sided Mann-Whitney U-
test) were significantly associated with CHD at FWER < 0.05. 

DISCUSSION
	 CHD was one of the leading global causes of death in 
2023 (1). The correlations drawn here between the features 
and the target variable suggest that there is a robust relation-
ship between behavior and the diagnosis of CHD. The high 
weights and effect sizes of the age and sex variables are con-
sistent with existing literature regarding correlations between 
CHD and demographic variables, as older people and males 
are known to have higher risks of CHD (2). On the other hand, 
the high feature weights of height and sleeping time are not 
supported by existing literature, and their small effect sizes 

indicate that their significance could be a result of other corre-
lations. For example, males are taller on average, so the cor-
relation between taller individuals and a CHD diagnosis may 
be mediated by sex. The high feature weight of the average 
sleeping time variable may be related to the CHD diagnosis 
itself, as people with health conditions such as CHD might 
require more rest.  Lastly, one final group of variables which 
demonstrated statistically significant yet unconfirmed asso-
ciations are the alcohol related features, which contribute to 
the currently open debate on whether a moderate amount of 
alcohol may help lower the risk of cardiovascular disease (15, 
16). These correlations demonstrate that, even if data from 
self-reported questions are not perfectly predictive of CHD, it 
may be possible to use survey questions to identify relation-
ships between certain behavioral patterns and the presence 
of CHD.
	 Our models consistently performed better when predict-
ing CHD in men compared to women. One possible expla-
nation for this is that women are less likely to be diagnosed 
with CHD (2). This explanation was supported by the data, 
in which around 11.3% of men self-reported as having been 
diagnosed with CHD compared to just 7.1% of women. Fewer 
positive answers to the target question in the female demo-

Figure 4: Performance and interpretation of demographic-specific CHD models. a-b) Performance of the model across each racial 
demographic. Bars represent means, and error bars represent standard deviations. Logistic Regression was used as the model type for all 
tests. Accuracies and Matthews correlation coefficients are from test sets during 5-fold cross validation. c) Average weight of each variable 
across each demographic over 5-fold cross validation. Rows and columns were ordered by using hierarchical clustering with average linkage 
applied to Euclidean distances on the average weight of each variable across each demographic. d-e) Log10 odds ratios (LORs) of COPD (d) 
and kidney disease (e) that were highly weighted across all demographics. COPD represents Chronic obstructive pulmonary disease.
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graphic would have resulted in fewer positive cases on which 
to train the model, further aggravating the imbalance in the 
data. These results are supported by the evaluation metrics, 
which show that, although models trained on the female de-
mographic had comparable accuracies to those of the male 
demographic, their MCCs were noticeably lower. This pat-
tern is consistent with a model that is able to diagnose the 
disease-free majority correctly but struggles to accurately 
predict the few true positives. 
	 Our analysis also encountered high variability across mod-
els when evaluating specific demographic groups. While the 
models performed well on the Native and Pacific demograph-
ics, they struggled with others such as Asian and Hispanic 
demographics. One explanation for this could be geograph-
ic diversity within each demographic: the worst performing 
models involved demographics which were inherently broad 
(such as Asians, which includes all of Asia), while the bet-
ter performing ones involved more specific regions (such as 
Pacific or Native). Geographic diversity often correlates with 
genetic and environmental differences, which would have in-
troduced extra variation that the model could not account for 
with provided data (such as East Asian vs. South Asian).
	 In addition to finding correlations between CHD and clini-
cal, demographic, and behavioral patterns, this study also 
demonstrated a proof of concept that survey questions like 
those in the BRFSS are informative when discussing the po-
tential diagnoses of specific, behavior-influenced diseases 

such as coronary heart disease. We used simple machine 
learning models to identify specific risk factors for individual 
demographics regarding heart disease when trained solely 
using broad questions taken from a study relating to over-
all health. The performance of these predictors could be en-
hanced by training them using additional CHD-related data or 
by testing further model types to maximize the performance 
with currently available data. Improvements such as these 
could lead to a more accurate predictor, potentially improving 
on existing first line of defense approaches and helping better 
identify and notify high-risk individuals, allowing them to see 
a doctor and get a more accurate diagnosis. 
	 There were many limitations of this study. The data itself 
were a limitation, as there were relatively few behavior-related 
variables that could potentially relate to heart disease. The 
data were also heavily skewed towards white and elderly 
populations and thus may limit the generalizability of the find-
ings to the broader US population and beyond. Additionally, 
there are likely issues regarding the reliability of self-reported 
survey responses that may have affected the reliability of the 
data and, as a result, the models it was used to train. For 
example, some individuals that had not been diagnosed with 
CHD may have nonetheless had the disease without know-
ing it. This would have resulted in both fewer positives for the 
model to train on as well as rendering some of the currently 
negative samples mislabeled. Another limitation arose due to 
issues of patient privacy in a public dataset with personally 

Figure 5: Features with variable weight across demographic-specific CHD models. a-c) Weights of (a) days drank in the last 30, (b) 
average drinks per sitting, and (c) years smoked, which each showed differing effects across different demographic-specific models. Logistic 
Regression was used as the model type for all cases. All feature weight values were computed over 5-fold cross validation. Bars represent 
means, and error bars represent standard deviations. d-f) Distribution of (d) days drank in the last 30, (e) average drinks per sitting, and (f) 
years smoked, in the Asian demographic, Pacific demographic, and Native demographic, respectively. P-values (two-sided Mann-Whitney 
U-test; n=9,577, 1,867, and 5,208, respectively) and means are displayed. Dotted lines represent means for each dataset (black: No CHD, 
red: Yes CHD).
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identifiable information, such as the specific ethnicity or exact 
age of each sample. For example, some of the issues de-
scribed above relating to geographic diversity may have been 
solved by providing the model with more meaningful ethnicity 
labels, such as dividing the world’s largest population group 
(Asians) into multiple groups (South Asians, East Asians, 
etc.). In addition, the lack of exact age data introduced issues 
where the model considered two people aged 55 and 59 as 
the same age (placed in the 55-59 age group), whereas two 
people aged 59 and 60 were placed in separate categories 
and labeled as having different ages. Lastly, the scope of this 
research was limited by the availability of computational re-
sources, which rendered the use of higher complexity mod-
els, such as neural networks, infeasible.
	 For future experiments, we recommend spending more 
time to either construct or find a large and specialized da-
taset. Although such a specially constructed dataset would 
probably be smaller than BRFSS, the ability to tailor ques-
tions specifically to the diagnosis of CHD would be invalu-
able. A more specific study asking questions more focused 
on heart disease could yield much better results while costing 
a potential patient much less than undergoing a CT scan or 
other traditional methods for diagnosing heart disease. For 
example, a specific area of questions that pertain heavily to 
CHD are diet-related questions, which were absent from the 
BRFSS questionnaire (14). Future studies could include many 
more behavioral questions, allowing for better assessment 
of the role of behavior in CHD. In addition, another aspect 
that could potentially be added to a future study is laboratory 
measurements that are widely accessible and can be taken 
outside of a clinical setting, such as blood pressure measure-
ments. This type of data can potentially be collected at home 
and would grant a major piece of important information to the 
model while still costing less and remaining more convenient 
than more complex laboratory tests such as a CT scan.
	 The goal of this study was to demonstrate the promise of 
using survey-based prediction to diagnose CHD and recover 
correlations between behavioral factors and heart disease us-
ing solely large datasets of survey questions. This approach 
can not only be cheaper and easier to perform for research-
ers compared to running inconvenient clinical tests, but any 
developments or models successfully trained can then be 
made easily accessible to patients, only needing to answer 
the same survey questions that yield accurate models. This 
would allow medical professionals to determine which indi-
viduals need treatment the most, allowing them to give pri-
ority to patients at higher risk of CHD and potentially save 
numerous lives in the process. Hopefully, this study is seen by 
other AI/ML practitioners in the field and influences others to 
also adopt the useful and promising methods of survey-based 
prediction.

MATERIALS AND METHODS
Data
	 Data were obtained from the CDC’s annual public BRFSS 
2022 phone survey (14). The data were downloaded in SAS 
format, and the corresponding materials such as the code-
book were used to interpret the data.

Preprocessing
	 All code written for this project was done using Python 
3 and the Jupyter Notebook IDE, available at github.com/

aidenc08/Diagnosing-CHD-With-Survey-Questions. The ini-
tial dataset, containing 445,132 samples and 326 features, 
was imported using the pandas module (18), and the pandas 
DataFrame object was used for the remainder of the proj-
ect. Relevant variables were identified by manually flagging 
any variables that could be classified as behavioral patterns 
(smoking, alcohol use, exercise, sleep time), previous health 
conditions (kidney disease, diabetes, COPD, asthma, oral 
health), or demographic data (race, age, gender). After iden-
tifying the relevant variables, those variables were prepared 
for model training through five preprocessing steps. The first 
step was classifying each variable as either categorical or 
continuous. All binary variables were considered categorical 
and stored in one variable with 0 indicating no presence and 
1 indicating presence. The next step was expressing the cate-
gorical variables with multiple binary variables each express-
ing a single possible category of the variable (one-hot en-
coding). In addition, one continuous variable, when a person 
had first started smoking, was one-hot encoded into different 
categories including never smoked, first cigarette before 18, 
and first cigarette after 18. The third step was preprocess-
ing continuous variables. Questions left blank because of 
negative answers to prior questions (e.g. “What is the most 
number of drinks you’ve ever had?” asked to a person who 
had never drank) had their blank entries turned into zeroes. 
Values indicating missing or invalid responses (frequently ei-
ther two or three-digit numbers composed of only 7s or 9s) 
were replaced with the numpy module’s (19) Not a Number 
variable to make them easier to identify. One variable, which 
indicated either the number of times a person had drank in 
the last week or in the last 30 days, needed additional pre-
processing. Each value that represented the last week was 
divided by 7 and multiplied by 30 to reflect 30-day values. 
Finally, technically categorical variables with many categories 
that reflected a continuous nature were kept continuous, such 
as an age variable that classified people into 13 different, 
5-year age groups. The fourth step was linearly scaling the 
continuous variables to range from 0 to 1, which was done us-
ing scikit-learn’s (20) MinMaxScaler. Prior to this, if a variable 
did not seem to be normally distributed (evaluated by look-
ing at a representative matplotlib histogram), the variable was 
log transformed using a natural log base. If the variable had 
values of zero, one was added to each value before taking 
the natural log. The final step was to combine all of the pre-
processed data into one dataframe and drop samples with a 
Not a Number value for any variable. After these steps, a final 
dataframe with 340,200 samples and 32 features remained. 
The target variable was obtained by taking a binary variable 
that indicated the self-reported past diagnosis of a myocardial 
infarction (heart attack) or CHD in a sample and reindexing 
the original target array using the preprocessed dataframe.

Model Training
	 For model training, multiple different binary classification 
models from the scikit-learn module were considered (20). 
These models were Support Vector Machine (LinearSVC), 
Naive Bayes, Logistic Regression, and Random Forest Clas-
sifier. Naive Bayes was run with default parameters while Lin-
earSVC and LogisticRegression were run with a ‘balanced’ 
class_weight and a max_iter of 10000. RandomForestClas-
sifier was also run with a ‘balanced’ class_weight and with a 
min_samples_leaf of 125. Training and test sets were gen-
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erated using 5-fold stratified cross validation (equal ratio of 
positive to negative cases in all folds) before being used to fit 
and evaluate different model types. Model performance was 
assessed by averaging the Matthews Correlation Coefficient 
on both training and test datasets across all 5 folds. Logis-
tic Regression with a “balanced” class-weight and a max it-
erations of 10000 was determined to be the best performing 
model by mean test set MCC. Cross validation experiments 
were conducted on 90% of the data, with the remaining 10% 
used as a holdout dataset to evaluate the final model choice. 
This model choice was then applied to secondary datasets 
generated by splitting based on the demographic of variables 
race and sex.

Interpretation of Models
	 Interpretation of models was done using the .coef_ field 
to determine the weights of each feature passed into the 
model. The most significant features were found by taking 
the absolute value of each weight, and determining which 
ones had the highest average weight over all five folds from 
5-fold cross validation. The same was done for the second-
ary dataset generated for race and sex demographics. The 
weights of each variable across all demographics were then 
analyzed to determine mean weight, standard deviation, and 
max weight in order to assess how impactful and how con-
sistent each variable was across all demographics. Variables 
with a high standard deviation or a large discrepancy between 
the mean weight and the max weight were then further ana-
lyzed to identify demographics with outlier results. Variables 
with the highest and lowest mean weights, as well as those 
with the highest standard deviations and discrepancies be-
tween mean weight and max weight, were further analyzed 
through statistical tests. Associations with CHD were deter-
mined using two-sided Fisher’s Exact Test for binary vari-
ables and the two-sided Mann-Whitney U-test for continuous 
ones. The Bonferroni correction for multiple hypothesis test-
ing was used with a total of 55 tests run to obtain a threshold 
of around 0.0009 for statistical significance (FWER < 0.05). 
Effect size was also assessed using a log10 odds ratio for 
binary variables and difference in means for continuous ones. 
Both p-values and effect size were considered when deter-
mining whether a variable’s association with CHD was both 
statistically significant and practically meaningful.
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