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works designed to effectively recognize patterns across dif-
ferent parts of an image in the form of features (4). Unlike 
traditional neural networks, which are slower and less effec-
tive at capturing these features, CNNs show promising re-
sults because of their three layers: convolutional, pooling, and 
fully connected layers. The convolutional layer applies filters 
to scan the image and detect certain features (4). The pooling 
layer then reduces the spatial dimensions of these features, 
reducing overall complexity (4). Lastly, the fully connected 
layer connects each neuron from one layer to every neuron 
of the next layer, resulting in a dense network that allows for 
complex pattern recognition (4). However, CNNs have their 
limitations, especially in the task of organ segmentation. One 
study attempting to use CNN for radiology classification not-
ed that the model demanded a large pool of annotated data 
for proper training (5). However, this is a common problem 
in medical tasks as there is little annotated medical imaging 
data available to the public to develop a classification tool. 
Another noted challenge was overfitting, which occurs when 
the model begins to learn irrelevant patterns, impairing ac-
curacy when the model is applied to a new dataset.
	 To address these challenges, researchers employed the 
transformer architecture, which has been primarily used in 
Natural Language Processing (NLP). This architecture has 
two important features: self-attention mechanisms and paral-
lel processing. The self-attention component assigns differ-
ent weights of importance to various features in an image, 
also known as long-range dependencies (6). Thus, the model 
focuses on more important parts, allowing it to capture re-
lationships much more efficiently from less data while pre-
venting overfitting. The second feature, parallel processing, 
allows the model to simultaneously work on various pieces of 
information, similarly to how multiple people working on dif-
ferent parts of a project can speed up the process. Because 
of the huge size of transformers, their training times are typi-
cally longer than CNNs (6). Despite this, we hypothesized that 
transformers we used would achieve a higher accuracy than 
the CNNs due to their intricate and robust architecture.
	 In our study, we implemented two types of models: Unet, 
a type of CNN, and SegFormer, a type of transformer (Fig-
ure 1). Unets are characterized by a U-shaped structure with 
encoder and decoder paths (7). Encoders are analogous to a 
magnifying glass that zooms in and focuses on certain parts, 
while decoders zoom out to synthesize these details together 
and capture their essential parts. Because of its efficient fea-
tures, Unet is used in a variety of biomedical applications such 
as MRI reconstruction and monitoring chronic wounds (8, 9). 
Conversely, instead of convolutional layers, SegFormer uses 
transformer blocks, which are fundamental components of its 
architecture that facilitate input data. These blocks prevent 
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SUMMARY
Deep learning has revolutionized the approach 
to complex, data-driven problems, specifically 
in medical imaging, where its techniques have 
significantly raised efficiency in organ segmentation. 
Enhancing the depth and precision of organ-based 
classification is an essential step towards automation 
of medical operations and diagnostics. Our study 
aimed to investigate the effect and potential 
advantages of different models using Binary Semantic 
Segmentation. We chose to employ the SegFormer 
model as our primary deep learning model because of 
its lightweight architecture, alongside different Unet 
variations. We hypothesized that the performance 
of the SegFormer model would surpass the different 
Convolutional Neural Networks (CNN) models. We 
assembled a custom 2D computerized tomography 
(CT) scan dataset CT-Org2D, through conversion 
from 3D volumes and placing them in their respective 
folders. In contrast to the selected models, several 
experiments showed the task's simplicity required a 
redesigned Unet architecture with reduced complexity. 
This redesigned model yielded impressive results: 
the precision, recall, and Intersection over Union (IoU) 
scores were 0.91, 0.92, and 0.85, respectively. Our 
research could be improved upon by utilizing more 
diverse datasets, optimizing the model’s architecture, 
and conducting additional experiments with more 
advanced resources.

INTRODUCTION
	 Around 310 million major surgeries are performed each 
year, all of which carry a substantial risk of unfavorable re-
sults. Several major issues may arise due to decreased ac-
curacy and precision during these operations. For example, 
larger incisions and a surgeon’s limited range of motion when 
accessing certain areas can result in more painful scarring 
(1). Besides the potential for mistakes, these surgeries are 
also very expensive, not only for the average patient but also 
for hospitals. By 2025, hospital expenses are projected to 
average $40 million annually when accounting for medical 
staff, equipment, and other costs (2). AI-based methods have 
recently enhanced human work at the intersection of medi-
cal and AI fields. The use of automation in surgery, including 
robotic assistance, has the potential to significantly benefit 
medicine by ensuring consistent precision and lowering surgi-
cal expenses (3).
	 Convolutional Neural Networks (CNN) are advanced net-
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the model from using higher-complex decoders, resulting in a 
more lightweight model. Instead, SegFormer uses multi-layer 
perceptron (MLP) decoders that are used for simpler feature 
relationships to combine information from different layers in 
the model (8). SegFormer was chosen for this task because 
of its successful functionality in semantic segmentation (10). 
Even though SegFormer is five times smaller compared to 
a typical CNN, Xie et al. observed notably improved perfor-
mance in its ability to combine both local and global attention 
(10). Through local and global attention, the model can create 
efficient representations for segmentation.
	 We added four different types of backbones onto the Unet: 
Vgg16, Vgg19, Resnet50, and a customized Unet without a 
backbone. Backbones are the basic architectures of models 
that decide the structure, complexity of arrangement, and 
number of layers. The Vgg architecture captures detailed fea-
tures through its convolutional layers at different levels of ab-
straction (11). Vgg16 and Vgg19 differ in the number of layers 
present. Resnet includes skip connections between layers 
that enable a deeper architecture, since the skip connections 
help prevent vanishing gradients, the signals used to adjust 
the weight becoming too small (12). Additionally, we made a 
customized Unet that was not dependent on any pre-existing 
backbone architecture. We chose to study many Unet back-
bones to enable a thorough assessment of this as opposed to 
only one.
	 Considerable research has explored the effectiveness 
of different models in a variety of tasks: Chen et al. propose 
TransUnet, a hybrid architecture combining a Unet and a 
transformer and taking advantage of the benefits of each ar-
chitecture for medical imaging (13). The TransUnet showed 
promising results on organ segmentation in CT scans with 
a high average Dice Score Coefficient (DSC), demonstrating 
the effectiveness of a hybrid mode (13). However, this study 
could not explore of each architecture’s strengths and weak-

nesses, as it combined the Unet and transformer into a single 
model. Hence, a comparative analysis is necessary to iden-
tify which model works best for each use case and how each 
model can be improved. Additionally, their data lacked varia-
tions in image quality and conditions including the resolution, 
lighting, and clarity. Moreover, Zettler et al. showed that 2D 
Unet models are more effective than 3D Unet models in terms 
of speed and low memory costs (12). Although the 3D model 
had slightly more favorable results than the 2D model, the 
authors concluded that this could not justify the additional 
computer resources needed (14). The 3D model also required 
3D image data, which further increased memory usage and 
rendering time (14). Thus, we decided it was best to work with 
2D models. Similarly, Dia et al. used transformer-based archi-
tectures for multi-modal medical imaging classification, which 
involved labeling data from multiple sources of information 
(15). The authors discussed their struggle to solve the lack 
of sufficient medical imaging data, which is needed to work 
with transformers (15). In the end, they opted to address this 
problem by creating a new model that works with the data 
they found (15). Here, we chose to directly modify the dataset 
instead of the models for our project for our project.
	 Automating medical procedures requires organ segmen-
tation, separation, and identification. This project used binary 
semantic segmentation, in which each pixel is labeled ac-
cording to two classes: either an organ or the background. 
The goal in this task is to create a binary mask that separates 
the target area from everything else. To simplify this process, 
the method uses downsampling to reduce the image size and 
thus the amount of data. While at the end, upsampling is used 
to restore the image to its original size. This is done through 
interpolation which creates new pixels with values estimated 
from neighboring pixels to restore the original image size.
	 Transformers have recently enabled improvements in 
computer vision with their ability to execute tasks more ef-
ficiently than a CNN (6). This motivated us to research the 
strengths and weakness of transformers on semantic seg-
mentation and hypothesize that the transformer would pro-
duce the most efficient results in this organ segmentation 
task. However, the data shown in this study does not support 
this hypothesis, as a simpler model outperformed all other 
transformer and CNN models we tested. Thus, for certain 
tasks, simpler models may offer significant advantages in 
terms of efficiency and performance, showing the potential in 
medical imaging analysis.

RESULTS
	 To compare the performances of the transformer and 
Unet models on segmenting organs, we utilized several key 
metrics: precision, recall, and intersection over union (IoU) 
score. Due to the task’s focus on binary segmentation, the 
IoU score served as the benchmark metric for comparison. 
The values for these metrics range from 0 to 1, representing 
the probability in different aspects of the task. For example, 
precision is the number of true predictions relative to the en-
tire set of outcomes. To guarantee that non-organ regions are 
excluded from the segmentation, precision is essential. Re-
call is the ratio of actual positive results that the model accu-
rately predicts. High recall is essential for segmenting organs 
since it guarantees thorough coverage of the entire organ. In-
sufficient recollection may result in insufficient segmentation, 
which may produce incorrect representations of the organ’s 

Figure 1. A visual representation of the Segformer and Unet 
model architectures. The Unet decreases the image size by half, 
affecting the resolution, but restores it to its original size through 
upsampling and downsampling functions. The Segformer uses of 
encoder and decoder components alongside its transformer blocks 
to predict the output.
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size and shape. The IoU score is the overlap between the 
predicted regions and the ground truth. It is the most reliable 
metric for accurate binary segmentation (16).
	 We believed that the SegFormer model would yield the 
highest results in the task of binary segmentation of organs 
due to its intricate architecture. We tested this by recording 
the results of each model through different metrics. For the 
SegFormer, we observed relatively low scores for precision 
(0.56), recall (0.33), and IoU (0.26). Comparatively, the Unet 
models with backbones had scores around 0.95 for precision, 
0.38 for recall, and 0.37 for IoU. Thus, we inferred these big-
ger models had trouble adjusting to this task, as seen through 
the successful scores from the custom Unet. Alternatively, 
the data itself could’ve been the reason for these models per-
forming worse (Table 1).
	 Looking at the models, the SegFormer model had the larg-
est size (180 MB), with the greatest number of parameters (47 
million) relative to the other Unets (2.6 million) (Table 2). Ad-
ditionally, it had the fewest layers (5 layers), validating its effi-
cient architecture (Table 2). Therefore, the model’s poor per-
formance in precision could be attributed to the lower number 
of layers. The Unets with backbones were only successful in 
the precision category, suggesting that they failed to localize 
many of the objects. On the other hand, the custom Unet was 
the smallest in size (2.2 MB). Yet, it had the highest balance 
of all three matrices (Table 2). Additionally, all the models ran 
for 20 epochs, but the average scores of the models on train-
ing data usually converged after 10-15 epochs (Figure 2). 
Therefore, we ran the models for around this range of epochs, 
as running them longer would prove unnecessary.

DISCUSSION
	 We aimed to evaluate the effectiveness of a transformer 
model, specifically SegFormer, on segmenting organs cor-
rectly. We compared the performance of the model to other 
various Unet models using a custom 2D CT scan dataset. 
Our experiments showed that the custom Unet, without a 
backbone, outperformed all the other models through higher 
precision, recall, and IoU score. The results can suggest that 
simpler models sometimes offer better performance in less-
complex tasks.
	 We compared the top-performing models from each ap-
proach in this segmentation task using the accuracy scores 
from each metric. However, because of the low accuracy we 
observed in both the CNN and transformer models, we cre-
ated a customized Unet with fewer layers and nodes. The 
model’s low complexity was well-suited to the simplicity of the 
binary segmentation task. Thus, we utilized a Unet lacking 
a backbone to prevent additional complexity. We also com-
pared the scores from our task to other tasks in medical imag-
ing. Chen et al. used a DSC function to find that their project 
yielded a DSC of 89.71% on average with multiple organs (13). 
The DSC function is like our IoU score because both measure 
the degree of overlap, from 0 to 1, between a predicted and 
truth set. Similarly, we converted our IoU score from our best 
model of 85% into a dice score, resulting in 83.4%. The slight 
discrepancy between scores may be attributed to the lack of 
resources, as higher-performing GPUs and memory may im-
prove model training.
	 Another aspect discovered in this study is the issue of over-
fitting, shown through the CNN and transformer models. We 
found out it was occurring as the model showed a remarkably 
lower loss and higher accuracy on the training set compared 
to the validation. A possible explanation could be the tenden-
cy of the models to memorize the irrelevant patterns present 
in the initial and ending segments of each volumetric image. 
As the 3D volume was converted to 2D slices, these slices 
represented varying depths in the volume. Consequently, the 
upper and lower sections of the volume were blank because 
there were not any organs present in either of these region 
depths. When the model repeatedly encountered these blank 
images, it is possible that the model allocated importance and 

Table 1. Various evaluation metric results for all models. Highest 
precision, recall, and IOU score metrics are presented for all five 
models. The custom Unet preformed the highest for all three metrics. 
Conversely, the SegFormer had the lowest performance.

Table 2. Comparative characteristics of the chosen models. The 
SegFormer model has the greatest number of parameters, resulting 
in its huge model size. Conversely, the custom Unet had the lowest 
number of parameters and the smallest model size.

Figure 2. Average convergence rates of all the models across 
several epochs using a Dice Loss Function. The models 
converged to a constant loss score by the 10th-15th epoch.
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memory to them, rather than focusing on the meaningful data. 
Another reason could be the dataset itself. As we built it, we 
lacked the time to address class imbalance and the bias that 
comes as a result. Class imbalance occurs when one class, 
such as a specific organ, appears more often than others. 
As a result, the model does not receive enough data on the 
less-represented classes and may be overfitted on the more 
common class. In our dataset, the kidney was more common 
in the slices than the brain or liver. Hence, these organs may 
have been the most affected by the class imbalance.
	 Throughout the project, several limitations influenced the 
research process and results. One significant constraint was 
the limited computational resources in our work environment, 
including available RAM and software. The large size of the 
dataset exacerbated these problems, leading to frequent 
timeouts and extended execution delays during debugging 
phases. Therefore, we created a more manageable subset by 
shortening the number of slices notably to allow for trouble-
shooting and debugging only, while using the original dataset 
for training and testing.
	 Future work could broaden the scope of this study to in-
clude multi-segmentation. This would open the doors to more 
model options, including intricate transformer architectures 
that may better fit the complexity needs of the task. Anoth-
er option is the addition of the third dimensions to the task, 
which could allow the use of 3D datasets. The room for im-
provement is endless in the field of organ segmentation. The 
study has the potential to impact the medical field by leading 
to more effective diagnosis and treatment planning through a 
custom model and dataset.

MATERIALS AND METHODS
	 The 3D computed tomography (CT) volume dataset with 
multiple organ segmentations (CT-ORG) was chosen due to 
its large amount of data of multiple organ classes and the lack 
of 2D data online (17). CT-ORG contains six organ classes 
for segmentation: liver, lung, bladder, kidney, bone, and brain 
(17). The data was gathered from CT scans of patients who 
had conditions or lesions in one or more of the organs speci-
fied. The scans had a wide variety of parameters, including 
abdominal and full-body, contrast and non-contrast, and low-
dose and high-dose. The front view shows the greatest num-
ber of organs with the best definition (Figure 3). In contrast, 
the top view hides many of the organs, not revealing their true 
shape. The side view emphasizes the bones, not giving im-
portance to any of the other organs. Thus, we used the front 
view, as it was the most useful in our case.
	 To convert the volumes into slices, we condensed the 
original scans from 512 × 512 with varying depths, ranging 
from 74 to 987 slices down. We reduced these slices to 285 
× 277 by rotating the view from top (axial) to front (coronal) 
for better organ visibility. This resulted in 512 slices per vol-
ume, creating a total of 71,680 slices. The data was split into 
training, validation, and testing sets (60-15-25%). The reason 
for this specific data split was to give more data to the train-
ing set, allowing the model to learn better with more practice. 
Periodically, there was a validation set which would test the 
model using the training data for each epoch. This helps by 
monitoring the current accuracy while adjusting to the hyper-
parameters, which leads the model to generalize properly. 
Finally, the last set was the testing set so the model could be 
tested on unseen data. Notably, the data was split by volume 

instead of by individual slice, meaning that all slices for each 
volume were together in a certain data set (Figure 4). The 
slices were sorted and identified using a specific naming con-
vention (e.g., Volume0_Slice-0).
	 We simplified the custom Unet by reducing the number 
of convolutional layers from 23 in its original layer to just 11, 
which lowered the number of encoder and decoder stages. 
We also used a uniform number of filter counts, instead of the 
filters doubling or halving, to minimize the model’s size. Last-
ly, we selectively picked several skip connections, as they 
were essential to retain spatial information. These changes 
ensured the Unet could effectively handle this task while low-
ering its computational resources.
	 In the new dataset, Ct-Org2D, the features (input) were 
grayscale, but the labels were RGB. We duplicated the gray-
scale channel twice so we could work with different models, 
then we combined all the outputs to get a three-channel im-
age. This allowed us to use the three-channel features and 
labels with ease while maintaining grayscale images. Alterna-
tively, we could have customized the model’s layers to meet 
the singular channel requirement. The learning rate and batch 
size differed between the Unets and SegFormer (Table S1). 
After testing many different values for these factors, we were 
able to identify the optimal settings that maximized perfor-
mance. In the Unets, the Adam optimizer was chosen over 
Stochastic gradient descent (SGD) for its adaptiveness to ad-
just the weights better. However, SGD was used in the Seg-
Former for its better generalization patterns, improving the 
accuracy of the model (Table S1).
	 Google Colab Pro was used for running the code. The 
software gave access to efficient GPUs such as A100 and 
NVIDIA Tesla T4 for faster runtimes. With higher memory set-
tings, we had access to 25.5 GB of RAM. For the first half 
of the study, the PyTorch framework was employed for data 
collecting and analysis. Pytorch outperformed Keras and 
TensorFlow in terms of handling huge datasets and overall 
flexibility. Pytorch, however, demonstrated less incompatibil-
ity with debugging, displaying images, and handling complex 
models, especially transformers (18). Hence, for the training, 
testing, and visualization phases, we utilized Keras/Tensor-
Flow 2.13.

Figure 3. Sample slices from all three axes with labels. A) 
Feature of a sample slice, and D) shows the segmented mask from 
the top view. B and E) Corresponding images from the front view. C 
and F) Corresponding images from the side view. 
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	 Google Drive was used to store the data and to help per-
form functions on the dataset by allowing Python libraries 
access to it. The SimpleITK library extracted each slice and 
different characteristics (e.g., shape, views) from various vol-
umes. Matplotlib visualized the predicted masks and input/
output after being converted to a NumPy array. The Shutil li-
brary relocated thousands of images to their respective train-
ing/testing drive folders. Finally, the TQDM library, although 
not necessary, was used to generate a progress bar when 
running a code block. This worked well to display the percent-
age left in the completion of a code’s runtime, especially when 
it came to training the huge models.

Received: November 25, 2023
Accepted: July 1, 2024
Published: Novemeber 12, 2024

REFERENCES
1.	 Dobson, G. P. “Trauma of major surgery: A global problem 

that is not going away.” International Journal of Surgery, 
vol. 81, Sep. 2020, pp. 47–54. https://doi.org/10.1016/j.
ijsu.2020.07.017.

2.	 Shepard, M. “A look at the actual device costs for hos-
pitals.” Medical Product Outsourcing. bit.ly/41nRZJv. Ac-
cessed December 13, 2023.

3.	 Deo, N., & Anjakar, A. “Artificial Intelligence With Robot-
ics in Healthcare: A Narrative Review of Its Viability in 
India.” Cureus, May 23, 2023. https://doi.org/10.7759/
cureus.39416.

4.	 Mishra, M. “Convolutional Neural Networks, Explained.” 
Medium, www.towardsdatascience.com/convolutional-
neural-networks-explained-9cc5188c4939. Accessed 
December 13, 2023.

5.	 Yamashita, R., et al. “Convolutional Neural Networks: An 
overview and application in Radiology.” Insights into Im-
aging, vol. 9, no. 4, Aug. 2018, pp. 611–629. https://doi.
org/10.1007/s13244-018-0639-9.

6.	 Vaswani, A., et al. “Attention Is All You Need.” arXiv, 12 
June 2017. https://doi.org/10.48550/arXiv.1706.03762.

7.	 Ronneberger, O., et al. “U-Net: Convolutional Networks 
for Biomedical Image Segmentation.” arXiv, 2015. https://
doi.org/10.48550/arXiv.1505.04597.

8.	 Van Lohuizen, Q., et al. “Assessing deep learning recon-
struction for faster prostate MRI: Visual vs. Diagnostic 

Performance Metrics.” European Radiology, 2024. https://
doi.org/10.1007/s00330-024-10771-y.

9.	 Alabdulhafith, M., et al. “Automated wound care by 
employing a reliable U-Net architecture combined 
with ResNet feature encoders for monitoring chronic 
wounds.” Frontiers in Medicine, vol. 11, 2024. https://doi.
org/10.3389/fmed.2024.1310137.

10.	 Xie, E., et al. “SegFormer: Simple and Efficient Design 
for Semantic Segmentation with Transformers.” arXiv, 31 
May 2021. https://doi.org/10.48550/arXiv.2105.15203.

11.	 Simonyan, K., et al. “Very Deep Convolutional Networks 
for Large-Scale Image Recognition.” arXiv, 2015. https://
doi.org/10.48550/arXiv.1409.1556.

12.	 He, K., et al. “Deep residual learning for image rec-
ognition.” 2016 IEEE Conference on Computer Vision 
and Pattern Recognition, 2016. https://doi.org/10.1109/
cvpr.2016.90.

13.	 Chen, J., et al. “TransUNet: Transformers Make Strong 
Encoders for Medical Image Segmentation.” arXiv, 2021. 
https://doi.org/10.48550/arXiv.2102.04306.

14.	 Zettler, N., & Mastmeyer, A. “Comparison of 2D vs. 3D 
U-Net Organ Segmentation in abdominal 3D CT im-
ages.” arXiv, 8 July 2021. https://doi.org/10.48550/arX-
iv.2107.04062.

15.	 Dai, Y., & Gao, Y. “TransMed: Transformers Advance 
Multi-Modal Medical Image Classification.” arXiv, 10 
March 2021. https://doi.org/10.48550/arXiv.2103.05940.

16.	 Huilgol, P. “Precision and Recall.” Analytics Vidhya. short-
url.at/jqv49. Accessed December 13, 2023.

17.	 Nolan, T. “CT volumes with multiple organ segmenta-
tions.” Cancer Imaging Archive Wiki. Accessed December 
13, 2023.

18.	 Terra, J. “Keras vs Tensorflow vs Pytorch: Key Differenc-
es Among Deep Learning.” Simplilearn. www.simplilearn.
com/keras-vs-tensorflow-vs-pytorch-article. Accessed 
December 13, 2023.

Copyright: © 2024 Chaudhary and Yasrab. All JEI articles 
are distributed under the attribution non-commercial, no 
derivative license (http://creativecommons.org/licenses/
by-nc-nd/4.0/).  This means that anyone is free to share, 
copy and distribute an unaltered article for non-commercial 
purposes provided the original author and source is credited.

Figure 4. Sequential slices in a 3D labeled image. The slices go from the uppermost (left) to the bottom (right) of a 3D labeled image. The 
middle slices contain more organs, as they reflect the center of the human body. For example, the slice numbers from left to right are 1, 52, 
104, 253, 369, 427, 511, respectively. One volumetric image consisted of 512 such slices. 

https://doi.org/10.1016/j.ijsu.2020.07.017
https://doi.org/10.1016/j.ijsu.2020.07.017
https://doi.org/10.7759/cureus.39416
https://doi.org/10.7759/cureus.39416
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.1007/s00330-024-10771-y
https://doi.org/10.1007/s00330-024-10771-y
https://doi.org/10.3389/fmed.2024.1310137
https://doi.org/10.3389/fmed.2024.1310137
https://doi.org/10.48550/arXiv.2105.15203
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.48550/arXiv.2107.04062
https://doi.org/10.48550/arXiv.2107.04062
https://doi.org/10.48550/arXiv.2103.05940


12 NOVEMBER 2024  |  VOL 7  |  6Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/23-323

APPENDIX

The dataset, CT-Org2D, and code used in the study can be found at: github.com/MrCarry123/OrganSegmentation

Table S1. Comparison of training parameters across different models. 
The unets were trained differently than SegFormer, but the epochs remained 
consistent throughout each model.

http://github.com/MrCarry123/OrganSegmentation

